CN116036094B - 一种Rab13基因和EGFR蛋白表达的抑制剂及应用 - Google Patents

一种Rab13基因和EGFR蛋白表达的抑制剂及应用 Download PDF

Info

Publication number
CN116036094B
CN116036094B CN202210811615.7A CN202210811615A CN116036094B CN 116036094 B CN116036094 B CN 116036094B CN 202210811615 A CN202210811615 A CN 202210811615A CN 116036094 B CN116036094 B CN 116036094B
Authority
CN
China
Prior art keywords
rab13
egfr
cddo
cells
tumor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210811615.7A
Other languages
English (en)
Other versions
CN116036094A (zh
Inventor
焦保卫
王慧
王海瑞
邹丽
杨钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming Institute of Zoology of CAS
Original Assignee
Kunming Institute of Zoology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming Institute of Zoology of CAS filed Critical Kunming Institute of Zoology of CAS
Publication of CN116036094A publication Critical patent/CN116036094A/zh
Application granted granted Critical
Publication of CN116036094B publication Critical patent/CN116036094B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于医药技术领域,具体涉及Rab13基因和EGFR蛋白表达的抑制剂及其用途。甲基巴多索隆能够抑制EGFR蛋白和Rab13基因的表达。CDD‑Me可以使EGFR进入溶酶体降解途径进而抑制EGFR蛋白表达;增强肿瘤细胞对EGFR靶向药物的敏感性。CDDO‑Me可直接作用于Rab13启动子,并且抑制其启动子活性;并可以在mRNA和蛋白水平抑制Rab13的表达,增强肿瘤对化疗药(DOX、PTX、CIS)的敏感性:可以降低化疗药物处理肿瘤细胞的IC50值;增加化疗药处理后肿瘤细胞的凋亡率;抑制化疗药引起的肿瘤干细胞富集;抑制化疗药处理后肿瘤原位复发;抑制肿瘤干细胞干性(ALDH+干细胞群和tumorsphere形成)。本发明对于进一步改善与Rab13基因的高表达相关的疾病、与EGFR蛋白的高表达相关的疾病以及EGFR靶向药物耐药具有重要意义。

Description

一种Rab13基因和EGFR蛋白表达的抑制剂及应用
技术领域
本发明涉及一种Rab13基因和EGFR蛋白表达的抑制剂,以及所述抑制剂在制备与EGFR蛋白的高表达相关的疾病、EGFR靶向药物耐药、Rab13基因高表达相关疾病药物中的应用。
背景技术
GTPases的Rab家族是细胞膜转运的主要调控因子。人类中大约有70个Rab成员,Rab参与了从囊泡形成和运输到囊泡对接/栓系和融合的所有膜运输步骤。囊泡运输控制大量蛋白质的定位和水平,从而调节细胞功能,包括增殖、代谢、细胞粘附和细胞迁移。近年来,Rab13越来越受到关注。现有研究证明:Rab13水平在胶质母细胞瘤和癌中均发生改变,Rab13 mRNA在乳腺癌细胞的膜突起中被发现。前期研究表明:Rab13在大鼠睾丸组织中的表达,并且发现Rab13的表达是随着生精上皮周期的变化而变化;Rab13在调节血睾屏障通透性过程中发挥的作用;Rab13蛋白调控血管内皮细胞自噬;Rab13在极化上皮细胞中通过回收核内体从TGN到细胞表面的胞外膜运输中发挥作用;Rab13基因敲除可减少体外癌细胞迁移和侵袭;Rab13基因敲低可减少体内癌细胞的扩散;Rab13作用于激酶Mst1的下游,将整合素LFA-1传递到细胞表面进行淋巴细胞运输。在人外周血单核细胞向破骨细胞分化过程中,Rab13基因表达高度上调,并与小泡相关。
根据乳腺癌细胞表面激素受体(ERα)、孕激素受体(PR)、人表皮生长因子受体2(HER2)的表达情况,可将乳腺癌分为:管腔上皮A型(Luminal A)、管腔上皮B型(LuminalB)、HER2过表达型(HER2)和三阴性乳腺癌(Triple-negative breast cancer,TNBC型)[1]。TNBC是预后最差的乳腺癌分型,占乳腺癌患者的15-20%[2]。TNBC易复发转移,累及肺、肝脏以及中枢神经系统,患者整体预后差需要进行全身治疗[3]。由于缺乏ER、PR和HER2的表达,针对其它乳腺癌分型的靶向治疗和内分泌治疗对TNBC无明显效果[4]。TNBC患者目前仍以放化疗为主,但存在易产生耐药性、治疗效果不佳以及药物昂贵等问题[3]。TNBC中也存在特异性高表达或过度激活的信号通路[5]。虽然,TNBC对PARP抑制、MEK抑制剂、PI3K抑制剂、血管生成抑制剂和SRC抑制剂等药物敏感[6-9],但仍缺乏有效的III期临床试验数据佐证其疗效。目前,依然未见有效的TNBC靶向治疗方案。
EGFR在三阴性乳腺癌中高表达,且与病人不良预后正相关[10]。EGFR靶向治疗已成功应用于肺癌和结直肠癌等临床治疗中。EGFR拮抗剂主要分为两类:1)靶向EGFR胞外结构域的单克隆抗体(西妥昔单抗和帕尼单抗);2)靶向胞内酪氨酸激酶结构域的小分子抑制剂(tyrosine kinase inhibitors,TKI):第一代非共价抑制剂厄洛替尼和吉非替尼;第二代共价抑制剂阿法替尼;第三代抑制剂奥西替尼以及第四代抑制剂EAI001和EAI045[11]。然而,EGFR拮抗剂在TNBC治疗中收效甚微。转移性TNBC患者进行西妥昔单抗单药或与卡铂联合治疗的临床试验,结果显示西妥昔单抗单药的肿瘤应答率约6%;联合用药组应答率为18%[12]。在TNBC中进行吉非替尼联合表柔比星以及环磷酰胺治疗的II期临床试验显示,联合用药组pCR(病理学完全缓解)率仅超出无吉非替尼组4.57%,并且药物副作用导致多数患者不能完成治疗[13]
随着用药时间增长,非小细胞肺癌和结直肠癌等对EGFR靶向药物敏感的肿瘤会产生耐药性。越来越多的研究聚焦EGFR靶向药物的耐药机制。乳腺癌对EGFR靶向药物亦不敏感,这是导致临床治疗效果不好的重要原因。而导致这种不敏感的主要机制可能有以下两点:1)TKI针对EGFR胞内酪氨酸激酶结构域设计并抑制其激活。非小细胞肺癌和结直肠癌中EGFR胞内段激酶结构域激活性突变位点是大多数TKI设计的依据。然而,有数据显示EGFR激活性突变率非常低[14-16],非小细胞肺癌中常见的EGFR突变亦很少出现在乳腺癌中[17-19]。2)EGFR单抗(西妥昔单抗、帕尼单抗)的作用机制是竞争性地与其胞外结构域结合,从而抑制受体的二聚化、磷酸化和下游信号通路的激活。乳腺癌依然对这类靶向药物不敏感。这类药物的耐药性产生主要与EGFR的内化和降解受损有关[20,21]。经过配体或者特异性抗体刺激后,EGFR能够被内吞进入内核体,经过分选进一步进入溶酶体被降解或者再循环至细胞膜,该过程受EGFR磷酸化、泛素化修饰等调控[22]。其实,无论EGFR是否突变,其降解异常都可成为其耐药产生的重要原因。因此,通过靶向EGFR降解异常来降低EGFR的表达水平是提高EGFR靶向药物临床疗效的重要理论依据,也是将EGFR靶向药物应用于乳腺癌治疗的潜在理论基础。
甲基巴多索隆是Reata制药和AbbVie联合开发的口服抗氧化炎症调节剂,是齐墩果酸衍生的半合成三萜类化合物。其化学名为2-氰基-3,12-二氧代齐墩果-1,9(11)-二烯-28-酸甲酯,又名RTA 402、CDDO-methylester、CDDO-Me,分子式:C32H43NO4,分子量:505.69,化学结构如下所示。它可有效激活Keapl-Nrf2通路,并抑制NF—KB炎症途径,减少促炎信号。同时,它也是一种IKK抑制剂,具有强的促凋
凋亡Bax蛋白表达,抑制ERK1/2的活化,并且它抑制
Bcl-2的磷酸化,这有助于诱导细胞凋亡。CDDO-Me可有效地抑制(IL)-1Chemicalbookbeta,phorbolester,okadaicacid,hydrogenperoxide,lipopolysaccharide,和cigarettesmoke激活的组成型和可诱导的NF-κB的肿瘤坏死因子。体内研究:CDDO-Me(60mg/kg)体内用药,可减少肺肿瘤的数量,大小和降低严重程度。CDDO-Me还可显著降低LPS刺激下的体内炎症因子的反应,诱导脾脏HO-1蛋白表达,对抗致死剂量的LPS保护小鼠。文献报道,CDDO-Me可以通过抑制USP7、LRP6/FZD7膜受体复合体、mTOR、Wnt、Hsp90、AKT、Erk、PKB、NF-κB、端粒酶逆转录酶、STAT3、cyclin D1、EGFR2、Nrf2和IKK卵巢癌、乳腺癌、胰腺癌、肺癌、结直肠癌、急性骨髓性白血病、前列腺癌、黑色素瘤、骨肉瘤、脊髓瘤、神经胶质瘤、神经母细胞瘤、口腔鳞状上皮细胞癌和慢性粒细胞白血病(PMID:27780924,32015160,25364233,29118925,33584286)【23-27】
申请号为2009101272661“基因Rab13的拮抗剂的应用及包含该拮抗剂的药物”的专利公开了基因Rab13的拮抗剂在制备用于抑制肿瘤细胞增殖和促进肿瘤细胞凋亡或者用于增强抗肿瘤药疗效的药物中的应用,其中所述的拮抗剂是针对基因Rabl3所转录的mRNA的siRNA分子或者反义RNA,并没有找到一种化合物可以抑制基因Rab13表达。
现有技术也没有报道过甲基巴多索隆对Rab13基因的影响。发明人通过筛选FDA批准化合物库,发现甲基多巴索隆(CDDO-Me)抑制Rab13 mRNA及蛋白表达水平表达并抑制Rab13启动子活性。
参考文献:
1.Blows FM,Driver KE,Schmidt MK,Broeks A,van Leeuwen FE,Wesseling J,et al.Subtyping of breast cancer by immunohistochemistry to investigate arelationship between subtype and short and long term survival:a collaborativeanalysis of data for 10,159 cases from 12 studies.PLoS Med 2010;7:e1000279
2.O'Reilly EA,Gubbins L,Sharma S,Tully R,Guang MH,Weiner-Gorzel K,etal.The fate of chemoresistance in triple negative breast cancer(TNBC).BBAclinical 2015;3:257-75
3.Carey LA,Perou CM,Livasy CA,Dressler LG,Cowan D,Conway K,etal.Race,breast cancer subtypes,and survival in the Carolina Breast CancerStudy.Jama 2006;295:2492-502
4.Bianchini G,Balko JM,Mayer IA,Sanders ME,Gianni L.Triple-negativebreast cancer:challenges and opportunities of a heterogeneous disease.Nat RevClin Oncol 2016;13:674-90
5.Sporikova Z,Koudelakova V,Trojanec R,Hajduch M.Genetic Markers inTriple-Negative Breast Cancer.Clin Breast Cancer 2018;18:e841-e50
6.Hoeflich KP,O'Brien C,Boyd Z,Cavet G,Guerrero S,Jung K,et al.Invivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitorsin basal-like breast cancer models.Clin Cancer Res 2009;15:4649-64
7.Ibrahim YH,García-García C,Serra V,He L,Torres-Lockhart K,Prat A,etal.PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficienttriple-negative breast cancer to PARP inhibition.Cancer Discov 2012;2:1036-47
8.Finn RS,Dering J,Ginther C,Wilson CA,Glaspy P,Tchekmedyian N,etal.Dasatinib,an orally active small molecule inhibitor of both the src andabl kinases,selectively inhibits growth of basal-type/"triple-negative"breastcancer cell lines growing in vitro.Breast cancer research and treatment 2007;105:319-26
9.Miller K,Wang M,Gralow J,Dickler M,Cobleigh M,Perez EA,etal.Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breastcancer.N Engl J Med 2007;357:2666-76
10.Jacot W,Mollevi C,Fina F,Lopez-Crapez E,Martin PM,Colombo PE,etal.High EGFR protein expression and exon 9 PIK3CA mutations are independentprognostic factors in triple negative breast cancers.BMC Cancer 2015;15:986
11.Ayati A,Moghimi S,Salarinejad S,Safavi M,Pouramiri B,Foroumadi A.Areview on progression of epidermal growth factor receptor(EGFR)inhibitors asan efficient approach in cancer targeted therapy.Bioorg Chem 2020;99:103811
12.Carey LA,Rugo HS,Marcom PK,Mayer EL,Esteva FJ,Ma CX,et al.TBCRC001:randomized phase II study of cetuximab in combination with carboplatin instage IV triple-negative breast cancer.J Clin Oncol 2012;30:2615-23
13.Bernsdorf M,Ingvar C,L,Tuxen M,Jakobsen E,Saetersdal A,etal.Effect of adding gefitinib to neoadjuvant chemotherapy in estrogenreceptor negative early breast cancer in a randomized phase II trial.2011;126:463-70
14.Nakajima H,Ishikawa Y,Furuya M,Sano T,Ohno Y,Horiguchi J,etal.Protein expression,gene amplification,and mutational analysis of EGFR intriple-negative breast cancer.Breast cancer(Tokyo,Japan)2014;21:66-74
15.Toyama T,Yamashita H,Kondo N,Okuda K,Takahashi S,Sasaki H,etal.Frequently increased epidermal growth factor receptor(EGFR)copy numbersand decreased BRCA1 mRNA expression in Japanese triple-negative breastcancers.BMC Cancer 2008;8:309
16.Vora HH,Patel NA,Thakore PM,Shukla SN.ImmunohistochemicalLocalization of Wild-type EGFR,E746-A750 Frame Deletion in Exon 19,and L858RPoint Mutation in Exon 21 in Triple-negative Breast Cancer.Appliedimmunohistochemistry&molecular morphology:AIMM 2015;23:653-60
17.Levva S,Kotoula V,Kostopoulos I,Manousou K,Papadimitriou C,Papadopoulou K,et al.Prognostic Evaluation of Epidermal Growth FactorReceptor(EGFR)Genotype and Phenotype Parameters in Triple-negative BreastCancers.Cancer genomics&proteomics 2017;14:181-95
18.Sánchez-A,Gallego E,de Luque V,Pérez-Rivas LG,Vicioso L,Ribelles N,et al.Lack of evidence for KRAS oncogenic mutations in triple-negative breast cancer.BMC cancer 2010;10:136
19.Teng YH,Tan WJ,Thike AA,Cheok PY,Tse GM,Wong NS,et al.Mutations inthe epidermal growth factor receptor(EGFR)gene in triple negative breastcancer:possible implications for targeted therapy.Breast Cancer Res 2011;13:R35
20.Grovdal LM,Stang E,Sorkin A,Madshus IH.Direct interaction of Cblwith pTyr 1045 of the EGF receptor(EGFR)is required to sort the EGFR tolysosomes for degradation.Exp Cell Res 2004;300:388-95
21.Wheeler DL,Huang S,Kruser TJ,Nechrebecki MM,Armstrong EA,BenaventeS,et al.Mechanisms of acquired resistance to cetuximab:role of HER(ErbB)family members.Oncogene 2008;27:3944-56
22.Yu JJ,Zhou DD,Yang XX,Cui B,Tan FW,Wang J,et al.TRIB3-EGFRinteraction promotes lung cancer progression and defines a therapeutictarget.Nat Commun 2020;11:3660.
23.So JY,Lin JJ,Wahler J,Liby KT,Sporn MB,Suh N.A synthetictriterpenoid CDDO-Im inhibits tumorsphere formation by regulating stem cellsignaling pathways in triple-negative breast cancer.PLoS One 2014;9:e107616
24.Ball MS,Bhandari R,Torres GM,Martyanov V,ElTanbouly MA,ArchambaultK,et al.CDDO-Me Alters the Tumor Microenvironment in Estrogen ReceptorNegative Breast Cancer.Sci Rep 2020;10:6560
25.Deeb D,Gao X,Dulchavsky SA,Gautam SC.CDDO-me induces apoptosis andinhibits Akt,mTOR and NF-kappaB signaling proteins in prostate cancercells.Anticancer Res 2007;27:3035-44
26.Qin DJ,Tang CX,Yang L,Lei H,Wei W,Wang YY,et al.Hsp90 Is a NovelTarget Molecule of CDDO-Me in Inhibiting Proliferation of Ovarian CancerCells.PLoS One 2015;10:e0132337
27.Liby KT,Sporn MB.Synthetic oleanane triterpenoids:multifunctionaldrugs with a broad range of applications for prevention and treatment ofchronic disease.Pharmacol Rev 2012;64:972-1003。
发明内容
基于以上技术问题,本发明拟提供一种Rab13基因抑制剂,其能够抑制Rab13基因的表达,以降低Rab13基因的表达产物的水平。
本发明技术方案如下:一种Rab13基因抑制剂,为甲基巴多索隆(CDDO-Me),其能够抑制Rab13基因的表达,以降低Rab13基因的表达产物水平的抑制剂。
进一步地,所述的抑制剂在制备治疗与Rab13基因高表达相关疾病的药物中的用途。
进一步地,所述的抑制剂在制备增强与Rab13基因高表达相关的化疗药物敏感性药物中的用途。
进一步地,所述的抑制剂在制备增强EGFR靶向药物敏感性药物中的应用。
本发明还保护所述的抑制剂甲基巴多索隆与其他抗肿瘤药物联合使用在制备肿瘤化疗药物中的应用。
进一步地,所述的抑制剂与Rab13基因高表达相关的化疗药物联合使用在制备抗肿瘤药物中的应用。
进一步地,所述的抑制剂与EGFR靶向药物联合使用在制备抗肿瘤药物中的应用。
优选地,所述的与Rab13基因高表达相关疾病药物为DOX、PTX、CIS。
优选地,所述的EGFR靶向药物为西妥昔单抗或吉非替尼。
本发明证明筛选到的基因Rab13的抑制剂CDDO-Me可抑制基因Rab13在细胞和动物体内水平的表达,可直接作用于Rab13启动子,并且抑制其启动子活性;可以在mRNA和蛋白水平抑制Rab13的表达,这种抑制作用是通过抑制其启动子活性实现的。CDDO-Me促进肿瘤对化疗药(DOX、PTX、CIS)和EGFR靶向药物的敏感性:可以降低化疗药物处理肿瘤细胞的IC50值;增加化疗药处理后肿瘤细胞的凋亡率;抑制化疗药引起的肿瘤干细胞富集;抑制化疗药处理后肿瘤原位复发。CDDO-Me处理抑制肿瘤干细胞干性(ALDH+干细胞群和tumorsphere形成)。CDDO-Me处理抑制TAM/CAF条件性培养基引起的肿瘤干细胞富集。CDDO-Me处理抑制MMTV-PyMT小鼠肿瘤生长,抑制MMTV-PyMT小鼠肿瘤干性(ALDH活性和tumorsphere形成),抑制肿瘤组织中TAM/CAF富集。CDDO-Me可以与Rab13基因高表达相关的化疗药物和EGFR靶向药物联合使用在制备抗肿瘤药物中的应用。
附图说明
图1为CDDO-Me可以剂量依赖性的抑制Rab13启动子活性。**代表P<0.01,***代表P<0.001。
图2A为CDDO-Me可以剂量依赖性的抑制Rab13 mRNA表达。**代表P<0.01,***代表P<0.001。
图2B为CDDO-Me可以剂量依赖性的抑制Rab13蛋白表达。
图3为CDDO-Me可以抑制Rab13在MMTV-PyMT小鼠乳腺肿瘤组织中的表达。**代表P<0.01。
图4为shRNAs在HCC1806和MDA-MB-231细胞系中有效敲降Rab13;
图5A为Rab13敲降抑制THP-1介导的ALDH阳性乳腺癌干细胞比例增加;
图5B为Rab13敲降抑制CAFs介导的CD44+CD24-/low乳腺癌干细胞比例增加;
图5C为Rab13敲降抑制THP-1/CAF介导的乳腺癌tumorsphere形成能力;
图6为Rab13敲降抑制阿霉素(DOX)、紫杉醇(PTX)和卡铂(CIS)介导的ALDH阳性和CD44+CD24-/low乳腺癌干细胞比例增加;
图7A为Rab13敲降促进阿霉素(DOX)、紫杉醇(PTX)和顺铂(CIS)介导的乳腺癌细胞凋亡增加;
图7B为Rab13敲降增强HCC1806和MDA-MB-231乳腺癌细胞对阿霉素(DOX)的敏感性;
图8A为DOX处理对照细胞或Rab13敲降后对肿瘤体积变;化
图8B为DOX处理对照细胞或Rab13敲降后肿瘤解剖图;
图9A为CDDO-Me处理剂量依赖性的抑制巨噬细胞条件性培养基(RAW-CM)介导的ALDH阳性细胞比例增加;
图9B为CDDO-Me处理剂量依赖性的抑制巨噬细胞条件性培养基(THP-CM)介导的ALDH阳性细胞比例增加;
图9C为CDDO-Me处理剂量依赖性的抑制肿瘤相关成纤维细胞条件性培养基(CAF-CM)介导的ALDH阳性细胞比例增加;
图10A为CDDO-Me处理抑制巨噬细胞条件性培养基(RAW-CM)介导的肿瘤细胞对阿霉素抵抗;
图10B为CDDO-Me处理抑制巨噬细胞条件性培养基(THP-CM)介导的肿瘤细胞对阿霉素抵抗;
图10C为CDDO-Me处理抑制肿瘤相关成纤维细胞条件性培养基(CAF-CM)介导的肿瘤细胞对阿霉素抵抗;
图11为Rab13敲降细胞EGFR表达水平降低;
图12为Rab13敲降增强乳腺癌细胞对西妥昔单抗和吉非替尼的敏感性;
图13为CDDO-Me处理抑制EGFR在乳腺癌原位移植瘤中的表达;
图13A为CDDO-Me处理不影响EGFR mRNA表达水平。n.s.代表无统计学意义;
图13B为CDDO-Me处理可以抑制EGFR蛋白表达水平,溶酶体途径抑制剂可以回补CDDO-Me介导的EGFR蛋白水平降低;
图14A为CDDO-Me处理增加乳腺癌细胞(MDA-MB-231和HCC1806)对西妥昔单抗的敏感性;
图14B为CDDO-Me处理增加HCC1806对吉非替尼的敏感性;
图14C为CDDO-Me处理增加乳腺癌细胞HCC1806对吉非替尼的敏感性;
图14D为CDDO-Me处理增加乳腺癌细胞MDA-MB-231对吉非替尼的敏感性。
具体实施方式
本发明提供了甲基多巴索隆抑制Rab13细胞和小鼠组织表达的新用途。
实施例1、CDDO-Me可以剂量依赖性地抑制Rab13启动子活性
将Rab13启动子-2kb克隆至PGL3-Basic载体(PGL3-Rab13-P),将空载对照(PGL3-Basic)和PGL3-Rab13-P按照lipofectamine 2000转染试剂(赛默飞世尔科技(中国)有限公司)说明书转染至HEK293T细胞。转染48h后,将细胞铺入96孔板,5000细胞每孔。分为4组,每组6个重复孔,分别作如下处理:
第一组:阴性对照组(转染PGL3-Basic对照质粒);
第二组:对照组(转染PGL3-Rab13-P质粒),不给予CDDO-Me处理;
第三、四和五组:实验组(转染PGL3-Rab13-P质粒),分别以20、40和80nM剂量处理细胞。
处理方式:以上转染48h后细胞,铺入96孔板后,培养过夜,直接加相应浓度CDDO-Me处理48h。Steady-LumiTM萤火虫萤光素酶报告基因检测试剂盒(碧云天生物技术有限公司)检测荧光素酶活性。结果如图1所示,表明CDDO-Me能够剂量依赖性的抑制荧光素酶活性(即Rab13启动子活性),第三、四、五组的抑制率分别为45.2%、55.9%和62.2%(图1)。
实施例2、CDDO-Me在细胞水平抑制Rab13表达
2.1Rab13 mRNA表达检测
选取状态良好的乳腺癌细胞MDA-MB-231,以10%胎牛血清的DMEM/F12培养基重悬,将2.5×105细胞种入6cm培养皿中,放入细胞培养箱,5%二氧化碳,37℃正常培养过夜。在以上细胞中分别加入0(对照组,加等体积二甲基亚砜)、10、20、40、和80nM CDDO-Me处理48h。按照RNAiso Plus试剂(购自TaKaRa)说明书的标准操作提取细胞总RNA。用PrimeScriptTM RT reagent Kit反转录试剂盒进行反转录,反应按照说明书标准进行。使用荧光定量Real-Time PCR检测Rab13 mRNA表达水平。荧光定量Real-Time PCR使用SYBRPremix Ex Taq kit试剂盒(Applied Biosystem),荧光染料为SYBR Green,反应体系为20μL,反应循环数为40个。
PCR运行程序:95℃变性,10秒;60℃退火延伸,30秒,反应体系为20μL,反应循环数40个循环,最后是72℃保持5分钟。内参为β-Actin。反应引物如下:
Rab13正向引物(5’-3’):AGAGCATGGAATCCGATTTTTCG
Rab13反向引物(5’-3’):CTGCTATTTCTCCCCTGCTCA
β-Actin正向引物(5’-3’):GAGCACAGAGCCTCGCCTTT
β-Actin反向引物(5’-3’):ATCCTTCTGACCCATGCCCA
反应引物序列如SEQ ID NO:1-4所示。
以内参为β-Actin,根据仪器给出的荧光图得到ΔCt值,计算出相对Δ(ΔCt)值,进而计算出Rab13的mRNA水平的相对变化。
结果表明:CDDO-Me能够剂量依赖性地抑制Rab13的mRNA表达(图2A)。
2.2Rab13蛋白表达检测
分别将2.5×105(MDA-MB-231)或5×105(HCC1806)乳腺癌细胞种入6cm培养皿中正常培养过夜。在以上细胞中分别加入0(对照组,加等体积二甲基亚砜)、20、40、80和160nMCDDO-Me处理48h。收细胞,以RIPA裂解液裂解细胞,按照说明书以BCA蛋白定量试剂盒(购自Pierce,#23225)测定蛋白浓度。Westernblot检测各组细胞中Rab13表达水平。
结果表明:CDDO-Me能够剂量依赖性地抑制Rab13的蛋白表达(图2B)。
实施例3、CDDO-Me可以抑制Rab13在MMTV-PyMT小鼠乳腺肿瘤组织中的表达
8-10周龄雌性MMTV-PyMT自发乳腺肿瘤小鼠(肿瘤200-300mm3)4只,分为两组,每组2只(每只小鼠带两个肿瘤),分别作如下处理:
第一组:对照组;
第二组:CDDO-Me处理组。
CDDO-Me处理组给予5mg/kg CDDO-Me处理,对照组给与等体积二甲基亚砜处理。每3天以腹腔注射方式给药一次,共给药5次。实验结束后解剖肿瘤拍照,同时将肿瘤与福尔马林固定液固定2-7天,进行石蜡包埋切片,进而进行免疫组化染色。主要步骤包括:切片脱蜡复水封闭等操作后,以Anti-Rab13(Sigma:SAB4200057)抗体4℃孵育过夜,二抗室温孵育1h,DAB显色后进行苏木素染色,后进行常规脱水,封片,使用常规光学显微镜观察并拍照记录,并对IHC染色图片进行定量分析。
结果表明:CDDO-Me处理能够抑制MMTV-PyMT小鼠乳腺肿瘤组织中Rab13的表达(图3)。也进一步说明CDDO-Me能够在体内水平抑制Rab13表达。
实施例4、有效敲降Rab13的shRNAs
将Rab13的shRNAs克隆至Plko.1载体中,然后将Plko.1-Rab13-shRNA、pMD2G以及pSPAX2质粒共转染HEK293T细胞,包装慢病毒。将慢病毒感染HCC1806或MAD-MB-231细胞系,通过抗性筛选,制备稳定敲降Rab13的HCC1806和MAD-MB-231细胞系。对照组:转染对照shRNA(pLKO.1 TRC control,Addgene Cat#10879);Rab13敲降组1和Rab13敲降组2shRNA序列如下表1以及SEQ ID NO:5-10所示。在Rab13稳定敲降细胞系中,进行2.2中描述的蛋白检测,确定Rab13是否被有效敲降。
表1用于Rab13敲降的shRNAs
实验结果如图4所示。结果表明,以上shRNAs可以有效在乳腺癌细胞中敲降Rab13。
实施例5、敲降Rab13在细胞水平抑制肿瘤微环境细胞介导的肿瘤干细胞干性
5.1 THP-1诱导分化为巨噬细胞
以50nM PMA处理THP-1细胞3小时,PBS洗三次,将细胞铺入培养皿中,培养过夜。第二天,细胞贴壁生长即成功诱导为巨噬细胞。
5.2肿瘤细胞与微环境细胞(THP-1巨噬细胞或肿瘤相关成纤维细胞)共培养
将实施例4中各组细胞与5.1中诱导分化为巨噬细胞的THP-1进行共培养。共培养利用0.4μM孔径transwell共培养板进行,下层铺1×105实施例4中各组细胞,上层铺5×104THP-1巨噬细胞,共培养48h后,后续进行流式检测干细胞标志物以及tumorsphere形成实验。
5.3流式检测干细胞标志物
ALDH染色按照ALDH检测试剂盒(Stem Cell Technologies,Cat#01700)说明书操作。CD44和CD24染色如下:消化细胞,取1×106各组细胞,PBS洗3次,100μL PBS重悬细胞,加入FITC标记的CD44抗体和PE标记的CD24抗体(1:100)。冰上孵育30min,PBS洗3次。流式上机分别检测ALDH阳性和CD44+CD24-/low干细胞群比例变化。
结果表明,Rab13敲降可以抑制巨噬细胞/肿瘤相关成纤维细胞介导的ALDH阳性和CD44+CD24-/low干细胞群比例增加(图5A和5B)。
5.4 tumorsphere形式实验
配制tumorsphere培养基:9ml human mammcult basal培养基+1ml supplement+20μl heparin+5μl氢化可的松(1mg/ml)。5.2中各组细胞完成共培养后,消化下层肿瘤细胞,计数。以tumorsphere培养基重悬细胞(MDA-MB-231,2×104细胞/mL;HCC1806,1×104细胞/mL),取100μL细胞铺入96孔板,37℃5%二氧化碳条件下继续培养细胞7-10天,拍照计数。
结果表明,Rab13敲降可以抑制巨噬细胞/肿瘤相关成纤维细胞介导的乳腺癌细胞tumorsphere形成能力增强(图5C)。
实施例6敲降Rab13在细胞水平抑制化疗药介导的肿瘤干细胞干性
阿霉素(DOX,5nM)、紫杉醇(PTX,1nM)和顺铂(CIS,100nM)处理5.2中各组细胞24小时,消化,进行5.3中乳腺癌干细胞标志物染色,流式检测ALDH阳性和CD44+CD24-/low干细胞群比例变化。
结果表明,Rab13敲降可以抑制巨噬细胞/肿瘤相关成纤维细胞介导的乳腺癌ALDH阳性和CD44+CD24-/low干细胞群比例增加(图6)。
实施例7、敲降Rab13在细胞水平增强乳腺癌对化疗药物的敏感性
7.1R凋亡检测化疗药物对乳腺癌细胞的杀伤作用
阿霉素(DOX,5nM)、紫杉醇(PTX,1nM)和顺铂(CIS,100nM)处理5.2中各组细胞24小时,消化细胞,每组收集1×106细胞,PBS洗3次,按照凋亡检测试剂盒(eBioscience,Cat#88-8005-74)说明书操作进行AnnexinⅤ和PI双染。流式检测细胞凋亡并统计。结果表明,Rab13敲降增强以上化疗药介导的乳腺癌细胞凋亡。
7.2MTS检测化疗药物对乳腺癌细胞的抑制作用
以0、0.3125、0.625、1.25、2.5和5μM阿霉素(DOX)处理5.2中各组HCC1806细胞或0、1、2、4、8μM DOX处理5.2中各组MDA-MB-231细胞,处理时间为48小时。后以MTS检测细胞活性,操作按照MTS检测试剂盒(CellTiter AQueous Non-Radioactive CellProliferation Assay,Promega,G3581)说明书进行。计算细胞抑制率公式为:抑制率(%)=(DOX未处理组(0μM)-DOX处理组)/DOX未处理组(0μM)×100%。绘制肿瘤细胞抑制曲线。结果表明,Rab13敲降增强以上化疗药介导的乳腺癌细胞活性抑制。
实施例8、敲降Rab13在抑制化疗药介导的乳腺癌复发
8.1乳腺癌原位移植瘤模型建立
分别将5×106对照细胞和Rab13稳定敲降细胞重悬于100μL培养基和matrigel 1:1混合液中。裸鼠腹腔注射麻醉剂后对腹部进行75%酒精消毒,剪开皮肤暴露第四对乳腺,将以上100μL细胞悬液注射入左侧乳腺脂肪垫中,缝合器缝合皮肤。
8.2阿霉素(DOX)给药处理
肿瘤移植3周后,大约长至100-200mm3,进行DOX给药处理。分组如下:
第一组:对照组,敲降对照组注射等体积PBS;
第二组:对照组+DOX,对照组(Rab13未敲降)给予DOX处理,注射剂量为5mg/kg/3天,共给药3次;
第三组:Rab13敲降组+DOX,Rab13敲降小鼠给予同第二组相同DOX处理。
自肿瘤细胞移植后移植开始进行小鼠体积测量,共测量7周。实验结束后解剖肿瘤拍照。肿瘤体积计算公式为:肿瘤体积=0.52×(宽)2×长.
结果显示,Rab13未敲降组给药停止后肿瘤体积继续增大,最后与未给药对照组无差别,而Rab13敲降组给药结束后肿瘤生长依旧被抑制。这说明Rab13可以有效抑制乳腺癌化疗给药后的复发(图8A和8B)。
实施例9、CDDO-Me处理抑制微环境细胞介导的乳腺癌干细胞干性
9.1微环境细胞条件性培养基(CM)制备
肿瘤相关成纤维细胞(CAF)生长至70-80%汇合度,换无血清培养基继续培养24小时,收培养上清,离心取死细胞,即得到肿瘤相关成纤维细胞条件性培养基(CAF-CM)。
RAW264.7或者按5.1诱导分化后的THP-1巨噬细胞与MDA-MB-231以5.2中方法进行共培养48h,然后去肿瘤细胞以无血清培养基继续培养24h小时,收培养上清,离心取死细胞,即分别得到巨噬细胞条件性培养基(RAW-CM和THP-CM)。
9.2CDDO-Me和CM共处理细胞检测乳腺癌干细胞干性
分别以CDDO-Me或和CM处理MDA-MB-231细胞,处理组如下:对照组,以等体积DMSO处理细胞;实验组,将0、20、40、80和160nM CDDO-Me悬于20%巨噬细胞条件性培养基或者100%CAF-CM中处理细胞,24小时后,按照5.3和5.4中方法分别进行流式检测乳腺癌干细胞群比例和tumorsphere形成实验。
结果显示,CDDO-Me处理可以抑制微环境细胞介导的乳腺癌ALDH阳性和CD44+CD24-/low干细胞群比例增加(图9A和9B)以及tumorsphere形成(图9C)。
实施例10、CDDO-Me处理抑制肿瘤微环境细胞介导的化疗耐药性
分别以阿霉素(DOX)或/和CDDO-Me或和CM处理MDA-MB-231细胞,处理组如下:
第一组:DOX处理,浓度为0.17625、0.3125、0.625、1.25、2.5和5μM;
第二组:DOX+RAW-CM/THP-CM/CAF-CM处理组,在第一组基础上给予细胞20%RAW-CM或者THP-CM处理或者100%CAF-CM处理
第三组:DOX+RAW-CM/THP-CM/CAF-CM+CDDO-Me处理组,在第二组基础上给予160nMCDDO-Me处理。
细胞处理24小时后,按照MTS试剂盒说明书操作进行MTS检测,评价细胞活性。结果显示,巨噬细胞和肿瘤相关成纤维细胞条件性培养基处理可以增强乳腺癌细胞对DOX抵抗性,而CDDO-Me处理抑制剂这一抵抗性,细胞活性进一步降低。
实验结果如图10A、图10B、图10C所示。结果表明:说明CDDO-Me处理可以抑制肿瘤为环境细胞介导的DOX耐药性。因此,可以将CDDO-Me与肿瘤化疗药物联合使用应用在制备抗肿瘤药物中。
实施例11、敲降Rab13抑制EGFR蛋白表达
在Rab13稳定敲降细胞系(见实施例4)中,进行2.2中描述的蛋白检测,确定敲降Rab13对EGFR蛋白水平的影响。实验结果如图11所示。结果表明,Rab13敲降后可以抑制EGFR的蛋白表达。
实施例12、敲降Rab13增强乳腺癌对EGFR靶向药物的敏感性
以5000细胞/孔细胞浓度将Rab13稳定敲降HCC1806细胞系及其相对应对照细胞系(见实施例4)铺入96孔板中,细胞生长过夜后,以西妥昔单抗或者吉非替尼处理。处理浓度为:西妥昔单抗,0或300nM;吉非替尼,0或者1μM。细胞处理72小时后,按照MTS试剂盒说明书操作进行MTS检测,评价细胞活性。
实验结果如图12(左)和12(右)所示。结果显示,西妥昔单抗对Rab13未敲降对照细胞无抑制作用,吉非替尼可以抑制细胞活性。而西妥昔单抗和吉非替尼对Rab13敲降细胞的抑制作用显著强于Rab13未敲降细胞中的抑制作用。结果说明,敲降Rab13可以增加乳腺癌细胞对EGFR靶向药物西妥昔单抗和吉非替尼的有效性。
本发明还提供了甲基多巴索隆抑制EGFR蛋白表达和小鼠组织表达的新用途。
实施例13、CDDO-Me可以抑制EGFR在乳腺癌原位移植瘤组织中的表达
13.1 CDDO-Me可以抑制EGFR在乳腺癌原位移植瘤组织中的表达
以MDA-MBA-231细胞按照8.1建立乳腺癌原位移植瘤模型。成瘤两周后,随机将裸鼠分为两组,每组10只鼠,一组未对照组,腹腔注射等体积DMSO;另一组腹腔注射CDDO-Me(2mg/kg/3天)。给药10次后解剖肿瘤,以Anti-EGFR(Sigma:SAB4200057)抗体进行IHC染色(同实施例3)。
结果表明:CDDO-Me处理能够抑制乳腺癌移植瘤组织中EGFR的表达(图13)。
13.2 EGFR mRNA表达检测
选取状态良好的乳腺癌细胞MDA-MB-231,以10%胎牛血清的DMEM/F12培养基重悬,将2.5×105细胞种入6cm培养皿中,放入细胞培养箱,5%二氧化碳,37℃正常培养过夜。在以上细胞中分别加入0(对照组,加等体积二甲基亚砜)、5μM CDDO-Me处理24h。按照RNAiso Plus试剂(购自TaKaRa)说明书的标准操作提取细胞总RNA。用PrimeScriptTM RTreagent Kit反转录试剂盒进行反转录,反应按照说明书标准进行。使用荧光定量Real-Time PCR检测EGFR mRNA表达水平。荧光定量Real-Time PCR使用SYBR Premix Ex Taq kit试剂盒(AppliedBiosystem),荧光染料为SYBR Green,反应体系为20μL,反应循环数为40个。
PCR运行程序:95℃变性,10秒;60℃退火延伸,30秒,反应体系为20μL,反应循环数40个循环,最后是72℃保持5分钟。内参为GAPDH。反应引物如下:
EGFR正向引物(5’-3’):GCAGTTGGGCACTTTTGAAG
EGFR反向引物(5’-3’):ACTGTGTTGAGGGCAATGAG
GAPDH正向引物(5’-3’):AATCCCATCACCATCTTCCAG
GAPDH反向引物(5’-3’):TTCACACCCATGACGAACAT
上述序列如SEQ ID NO:11-14所示,以内参为GAPDH,根据仪器给出的荧光图得到ΔCt值,计算出相对Δ(ΔCt)值,进而计算出EGFR的mRNA水平的相对变化。
结果表明:CDDO-Me处理不影响EGFR的mRNA表达(图13A)。
13.3EGFR蛋白表达检测
分别将2.5×105(MDA-MB-231)或5×105(HCC1806)乳腺癌细胞种入6cm培养皿中正常培养过夜。在以上细胞中分别加入0(对照组,加等体积二甲基亚砜)、1μMCDDO-Me处理24h。收细胞,同时以20uM MG132或4mM NH4Cl处理细胞4h,以RIPA裂解液裂解细胞,按照说明书以BCA蛋白定量试剂盒(购自Pierce,#23225)测定蛋白浓度。Western blot检测各组细胞中EGFR表达水平。
结果表明:CDDO-Me处理能够抑制EGFR的蛋白表达;同时溶酶体抑制剂NH4Cl处理可以回补CDDO-Me处理介导的EGFR蛋白水平降低(图13B),说明CDDO-Me处理可以EGFR进入溶酶体降解途径。
实施例14、CDDO-Me可以增强乳腺癌对EGFR靶向药物的敏感性
14.1 CDDO-Me处理增加乳腺癌细胞HCC1806或MDA-MB-231对特定浓度的西妥昔单抗或吉非替尼的敏感性
以5000细胞/孔细胞浓度将MDA-MB-231或者HCC1806细胞铺入96孔板中,细胞生长过夜后,以西妥昔单抗或者吉非替尼处理。西妥昔单抗或吉非替尼处理分组如下:
第一组:对照组,等体积PBS和DMSO处理;
第二组:西妥昔单抗或吉非替尼单药分别处理,浓度分别为300nM或2μM;
第三组:CDDO-Me单药处理,浓度为160nM;
第四组:西妥昔单抗或吉非替尼与CDDO-Me联合处理,给药浓度同第二和三组。
MDA-MB-231细胞处理48小时或者HCC1806细胞处理72小时后,按照MTS试剂盒说明书操作进行MTS检测,评价细胞活性。
结果显示,西妥昔单抗对乳腺癌细胞无明显抑制作用,吉非替尼和CDDO-Me单药可以抑制乳腺癌细胞,而西妥昔单抗或吉非替尼与CDDO-Me联合处理对乳腺癌细胞的抑制作用明显高于单一药物处理组(图14A-B)。
14.2 CDDO-Me处理增加乳腺癌细胞HCC1806和MDA-MB-231对不同浓度吉非替尼的敏感性
分别以吉非替尼(Gefitinib)单药或吉非替尼和CDDO-Me联合处理MDA-MB-231或HCC1806细胞,处理组如下:
第一组:吉非替尼处理,MDA-MB-231细胞处理浓度为0、5、10、20、40和60μM,HCC1806细胞处理浓度为0、1、2、5、20和40μM,
第二组:吉非替尼+CDDO-Me处理组,在第一组吉非替尼给药处理基础上给予CDDO-Me处理,MDA-MB-231细胞的CDDO-Me给药浓度为0.5μM;HCC1806细胞的CDDO-Me给药浓度为0.05μM;
细胞处理48小时后,按照MTS试剂盒说明书操作进行MTS检测,评价细胞活性。结果显示,吉非替尼与CDDO-Me联用可以增强乳腺癌细胞对吉非替尼的敏感性(图14C和14D)。因此,可以将CDDO-Me与EGFR靶向药物联合使用应用在制备抗肿瘤药物中。
综上,说明CDDO-Me可以增加乳腺癌细胞对EGFR靶向药物西妥昔单抗和吉非替尼的有效性。也就是说CDDO-Me与EGFR靶向药物联合使用可应用在制备抗肿瘤药物中。

Claims (4)

1.甲基巴多索隆的应用,其特征在于:所述的甲基巴多索隆在制备增强与Rab13基因高表达相关的化疗药物敏感性的药物中的应用,所述的与Rab13基因高表达相关的化疗药物为阿霉素、紫杉醇、顺铂。
2.根据权利要求1所述的应用,其特征在于:所述的甲基巴多索隆与阿霉素、紫杉醇、顺铂联合使用在制备抗肿瘤药物中的应用。
3.甲基巴多索隆的应用,其特征在于:所述的甲基巴多索隆在制备增强EGFR靶向药物敏感性的药物中的应用,所述的EGFR靶向药物为西妥昔单抗或吉非替尼。
4.根据权利要求3所述的应用,其特征在于:所述的甲基巴多索隆与西妥昔单抗或吉非替尼联合使用在制备抗肿瘤药物中的应用。
CN202210811615.7A 2022-03-26 2022-07-12 一种Rab13基因和EGFR蛋白表达的抑制剂及应用 Active CN116036094B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210304114.XA CN114558019A (zh) 2022-03-26 2022-03-26 一种Rab13基因抑制剂及应用
CN202210304114X 2022-03-26

Publications (2)

Publication Number Publication Date
CN116036094A CN116036094A (zh) 2023-05-02
CN116036094B true CN116036094B (zh) 2024-02-02

Family

ID=81720644

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210304114.XA Pending CN114558019A (zh) 2022-03-26 2022-03-26 一种Rab13基因抑制剂及应用
CN202210811615.7A Active CN116036094B (zh) 2022-03-26 2022-07-12 一种Rab13基因和EGFR蛋白表达的抑制剂及应用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202210304114.XA Pending CN114558019A (zh) 2022-03-26 2022-03-26 一种Rab13基因抑制剂及应用

Country Status (1)

Country Link
CN (2) CN114558019A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101797390A (zh) * 2009-02-06 2010-08-11 北京大学 基因rab13的拮抗剂的应用及包含该拮抗剂的药物
CN105232471A (zh) * 2009-02-13 2016-01-13 瑞阿特制药公司 含有无定形cddo-me的延迟释放口服组合物
CN109310723A (zh) * 2016-06-06 2019-02-05 Sotio公司 癌症的免疫疗法
CN113164436A (zh) * 2018-11-27 2021-07-23 协和麒麟株式会社 药物组合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101797390A (zh) * 2009-02-06 2010-08-11 北京大学 基因rab13的拮抗剂的应用及包含该拮抗剂的药物
CN105232471A (zh) * 2009-02-13 2016-01-13 瑞阿特制药公司 含有无定形cddo-me的延迟释放口服组合物
CN109310723A (zh) * 2016-06-06 2019-02-05 Sotio公司 癌症的免疫疗法
CN113164436A (zh) * 2018-11-27 2021-07-23 协和麒麟株式会社 药物组合物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CDDO-Me对三阴性乳腺癌细胞泛素特异性蛋白酶2a活性及细胞增殖的抑制作用;季艳杰;上海交通大学学报(医学版);第41卷(第8期);1025-1032 *
Rab13 Sustains Breast Cancer Stem Cells by Supporting Tumor–Stroma Cross-talk;Hui Wang;Cancer Res;第82卷(第11期);2124-2140 *
抗氧化、炎症调节新药——甲基巴多索隆;潘兴泉;临床药物治疗杂志;第16卷(第10期);1-3 *

Also Published As

Publication number Publication date
CN114558019A (zh) 2022-05-31
CN116036094A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
Garcia et al. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook
US10857158B2 (en) Anordrin compositions and methods for treating diseases
Shi et al. Targeting androgen receptor (AR)→ IL12A signal enhances efficacy of sorafenib plus NK cells immunotherapy to better suppress HCC progression
Wang et al. Lipid-modified cell-penetrating peptide-based self-assembly micelles for co-delivery of narciclasine and siULK1 in hepatocellular carcinoma therapy
Long et al. Downregulation of MCT 4 for lactate exchange promotes the cytotoxicity of NK cells in breast carcinoma
CN105899223A (zh) 转移性前列腺癌的治疗
Lei et al. Inhibition of MGMT-mediated autophagy suppression decreases cisplatin chemosensitivity in gastric cancer
Lee et al. Tissue transglutaminase activates cancer-associated fibroblasts and contributes to gemcitabine resistance in pancreatic cancer
Jiang et al. Esculetin inhibits endometrial cancer proliferation and promotes apoptosis via hnRNPA1 to downregulate BCLXL and XIAP
Fang et al. Down-regulation of UBC9 increases the sensitivity of hepatocellular carcinoma to doxorubicin
Gupta et al. Palbociclib: a breakthrough in breast carcinoma in women
Huang et al. One shoot, three birds: Targeting NEK2 orchestrates chemoradiotherapy, targeted therapy, and immunotherapy in cancer treatment
Li et al. Sinomenine hydrochloride suppresses the stemness of breast cancer stem cells by inhibiting Wnt signaling pathway through down-regulation of WNT10B
Li et al. Gomisin J inhibits the glioma progression by inducing apoptosis and reducing HKII-regulated glycolysis
Chen et al. HMGB1 in the interplay between autophagy and apoptosis in cancer
Zhang et al. Kaempferol 3‐O‐gentiobioside, an ALK5 inhibitor, affects the proliferation, migration, and invasion of tumor cells via blockade of the TGF‐β/ALK5/Smad signaling pathway
Chaturvedi et al. Role of EGFR and FASN in breast cancer progression
Tan et al. Erchen Plus Huiyanzhuyu Decoction Inhibits the Growth of Laryngeal Carcinoma in a Mouse Model of Phlegm‐Coagulation‐Blood‐Stasis Syndrome via the STAT3/Cyclin D1 Pathway
AU2014268690A1 (en) Specific cancer treatment regimens with ganetespib
WO2021178663A1 (en) Compositions and methods for treatment of platinum-based chemotherapeutic resistant tumors
CN113230249A (zh) 土荆皮乙酸在作为或制备Hedgehog信号通路抑制剂中的应用
CN111110666B (zh) 一种治疗消化道癌症的药物组合物
CN116036094B (zh) 一种Rab13基因和EGFR蛋白表达的抑制剂及应用
WO2017114260A1 (zh) 色胺酮及其衍生物在制备hIDO2抑制剂中的用途
Subramanian et al. Synthetic high-density lipoprotein nanoconjugate targets neuroblastoma stem cells, blocking migration and self-renewal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant