CN116063745B - 一种多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶及其应用 - Google Patents

一种多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶及其应用 Download PDF

Info

Publication number
CN116063745B
CN116063745B CN202211424459.5A CN202211424459A CN116063745B CN 116063745 B CN116063745 B CN 116063745B CN 202211424459 A CN202211424459 A CN 202211424459A CN 116063745 B CN116063745 B CN 116063745B
Authority
CN
China
Prior art keywords
acid
resistant
salt
biomass
based hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211424459.5A
Other languages
English (en)
Other versions
CN116063745A (zh
Inventor
刘福强
蒋燕妮
王丽婷
吕盈知
李爱民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202211424459.5A priority Critical patent/CN116063745B/zh
Publication of CN116063745A publication Critical patent/CN116063745A/zh
Application granted granted Critical
Publication of CN116063745B publication Critical patent/CN116063745B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/26Cellulose ethers
    • C08J2301/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2397/00Characterised by the use of lignin-containing materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/26Cellulose ethers
    • C08J2401/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2497/00Characterised by the use of lignin-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明提供了一种多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶及其应用,氨基膦酸生物质基水凝胶由活性基体单元和功能基单元经交联剂嫁接反应而成,功能基单元由氨基化合物与亚磷酸经接枝反应而成;活性基体单元选自羧甲基纤维素钠、木质素磺酸钠、半纤维素、海藻酸钠、环糊精、明胶、古尔胶、淀粉中的任意一种、两种或多种的混合;氨基化合物选自聚乙烯亚胺、聚丙烯酰胺、二乙胺、二乙烯三胺、四乙烯五胺中任意一种、两种或多种的混合;本发明提供的氨基膦酸生物质基水凝胶富含介孔同时具有耐酸耐盐与优良动力学特性、原料成本低廉、适于复杂废水中铜离子的高选择性分离回收,规模化生产和应用前景突出。

Description

一种多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶及其应用
技术领域
本发明涉及环境材料的领域,尤其涉及一种多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶及其应用。
背景技术
水体重金属污染是危害性最大的全球性环境问题之一,特别是强酸性重金属废水。强酸性重金属废水(pH≤3.0)广泛来源于矿山开采、金属冶炼、电子电镀、电池制造等行业,因其酸性强、毒性高、重金属成分杂且浓度高、无机盐含量高、处理难等特点而倍受关注。Cu(II)是环境中分布最广的重金属污染物之一,过量摄入Cu(II)可导致贫血、胃肠问题和肾、肝损伤。然而在铜矿开采、冶炼、电镀工业和黄铜制造等行业废水中,Cu(II)通常与大量的碱(土)金属离子或碱(土)金属盐和高浓度的H+共存,进一步增大了污染控制难度。同时,Cu(II)作为重要的不可再生资源,广泛应用于机械制造业、电子制造业等。因此,从重金属废水中回收利用Cu(II)至关重要。
目前被人们广为运用于重金属废水处理的技术主要有化学沉淀法、电化学法、微生物法、膜分离法和吸附法等。其中,吸附法具有运行简便、处理成本低、效率高、选择性强等优势,尤其适用于重金属离子分离纯化与资源回收。然而随着吸附技术发展和研究的深入,强酸性废水中重金属的分离回收对吸附法提出了更高要求,如何在强酸胁迫下同时突破重金属选择性、吸附量、动力学和无机盐干扰等技术壁垒,成为国内外专家学者们的关注焦点。
氨基膦酸螯合基团是潜在的多齿螯合配体,因其富含两性功能基、结构设计过程可控、处理效果优异。因氨基氮可以提供螯合中心、羟基氧可以同时提供螯合中心和离子交换中心,氨基膦酸基团可以与重金属形成更加稳定的螯合结构,而且吸附过程可综合发挥配合作用和静电作用,因此吸附性能取决于膦酸基团的电离程度。当溶液pH介于1.5~3.0时,氨基氮原子被质子化,使其中一个羟基解离而另一个未解离,因此,氨基膦酸两性基团具备从强酸性废水中去除重金属离子的能力。树脂是一种已广泛投入工业实际应用的吸附材料,国外商用氨基膦酸树脂主要包括S950、AmberliteIRC747和D860等,主要用于选择性去除氯碱工业饱和盐溶液中的Ca(Ⅱ)和Mg(Ⅱ),还有用于去除弱酸性溶液中Cu(Ⅱ)、Zn(Ⅱ)、Pb(Ⅱ)等重金属离子。但是上述树脂的共性不足在于其在强酸性溶液中以及多元金属离子干扰下,吸附容量及吸附选择性均明显不足,且吸附速率较慢,这大大制约其实际应用推广。
生物质高分子基水凝胶材料成本低廉、可用性丰富,具有多孔及活性位点易于暴露的优势,其高亲水性与多重网络结构可大大提升其吸附动力学性能,因此正日益成为水处理中新型吸附剂研究的热点。而纤维素基水凝胶具有高度互联的三位网状结构与丰富的孔道结构,且富含羟基、易于改性。
可处理强酸条件下的重金属吸附剂较为少见,目前主要以树脂为基体,南京大学等发明单位已经开发了一系列氨基膦酸类、吡啶胺类螯合树脂(CN201911375554.9;CN202110264800.4),在强酸条件下对多种重金属阳离子有良好的吸附效果,但是由于孔道窄,其吸附速率较慢,通常需要20~36小时才能达到吸附平衡,且性能受高盐环境抑制。已发表涉及在强酸条件下以生物质基为载体的相关专利(CN202011133420.9;CN202111580728.2),均是将胺基或吡啶基与生物质基复合而成水凝胶,无法对特定重金属离子具有靶向去除能力。目前鲜见关于生物质基单元与氨基膦酸单元复合的案例,Liu等(Carbohydrate Polymers 269(2021)118355)制备的N-亚甲基膦酸壳聚糖气凝胶是先将膦酸基接枝在壳聚糖上,再交联胺基,胺基和膦酸基无法共同形成螯合结构,导致耐酸性与吸附选择性不足。
发明内容
针对现存吸附剂在强酸/高盐性重金属废水中吸附容量和动力学明显下降或不适于共存多元金属离子干扰下高效选择性分离回收铜离子等难题,本发明提供一种多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶及其应用。
为了达到上述目的,本发明采用的技术方案如下:一种多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶,所述的氨基膦酸生物质基水凝胶由活性基体单元和功能基单元经交联剂嫁接反应而成,所述的功能基单元由氨基化合物与亚磷酸经接枝反应而成;
其中,活性基体单元选自羧甲基纤维素钠、木质素磺酸钠、半纤维素、海藻酸钠、环糊精、明胶、古尔胶、淀粉中的任意一种、两种或多种的混合;氨基化合物选自聚乙烯亚胺、聚丙烯酰胺、二乙胺、二乙烯三胺、四乙烯五胺中任意一种、两种或多种的混合;交联剂选自戊二醛、环氧氯丙烷、N,N—亚甲基双丙烯酰胺中的任意一种、两种或三种的混合。
一种多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶的生产工艺:具体包括如下步骤:
1)将活性基体单元与水混合形成胶状溶液;
2)将步骤1)中制得的胶状溶液与氨基化合物混合,进行交联反应;
3)向步骤2)交联反应制得的产物中加入亚磷酸接枝溶液,在水中进行接枝反应,得到多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶。
本发明的活性基体单元优选羧甲基纤维素钠;氨基化合物优选聚乙烯亚胺;交联剂优选环氧氯丙烷;经过优选后的多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶,对于Cu离子具有非常好的吸附效果,且在强酸性和高盐的条件下,仍然具有较佳的吸附效果;其最优选的结构式如下:
本发明提供的一种多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶在处理水溶液中重金属阳离子中的应用,具体的应用方法如下:
将氨基膦酸生物质基水凝胶与含有重金属阳离子的水溶液进行混合,反应一段时间,完成对重金属阳离子的吸附;具体应用如下:
1)向重金属水溶液中直接投加氨基膦酸生物质基水凝胶,混合反应若干时间,再分离出该氨基膦酸生物质基水凝胶;
或者2)将氨基膦酸生物质基水凝胶填充于反应容器中,使重金属水溶液流经该反应容器;通过这两种方法,均可以通过氨基膦酸生物质基水凝胶对重金属阳离子的吸附。
本发明的重金属阳离子优选为铜离子,浓度为1.0mmol/L;
本发明的应用方法中:重金属阳离子存在的环境为强酸环境,酸性介质为盐酸,pH范围为2.0~5.0。
本发明的应用方法中:重金属阳离子存在的环境为重盐环境,重盐为无机盐,无机盐具体为硝酸钠、氯化钠、硫酸钠、氯化镁、氯化钙、氯化钾中的一种或几种的组合,浓度范围为0.2~20mmol/L。
从结构单元中可以看出,本发明中氨基膦酸生物质基水凝胶的功能基团主要为:氨基、羟基、膦酸基;水凝胶通过N、O、P等配位原子的螯合作用吸附铜离子,与铜离子形成稳定的环状螯合结构,从而达到选择性吸附去除的效果;根据软硬酸碱理论、金属离子电子结构、离子半径、水合半径等,这些基团更倾向于与铜离子结合形成稳定的共价配合物,并且常规碱(土)金属离子不会与这些基团发生配位作用,因此本发明制备的水凝胶能够选择性去除共存多元金属离子中的铜离子且耐碱(土)金属离子;由于氮、磷原子属于中间偏硬碱,根据软硬酸碱理论,难以与常规碱(土)金属离子(Na+、K+、Mg2+、Ca2+等)发生配位作用,因此本发明制备的水凝胶具有抗常规无机盐的优点;由于活性基体单元为具有介孔结构的生物质单元,两性功能基单元在接枝过程中的高温使得介孔孔道扩大,因此本发明制备的水凝胶具有快速吸附动力学的优点。
本发明的优点在于:1)本发明提供的多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶的原料来源广泛,制备方法简单,克服了其他双网络水凝胶制备过程复杂、原料消耗大、重金属吸附量低的缺点,无需复杂处理,可工业化大规模生产;
2)本发明提供的多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶选择性提取铜离子的性能优异,所含功能基团(膦酸基、胺基和羟基)利用其N、O和P等配位原子的螯合作用吸附铜离子,与铜离子形成稳定常数较高的环状配合物,适用于复杂多元重金属离子环境下铜离子的选择性提取;
3)本发明提供的氨基膦酸生物质基水凝胶富含介孔,具有快速吸附动力学,2h去除率达80%以上,4h去除率达90%以上;
4)本发明提供的多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶在强酸高盐环境中仍能保持对铜离子的吸附能力,并且部分共存无机盐对铜离子的吸附有促进作用。
附图说明
图1为实施例4中的样品水凝胶M的傅里叶变换红外光谱;
图2为实施例4中的样品水凝胶M的氮气吸附-脱附曲线;
图3中的(a)为实施例4中的样品水凝胶M在强酸高盐条件下(pH=2.0)对铜离子的吸附量;
图3中的(b)为实施例4中的样品水凝胶M在强酸高盐条件下(pH=2.0)对铜离子的吸附量;
图4为实施例4中的样品水凝胶M在强酸高盐条件下(pH=2.0,Na2SO4浓度为20mmol/L)的即时干重吸附量随时间的变化。
表1为实施例1~4中所制备的耐强酸型、高选择性提取铜离子的生物质基水凝胶对Cu(Ⅱ)的吸附;
表2为实施例4中的样品水凝胶M、对比凝胶在pH=2.0~5.0范围pH值对Cu(Ⅱ)的吸附量的影响。
具体实施方式
下面结合附图说明和具体实施方式对本发明作进一步详细的描述。
实施例1:一种选择性分离去除铜离子的耐强酸型氨基膦酸水凝胶,其制备方法,采用以下步骤:
(a)分别将20ml 4.0wt.%羧甲基纤维素钠、木质素磺酸钠、环糊精、海藻酸钠溶液与20ml 6.0wt.%乙二胺溶液和0.8ml环氧氯丙烷后混合均匀,在343K下交联4h,切块后依次用1.0mol/L的稀HCl溶液、超纯水、1.0mol/L的NaOH溶液洗涤,然后再用超纯水清洗数次,得到游离胺型水凝胶基体CMC/PEI。
(b)将步骤(a)制得的游离胺型水凝胶基体CMC/PEI加入到含有9.3mL盐酸和45.8mL亚磷酸溶液(50wt.%)的三颈烧瓶中,将三颈烧瓶置于恒温加热磁力搅拌器中,连续搅拌并滴加22.6mL的甲醛水溶液。其后,逐渐升温至383K,连续搅拌并反应18h。过滤所得水凝胶并用超纯水反复洗涤,直至最后一次洗涤水的pH值接近中性,保存备用。步骤(a)中生物质基单元为羧甲基纤维素钠、木质素磺酸钠、环糊精、海藻酸钠最终制得的水凝胶分别标记为A、B、C、D。
使用合成的水凝胶测试吸附金属离子性能:
(c)称取0.8g上述湿态水凝胶,置于60mL螺口玻璃瓶中,加入50mL初始浓度为1.0mmol/L、pH=2.0的Cu(II)溶液,在298K恒温振荡器中以160r/min震荡24h,使吸附达到平衡,测定初始和平衡时溶液中Cu(II)的浓度并计算相应的干重吸附量(mmol/g)。
实施例2:一种选择性分离去除铜离子的耐强酸型氨基膦酸水凝胶,其制备方法,采用以下步骤:
(a)分别将20ml 4.0wt.%羧甲基纤维素钠、木质素磺酸钠、环糊精、海藻酸钠与20ml 6.0wt.%二乙烯三胺溶液和0.8ml环氧氯丙烷后混合均匀,在343K下交联4h,切块后依次用1.0mol/L的稀HCl溶液、超纯水、1.0mol/L的NaOH溶液洗涤,然后再用超纯水清洗数次,得到游离胺型水凝胶基体CMC/PEI。
(b)将步骤(a)制得的游离胺型水凝胶基体CMC/PEI加入到含有9.3mL盐酸和45.8mL亚磷酸溶液(50wt.%)的三颈烧瓶中,将三颈烧瓶置于恒温加热磁力搅拌器中,连续搅拌并滴加22.6mL的甲醛水溶液。其后,逐渐升温至383K,连续搅拌并反应18h。过滤所得水凝胶并用超纯水反复洗涤,直至最后一次洗涤水的pH值接近中性,保存备用。步骤(a)中生物质基单元为羧甲基纤维素钠、木质素磺酸钠、环糊精、海藻酸钠最终制得的水凝胶分别标记为E、F、G、H。
使用合成的水凝胶测试吸附金属离子性能:
(c)称取0.8g上述湿态水凝胶,置于60mL螺口玻璃瓶中,加入50mL初始浓度为1.0mmol/L、pH=2.0的Cu(II)溶液,在298K恒温振荡器中以160r/min震荡24h,使吸附达到平衡,测定初始和平衡时溶液中Cu(II)的浓度并计算相应的干重吸附量(mmol/g)。
实施例3:一种选择性分离去除铜离子的耐强酸型氨基膦酸水凝胶,其制备方法,采用以下步骤:
(a)分别将20ml 4.0wt.%羧甲基纤维素钠、木质素磺酸钠、环糊精、海藻酸钠与20ml 6.0wt.%四乙烯五胺溶液和0.8ml环氧氯丙烷后混合均匀,在343K下交联4h,切块后依次用1.0mol/L的稀HCl溶液、超纯水、1.0mol/L的NaOH溶液洗涤,然后再用超纯水清洗数次,得到游离胺型水凝胶基体CMC/PEI。
(b)将步骤(a)制得的游离胺型水凝胶基体CMC/PEI加入到含有9.3mL盐酸和45.8mL亚磷酸溶液(50wt.%)的三颈烧瓶中,将三颈烧瓶置于恒温加热磁力搅拌器中,连续搅拌并滴加22.6mL的甲醛水溶液。其后,逐渐升温至383K,连续搅拌并反应18h。过滤所得水凝胶并用超纯水反复洗涤,直至最后一次洗涤水的pH值接近中性,保存备用。步骤(a)中生物质基单元为羧甲基纤维素钠、木质素磺酸钠、环糊精、海藻酸钠最终制得的水凝胶分别标记为I、J、K、L。
使用合成的水凝胶测试吸附金属离子性能:
(c)称取0.8g上述湿态水凝胶,置于60mL螺口玻璃瓶中,加入50mL初始浓度为1.0mmol/L、pH=2.0的Cu(II)溶液,在298K恒温振荡器中以160r/min震荡24h,使吸附达到平衡,测定初始和平衡时溶液中Cu(II)的浓度并计算相应的干重吸附量(mmol/g)。
实施例4:一种选择性分离去除铜离子的耐强酸型氨基膦酸水凝胶,其制备方法,采用以下步骤:
(a)分别将20ml 4.0wt.%羧甲基纤维素钠、木质素磺酸钠、环糊精、海藻酸钠与20ml 6.0wt.%聚乙烯亚胺溶液和0.8ml环氧氯丙烷后混合均匀,在343K下交联4h,切块后依次用1.0mol/L的稀HCl溶液、超纯水、1.0mol/L的NaOH溶液洗涤,然后再用超纯水清洗数次,得到游离胺型水凝胶基体CMC/PEI。
(b)将步骤(a)制得的游离胺型水凝胶基体CMC/PEI加入到含有9.3mL盐酸和45.8mL亚磷酸溶液(50wt.%)的三颈烧瓶中,将三颈烧瓶置于恒温加热磁力搅拌器中,连续搅拌并滴加22.6mL的甲醛水溶液。其后,逐渐升温至383K,连续搅拌并反应18h。过滤所得水凝胶并用超纯水反复洗涤,直至最后一次洗涤水的pH值接近中性,保存备用。步骤(a)中生物质基单元为羧甲基纤维素钠、木质素磺酸钠、环糊精、海藻酸钠最终制得的水凝胶分别标记为M、N、O、P。
使用合成的水凝胶测试吸附金属离子性能:
(c)称取0.8g上述湿态水凝胶,置于60mL螺口玻璃瓶中,加入50mL初始浓度为1.0mmol/L、pH=2.0的Cu(II)溶液,在298K恒温振荡器中以160r/min震荡24h,使吸附达到平衡,测定初始和平衡时溶液中Cu(II)的浓度并计算相应的干重吸附量(mmol/g)。
实施例5:样品的成分分析
实施例1-4所制得的16种耐酸耐盐型富含介孔的氨基膦酸生物质基水凝胶在pH=2.0时对重金属Cu(II)的干重吸附量(附表1)结果表明,水凝胶M的性能相对最优。
实施例4所制得的耐酸耐盐型富含介孔的氨基膦酸生物质基水凝胶M,其经傅里叶红外光谱(附图1)结果表明,CMC谱图中O-H和PEI谱图中N-H的伸缩振动峰的叠加,CMC/PEI谱图形成了3700-3000cm-1处的吸收峰宽,表明氨基官能团成功接枝。同时,出现了位于1166cm-1、1067cm-1和923cm-1处的新特征峰,分别对应P=O、P-O-R和P-OH的拉伸振动,这说明膦酸官能团成功接枝。
其通过氮气吸附-脱附实验(附图2)分析表明曲线类型为典型的Ⅳ型等温线,存在H3滞回线,比表面积为29.287m2/g,平均孔径为7.838nm,表明水凝胶具有介孔结构和大比表面积,可以有效暴露大量活性吸附位点。
实施例6:酸度对吸附性能的影响评价
选择实施例1-4中制备的最优性能的耐酸耐盐型富含介孔的氨基膦酸生物质基水凝胶M,研究其在pH范围1.0~3.0的溶液中对Cu(II)的吸附量:称取0.8000g湿态水凝胶M置于60mL螺口玻璃瓶中,加入50mL初始浓度为1.0mmol/L的Cu(Ⅱ)溶液,初始pH值调节为2.0、2.5、3.0、4.0、5.0。在298K的振荡箱中以160rpm的转速反应24h,使吸附达到平衡,测定初始和平衡时溶液中Cu(II)的浓度并计算相应的干重吸附量(mmol/g)。
实验结果如附表2示,结果表明,该水凝胶在pH为2.0-5.0下对Cu(II)有较大的吸附量,说明该氨基膦酸生物质基水凝胶耐酸性较强,pH适用范围广泛。
实施例7:强酸高无机盐对吸附性能影响的评价
选择实施例1-4中制备的最优性能的耐酸耐盐型富含介孔的氨基膦酸生物质基水凝胶M,研究其在pH为2.0时,不同浓度的无机盐影响下对Cu(II)吸附量:称取0.8000g湿态水凝胶M置于60mL螺口玻璃瓶,加入50mL初始pH值为2.0的含不同浓度无机盐的1.0mmol/LCu(Ⅱ)溶液,控制共存碱(土)金属NaNO3、KNO3、Mg(NO3)2、Ca(NO3)2、NaCl、NaNO3、Na2SO4浓度分别为5.0mmol/L、10.0mmol/L、20.0mmol/L,并同步设置了不添加无机盐的空白对照,在298K的恒温振荡器中以160rpm的转速反应24h,使吸附达到平衡,测定初始和平衡时溶液中Cu(II)的浓度。
实验结果如附图3示,结果表明,该氨基膦酸生物质基水凝胶在强酸高盐条件下对铜离子仍具有吸附去除效果,并且部分无机盐的存在促进其吸附。可见,该氨基膦酸生物质基水凝胶可应用与处理强酸高盐性重金属废水。
实施例8:强酸高无机盐条件下吸附动力学评价实验
选择实施例1-4中制备的最优性能的耐酸耐盐型富含介孔的氨基膦酸生物质基水凝胶M,研究其在pH为2.0时并添加20mmol/L Na2SO4的动力学行为:称取3.2000g湿态水凝胶M置于500mL锥形瓶,加入200mL初始pH值为2.0的1.0mmol/L Cu(Ⅱ)溶液,控制共存碱(土)金属Na2SO4浓度为20.0mmol/L,在298K的恒温振荡器中以160rpm的转速反应48h。每隔一定时间对溶液取样0.1mL,测定该时刻下溶液中重金属离子即时浓度并计算其即时干重吸附量,并与不添加无机盐溶液进行对比,以此建立起水凝胶即时干重吸附量随时间的变化关系
实验结果如附图4示,结果表明,在强酸并有20mmol/L Na2SO4存在条件下,该氨基膦酸生物质基水凝胶的吸附速率和吸附量皆有提升,说明该氨基膦酸生物质基水凝胶同时具备耐酸和耐盐特性。
实施例9:强酸无盐体系的对比实验
选择实施例1-4中制备的最优性能的耐酸耐盐型富含介孔的氨基膦酸生物质基水凝胶M,研究其在pH为2.0的溶液中对Cu(II)、Pb(II)、Cd(II)、Ni(II)、Co(II)、Zn(II)的吸附量:称取0.8000g湿态水凝胶M置于60mL螺口玻璃瓶中,加入50mL pH值为2.0、初始浓度为1.0mmol/L的Cu(II)、Pb(II)、Cd(II)、Ni(II)、Co(II)、Zn(II)溶液,。在298K的振荡箱中以160rpm的转速反应24h,使吸附达到平衡,测定初始和平衡时溶液中Cu(II)、Pb(II)、Cd(II)、Ni(II)、Co(II)、Zn(II)的浓度并计算相应的干重吸附量(mmol/g)。
在pH为2.0时,无盐条件下,对本发明的耐酸耐盐型富含介孔的氨基膦酸生物质基水凝胶M进行的试验结果如下:
从上述结果表示,在无盐条件下,本发明对于铜离子具有较好的吸附效果;对于Pb离子具有一定的吸附效果;对于Cd和Ni具有较小的吸附效果;对于Co和Zn离子不具备吸附效果。
需要说明的是,上述仅仅是本发明的较佳实施例,并非用来限定本发明的保护范围,在上述实施例的基础上所做出的任意组合或等同变换均属于本发明的保护范围。

Claims (4)

1.一种多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶的制备方法,其特征在于,所述的制备方法包括如下步骤:
1)将活性基体单元与水混合形成胶状溶液;
2)将步骤1)中制得的胶状溶液与氨基化合物混合,加入交联剂进行交联反应;
3)向步骤2)交联反应制得的产物中加入亚磷酸接枝溶液,在水中进行接枝反应,得到多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶;
所述的活性基体单元为羧甲基纤维素钠,所述的氨基化合物为聚乙烯亚胺,所述的交联剂为环氧氯丙烷。
2.一种如权利要求1所述的方法制备的氨基膦酸生物质基水凝胶在处理水溶液中重金属阳离子中的应用,其特征在于,将氨基膦酸生物质基水凝胶与含有重金属阳离子、酸性及盐的水溶液进行混合,反应一段时间,完成对重金属阳离子的吸附;所述的重金属阳离子为二价Cu,浓度为1.0 mmol/L。
3.如权利要求2所述的应用,其特征在于,所述的酸性条件为盐酸, pH范围为2.0~5.0;所述的盐条件中的无机盐具体为硝酸钠、氯化钠、硫酸钠、氯化镁、氯化钙、氯化钾中的一种、两种或多种的组合,无机盐的浓度范围为0.2~20 mmol/L。
4.如权利要求3所述的应用,其特征在于,所述的酸性条件的pH为2.0,无机盐为Na2SO4,浓度为20 mmol/L。
CN202211424459.5A 2022-11-15 2022-11-15 一种多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶及其应用 Active CN116063745B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211424459.5A CN116063745B (zh) 2022-11-15 2022-11-15 一种多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211424459.5A CN116063745B (zh) 2022-11-15 2022-11-15 一种多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶及其应用

Publications (2)

Publication Number Publication Date
CN116063745A CN116063745A (zh) 2023-05-05
CN116063745B true CN116063745B (zh) 2024-06-07

Family

ID=86172295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211424459.5A Active CN116063745B (zh) 2022-11-15 2022-11-15 一种多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶及其应用

Country Status (1)

Country Link
CN (1) CN116063745B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116655812B (zh) * 2023-05-23 2024-08-23 苏州博睿特环保科技有限公司 一种电池回收料液中铅离子吸附材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1392391A (en) * 1971-07-01 1975-04-30 Phillips Petroleum Co Aqueous gels and uses thereof
CN106823841A (zh) * 2017-01-18 2017-06-13 燕山大学 一种聚醚砜功能复合分离膜的制备方法
CN108339536A (zh) * 2018-03-15 2018-07-31 南京大学 一种高效除Cr(VI)的CMC/PEI双网络水凝胶的一步制备法
CN111330553A (zh) * 2020-03-18 2020-06-26 南京大学 一种mcs/sa@pei复合水凝胶球珠的制备方法与应用
CN112755974A (zh) * 2020-12-16 2021-05-07 南京大学 一种scp@pei复合水凝胶球珠及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1392391A (en) * 1971-07-01 1975-04-30 Phillips Petroleum Co Aqueous gels and uses thereof
CN106823841A (zh) * 2017-01-18 2017-06-13 燕山大学 一种聚醚砜功能复合分离膜的制备方法
CN108339536A (zh) * 2018-03-15 2018-07-31 南京大学 一种高效除Cr(VI)的CMC/PEI双网络水凝胶的一步制备法
CN111330553A (zh) * 2020-03-18 2020-06-26 南京大学 一种mcs/sa@pei复合水凝胶球珠的制备方法与应用
CN112755974A (zh) * 2020-12-16 2021-05-07 南京大学 一种scp@pei复合水凝胶球珠及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Exclusive separation of Cu(II) with aminophosphonic acid-functionalized hydrogel from strong acidic media;Jiang, YN 等;JOURNAL OF CLEANER PRODUCTION;第422卷;138570 *

Also Published As

Publication number Publication date
CN116063745A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
Valadi et al. Preparation of new MOF-808/chitosan composite for Cr (VI) adsorption from aqueous solution: Experimental and DFT study
Hong et al. Investigation of the strontium (Sr (II)) adsorption of an alginate microsphere as a low-cost adsorbent for removal and recovery from seawater
Wang et al. Anti-bacterial and super-hydrophilic bamboo charcoal with amidoxime modified for efficient and selective uranium extraction from seawater
Gan et al. Synergistic action of multiple functional groups enhanced uranium extraction from seawater of porous phosphorylated chitosan/coal-based activated carbon composite sponge
Shen et al. Chitosan supported on porous glass beads as a new green adsorbent for heavy metal recovery
Sheng et al. Environmental condition effects on radionuclide 64 Cu (II) sequestration to a novel composite: polyaniline grafted multiwalled carbon nanotubes
Gan et al. Phosphorylation improved the competitive U/V adsorption on chitosan-based adsorbent containing amidoxime for rapid uranium extraction from seawater
Xu et al. Comparing the adsorption behaviors of Cd, Cu and Pb from water onto Fe-Mn binary oxide, MnO 2 and FeOOH
Jiao et al. Porous and biofouling-resistant amidoxime-based hybrid hydrogel with excellent interfacial compatibility for high-performance recovery of uranium from seawater
Sihn et al. Rapid extraction of uranium ions from seawater using novel porous polymeric adsorbents
CN116063745B (zh) 一种多介孔且耐酸耐盐型氨基膦酸生物质基水凝胶及其应用
Zhang et al. Preparation of biochar@ chitosan-polyethyleneimine for the efficient removal of uranium from water environment
CN106824113B (zh) 一种咪唑类离子液体改性壳聚糖吸附剂的制备及其应用
CN110449125A (zh) 生物炭/铁氧化物复合材料的制备方法和应用
CN112316906A (zh) 一种铁磁性的氨基修饰镧系金属有机骨架材料的制备方法及其吸附除磷的应用
CN113908815B (zh) 一种高分子改性吸附剂及其制备方法和其应用
CN113024695A (zh) 一种可选择性去除铅离子的聚丙烯酸系氨基膦酸类螯合树脂及其制备方法与应用
Xie et al. A reusable biosorbent using Ca-Alginate immobilized Providencia vermicola for Pd (II) recovery from acidic solution
Cao et al. Mercury adsorption from fuel ethanol onto phosphonated silica gel prepared by heterogenous method
Qu et al. Adsorption of Ni 2+ and Pb 2+ from water using diethylenetriamine-grafted Spirodela polyrhiza: behavior and mechanism studies
Yang et al. Preparation and evaluation of bis (diallyl alkyl tertiary ammonium salt) polymer as a promising adsorbent for phosphorus removal
Zhang et al. Efficient phosphate removal from water by multi-engineered PVA/SA matrix double network hydrogels: Influencing factors and removal mechanism
Hu et al. Selective recovery of Ag (I) from industrial wastewater using zeolite imidazolate framework-8: performance and mechanisms
Chen et al. High-efficiency and economical uranium extraction from seawater with easily prepared supramolecular complexes
CN113351187A (zh) 一种重金属离子印迹水凝胶球珠及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant