CN116018200A - 用于捕获co2的可调的快速吸收的氨基聚合物气凝胶吸收剂 - Google Patents

用于捕获co2的可调的快速吸收的氨基聚合物气凝胶吸收剂 Download PDF

Info

Publication number
CN116018200A
CN116018200A CN202180049053.0A CN202180049053A CN116018200A CN 116018200 A CN116018200 A CN 116018200A CN 202180049053 A CN202180049053 A CN 202180049053A CN 116018200 A CN116018200 A CN 116018200A
Authority
CN
China
Prior art keywords
aerogel
amine
solution
preparing
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202180049053.0A
Other languages
English (en)
Other versions
CN116018200B (zh
Inventor
M·钦塔帕利
S·梅克勒
G·艾夫蒂米
R·潘迪
M·路易
E·S·M·本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palo Alto Research Center Inc
Original Assignee
Palo Alto Research Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Palo Alto Research Center Inc filed Critical Palo Alto Research Center Inc
Publication of CN116018200A publication Critical patent/CN116018200A/zh
Application granted granted Critical
Publication of CN116018200B publication Critical patent/CN116018200B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0065Preparation of gels containing an organic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/286Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/202Polymeric adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/311Porosity, e.g. pore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/054Precipitating the polymer by adding a non-solvent or a different solvent
    • C08J2201/0542Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/042Nanopores, i.e. the average diameter being smaller than 0,1 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Gas Separation By Absorption (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

多孔聚合物气凝胶,其中所述气凝胶具有大于5重量%的整合到聚合物骨架中的含胺的乙烯基单体。制造多孔聚合物气凝胶胺材料的方法,包括制备包含至少溶剂、具有受保护的氨基的胺单体、一种或多种交联剂、一种或多种自由基引发剂和硝基氧介体的溶液,从所述溶液中去除氧,加热所述溶液以促进聚合并生产聚合的材料,与所述聚合的材料进行溶剂交换,在所述聚合的材料中引起脱保护反应以去除保护所述氨基的基团,浸泡和漂洗所述材料以去除过量的试剂和所述脱保护反应的任何副产物,和干燥所述材料以生产所述胺吸附剂。从其它气体中分离CO2的系统,其包含聚合物多孔气凝胶吸附剂,所述聚合物多孔气凝胶吸附剂具有大于5重量%的整合到聚合物骨架中的含胺的乙烯基单体。

Description

用于捕获CO2的可调的快速吸收的氨基聚合物气凝胶吸收剂
技术领域
本公开涉及二氧化碳的捕获,更具体地涉及使用固体吸附剂的直接空气捕获。
背景技术
在未来几十年,综合评估建模预测,负CO2排放可能需要在约10吉吨(Gt)CO2/年的规模,以达到国际气候变化专门委员会(International Panel on Climate Change)2℃的全球变暖目标。如果与脱碳活动和廉价的、自然的负排放方法一起部署,由于CO2的直接空气捕获(DAC)的土地使用占地面积低、对工厂选址的灵活要求以及与高容量地质封存储层的相容性,其是用于气候变化缓解的有前景的策略。
然而,DAC中CO2捕获的成本和能量高,成本估计在$100-1000/吨CO2的范围内,而能量估计在4-13吉焦耳/吨CO2的范围内。与使用液体碱吸附剂的DAC工艺相比,使用固体吸附剂的DAC工艺具有更大的降低成本和能耗的潜力,因为它们的工艺流程更简单、CO2吸收更快、消除了蒸发热损失、再生中的显热负荷更低、以及低于200℃而不是高于700℃的更低的再生温度。与使用液胺的DAC或其它CO2捕获工艺相比,固体吸附剂在化学上更稳定并且释放更少的挥发物。
然而,为了降低DAC的成本和能耗,需要固体吸附剂材料的显著进步。特别是,国家科学院(NAS)最近确定需要开发具有(1)增加的CO2容量,(2)更快的扩散动力学,(3)更长的循环寿命,(4)低于$50/kg的成本,和(5)最小化来自惰性载体的显热负荷的吸附剂材料。
发明内容
根据本文说明的方面,提供了多孔聚合物气凝胶,所述气凝胶具有大于5重量%的整合到聚合物骨架中的含胺的乙烯基单体。
根据本文说明的方面,提供了制造多孔聚合物气凝胶胺材料的方法,其包括制备包含至少溶剂、胺单体、一种或多种交联剂、一种或多种自由基引发剂和硝基氧介体的溶液,从溶液中去除氧,加热溶液以促进聚合并生产聚合的材料,与聚合的材料进行溶剂交换,在聚合的材料中引起脱保护反应以去除保护所述氨基的基团,浸泡和漂洗材料以去除过量的试剂和脱保护反应的任何副产物,和干燥材料以生产胺吸附剂。
根据本文说明的方面,提供了从其它气体中分离CO2的系统,所述系统具有聚合物多孔气凝胶吸附剂,所述聚合物多孔气凝胶吸附剂具有大于5重量%的整合到聚合物骨架中的含胺的乙烯基单体。
附图说明
图1示出根据本实施方案的固体吸附剂的实施方案。
图2示出制造高胺负载吸附剂的方法的实施方案的流程图。
图3示出来自常规自由基聚合和来自受控自由基聚合的聚合物的比较。
图4示出制造高胺负载吸附剂的方法的实施方案。
具体实施方式
本文的实施方案涉及固体吸附剂及其制造方法,其将在由国家科学院(NAS)确定的所有领域中提供同步进展,具有实现低于$100/吨CO2的颠覆性工艺成本的潜力。
由于空气中CO2的含量低,约为400ppm,在DAC中,需要具有高选择性化学吸附的材料。由于高CO2选择性、耐湿性、高吸附热和低成本,固体胺改性材料是DAC最有前景的固体吸附剂材料。已经报道了各种胺改性的吸附剂,但是由于材料和工艺限制,工艺成本仍然高。例如,一种方法使用固体胺吸附剂并报告$600/吨CO2的成本。已经提出了其它材料,例如MOF和多孔聚合物网络(PPN),它们是刚性四面体单体的无定形超交联网络,但是这些材料由于孔径小而遭受成本高、在水分中降解和吸收速率慢。
本文的实施方案涉及使用氨基聚合物气凝胶吸附剂直接空气捕获CO2。与现有技术(SOA)吸附剂相比,示出TRAPS的实施方案(表1)。
表1.在DAC条件下,氨基聚合物气凝胶性质相对于现有技术吸附剂。
Figure BDA0004045533190000031
通常,低成本吸附剂(例如胺-接枝的或胺-浸渍的二氧化硅)具有低容量、高显热负荷和高。相反,高容量吸附剂(例如金属有机框架(MOF)或多孔聚合物网络)具有高成本的缺点。术语“显热负荷”是指增加或降低物质温度所需的能量的量。
本文的实施方案涉及新型材料,其包含具有高可及表面积和高含量的骨架整合的胺基的可扩展的中孔聚胺气凝胶,用于在直接空气捕获(DAC)条件下选择性CO2吸附。实施方案还包括通过受控自由基聚合方法从氨基-乙烯基单体直接使低分子量胺(例如乙烯基胺和烯丙基胺)并入,而不限于仅伯胺的新方法。这实现了吸附剂中高含量的胺官能度,这使得能够实现高CO2负载容量。
本文的实施方案在10-1000nm范围内在可比的孔径下具有比胺-接枝的中孔二氧化硅或与多孔陶瓷载体共混的胺(例如聚乙烯亚胺的共混物)更高的比表面积。这增加了气体-吸附剂相互作用并导致更快的负载/卸载速率。
由于使用具有高度活性伯胺的起始材料和避免惰性载体,实施方案将具有比常规的非负载以及陶瓷-负载的聚胺更高的平衡比容量。
实施方案的合成平台的可调性使得胺能够共价整合到聚合物骨架中,并且精确控制空间环境以实现比常规聚胺更长的寿命。
图1示出代表实施方案的所得固体吸附剂10的图。聚胺16以高含量整合到聚合物骨架中,使得吸附剂中的胺含量总体上是高的。在一个实例中,气凝胶是含有90重量%的乙烯基胺(其是最小的乙烯基胺类似物)和10重量%的交联剂的混合物共聚的结果,气凝胶中氮原子的含量为29.3重量%。完全由乙烯基胺制成而没有任何交联剂的气凝胶的氮原子含量等于32.55重量%。实际上,适合本申请目的的气凝胶中氮的百分比可以在1重量%至33重量%的范围内。这种高含量的聚胺与小孔壁(例如10nm)一起,赋予聚合物骨架高CO2负载能力,在4mol CO2/kg、超过1mol CO2/kg、或1-4mol CO2/kg、或1-5mol CO2/kg的范围内。在温度大于0℃且CO2浓度小于1000ppm下,实施方案可以是负载容量超过1mmol CO2/g吸附剂的气凝胶。
实施方案包括吸收动力学大于0.05mol CO2/千克分钟的气凝胶,包括在温度大于0℃且CO2浓度小于1000ppm下。在一个实施方案中,所得气凝胶具有大于5重量%的整合到聚合物骨架中的含胺的乙烯基单体。
骨架聚合物具有交联剂(例如14),但含量较低,允许机械鲁棒性和吸附剂的低显热负荷,同时进一步有助于增加CO2 18的捕获。吸附剂具有在0.15mol CO2/kg·min范围内的快速动力学,其是孔径在例如10-30nm的范围内的中孔,并且比表面积超过500m2/g。吸附剂动力学也可以在0.01-0.5mol CO2/kg·min、0.05-0.5的范围内或这些范围的任何子集。吸附剂的孔径也可以在1-50nm、1-100nm、1-200nm或1-500nm的范围内或这些范围的子集和组合。吸附剂的比表面积也可以大于100m2/g、200m2/g、300m2/g、400m2/g、600m2/g、700m2/g、800m2/g、900m2/g、1000m2/g、1100m2/g和1200m2/g。
一个实施方案是用于制造多孔聚合物气凝胶的方法,所述多孔聚合物气凝胶具有高含量的骨架-整合的胺基,并且具有小尺寸的孔和薄的孔聚合物壁。图2示出方法的实施方案。应当注意,既不暗示也不应推断任何子过程的顺序。在20处该方法涉及制备溶液,其包括溶剂、低分子量乙烯基胺单体、包含两个或更多个乙烯基的一种或多种交联剂、一种或多种自由基引发剂、硝基氧介体和可能的一种或多种还原剂,尽管这些是任选的。低分子量乙烯基胺单体可以具有被保护的胺基,以防止其与包括交联剂和乙烯基胺本身的其它乙烯基试剂反应。
低分子量是指分子量低于100g/mol、低于300g/mol、低于1000g/mol或低于5000g/mol。乙烯基胺是含有乙烯基官能团或含有乙烯基的官能团(例如丙烯酸酯或甲基丙烯酸酯)和胺基(伯、仲或叔)、RNH2、R2NH或R3N的分子。乙烯基胺中的胺也可以指能够转化为胺的官能团,例如酰胺、甲酰胺等。乙烯基和胺基可以直接相互键合,或者在它们之间可以具有其它原子或亚组,例如0-6个碳原子。
然后,该方法从上述溶液中去除氧,并在22处加热所得溶液以促进聚合,以生产聚合的材料。在24处,该方法用适当的溶剂进行溶剂交换,例如水或与水溶性有机溶剂的水混合物、极性溶剂、含有极性溶剂的溶剂混合物、质子溶剂或含有质子溶剂的溶剂混合物。脱保护反应去除胺保护基,并且该方法在26处漂洗材料。溶剂交换和脱保护反应可以以任一顺序进行。用水、具有水混溶性有机溶剂的水混合物、极性溶剂、含有极性溶剂的溶剂混合物、质子溶剂或含有质子溶剂的溶剂混合物浸泡和漂洗所得材料去除过量的试剂和可溶性脱保护反应副产物。最后,在28处干燥生产最终的胺吸附剂。
实施方案具有若干独特的特征。这些包括通过受控自由基聚合、稳定的自由基聚合(SFRP)直接并入低分子量乙烯基胺单体而开发聚合物多孔结构。它们还包括开发用于含胺的乙烯基单体与乙烯基交联剂共聚的合成方法,生产具有在10nm-1000nm范围内的小孔径和在10-100nm范围内的薄壁的多孔聚合物,并且具有大于10重量%的整合到聚合物骨架中的并入的含胺的乙烯基单体的高胺基含量。由于胺基与交联剂的含胺的乙烯基单体中存在的乙烯基的反应,含伯胺和仲胺的乙烯基单体的聚合或共聚是不可能的。
该方法可以用于调节孔壁结构的直径,确保聚胺的充分利用和快速吸收。在现有技术固体吸附剂中发现的较厚孔壁的情况下,大部分胺并入致密的孔聚合物壁中,并且在动力学上不可用于CO2捕获。用实施方案实现的厚度在10-100nm(或1-100nm、1-500nm、或10-500nm)的范围内的薄聚合物壁具有两个益处,较高的表面积与体积比,和较短的气体渗透固体材料的扩散时间,而结果是更多的氨基可用于与气体相互作用用于CO2捕获。净作用是与当前方法相比增加的CO2捕获容量。
其它独特的方面包括高胺负载,其在DAC环境条件下提供增加的CO2平衡负载容量。特别有益的是化学上优化用于低CO2分压吸附的伯胺基团。它们还包括由该多孔吸附剂材料制成的吸附剂颗粒的机械和物理稳定性增加,这通过增加的抗破碎强度和降低的磨耗指数来测量,这使得用公开的胺吸附剂制成的颗粒适合于通过流化床工艺捕获CO2。当与其它吸附剂(例如接枝有较长胺链的二氧化硅和其它固体或液体胺吸附剂)相比时,实施方案具有改进的抗热和氧化降解的稳定性。这种改进的稳定性是由于聚合物骨架的空间作用,其非常接近胺基,以及通过消除催化降解的金属。
SFRP(稳定的自由基聚合)气凝胶方法已经在各种非胺单体中得到证明,例如在美国专利公开号2020/0031977和美国专利号10,421,253中公开的那些,所述专利通过引用以其整体并入本文。如图3所示,在常规自由基聚合中,各种聚合物链端30以不同的速率增长,并且可以通过在链端的自由基32的偶联,通过链-链终止事件而终止,生产停止增长的非活性聚合物链34。最终结果是由具有中等比表面积和大孔壁的大聚集体颗粒36制成的多孔吸附剂结构。
与通过PARC(Palo Alto Research Center,Inc.)获得专利的那些方法相似,SFRP独特的气凝胶方法调节聚合期间纳米凝胶簇的链生长和沉淀,如图的底部所示。在SFRP中,硝基氧介体44可逆地结合到生长链40的末端42,产生“休眠”状态。仅当硝基氧介体44(例如TEMPO-OH)从链端解偶联并允许新的单体分子46与增长的链反应时才发生链增长。当链在大部分时间处于休眠状态时,反应以活性聚合进行,不希望的链终止事件的可能性降低。最终结果是具有高比表面积和薄壁的高孔隙率聚合物结构48。SFRP降低孔壁尺寸并增加在相同孔隙率下的表面积。
以前的工作显示,由于胺基与交联剂的含胺的乙烯基单体中存在的乙烯基的反应,含伯胺和仲胺的乙烯基单体的聚合或共聚是不可能的(Tillet,G.,Boutevin,B.&Ameduri,B.Chemical reactions of polymer crosslinking and post-crosslinking atroom and medium temperature.Prog.Polym.Sci.36,191-217(2011))。这些实施方案的方法利用其中胺基在聚合步骤期间被保护的乙烯基胺单体。在聚合之后去除保护基团,以生产具有高含量的骨架-整合的胺基的多孔聚合物气凝胶,其能够捕获CO2。保护/脱保护胺基的任何方法都适用于实施方案的目的。在一些情况下,仲胺和叔胺不需要保护基团。在仲胺和叔胺中,氮原子与一个或零个氢和两个或三个非氢原子或化学基团键合。在不需要保护基的情况下,一个或两个非氢基团防止聚合期间的副反应。
一种用于含伯胺和仲胺的乙烯基单体的保护/脱保护的方法先前已经在http:// cssp.chemspider.com/article.aspx?id=103描述。通过与甲酰胺反应的保护通常涉及使胺与甲酸在乙酸酐中反应,同时通常在50-80℃下加热,随后溶剂蒸发并通过色谱法纯化。
图4说明合成方法的实施方案。具有受保护的胺的乙烯基单体是合适的,因为它们可以通过常规(不受控)自由基聚合方法有效地聚合。N-乙烯基甲酰胺(1)(其中在50处胺被甲醛保护)是适用于本实施方案的实例(Zhu,J.,Gosen,C.&Marchant,E.R.Synthesis andCharacterization of Poly(vinyl amine)-Based Amphiphilic Comb-Like DextranGlycopolymers by a Two-Step Method.J Polym Sci Part APolym Chem 44,192-202(2006))。在第一步中,通过N-乙烯基甲酰胺与多官能交联剂例如二乙烯基苯(DVB、三羟甲基丙烷三甲基丙烯酸酯、1,6-己二醇二丙烯酸酯、多官能丙烯酸酯或多官能甲基丙烯酸酯)在SFRP条件(100-130℃,6-48小时)下共聚,通过引发剂(例如过氧化苯甲酰、过氧化月桂酰或AIBN)引发,并且通过使用硝基氧介导的链增长添加剂(TEMPO、TIPNO、SG1、TEMPO-OH)在合适的溶剂中作为成孔剂,制造溶剂化的凝胶。为了实现大于30%的孔隙率,可以使用总溶液的50-80重量%范围内的溶剂浓度。通常,可以使用20-90重量%或20-99重量%的溶剂浓度。在第二步中,如在现有技术中所报道的,通过在酸性和碱性条件下,和任选地用离子交换树脂去除甲酰基,使胺再生(Wang和Mohammadi,Z.,Cole,A.&Berkland,C.J.In situsynthesis of iron oxide within Polyvinylamine nanoparticlereactors.J.Phys.Chem.C 113,7652-7658(2009))。最后,通过PARC以前开发的用于非氨基气凝胶的方案,在受控的环境条件下干燥溶剂化的凝胶。
为了增加CO2捕获所需的氮原子含量,优选低分子量乙烯基胺。在多孔胺气凝胶中,由胺乙烯基单体的聚合产生的胺基可以通过由0-6个碳原子组成的烃链连接到聚合物骨架。例如,如果乙烯基胺单体是乙烯基胺,则连接烃链中的碳原子数是0。如果乙烯基胺单体是3-丁烯-1-胺,则连接烃链中的碳原子数是2。
对于本实施方案,用作受保护的胺的合适的低分子量胺取代的乙烯基单体包括:具有受保护的胺基的胺单体、包括乙烯基或胺单体(即,含有可聚合双键)的低分子伯胺(包括乙烯基胺、烯丙基胺、3-丁烯-1-胺、4-戊烯-1-胺、3-乙烯基苯胺、4-乙烯基苯胺)、二胺乙烯基单体(包括4-环己烯-1,2-二胺)等。同样,含胺的丙烯酸酯和甲基丙烯酸酯适用于这些实施方案,例如2-氨基乙基甲基丙烯酸酯、3-氨基丙基甲基丙烯酸酯。
低分子仲胺也适用于这些实施方案。这包括N-甲基乙烯基胺、N-乙基乙烯基胺、N-甲基-烯丙基胺、N-异丙基乙烯基胺、N-叔丁基乙烯基胺和通常取代来自含伯胺的乙烯基单体的氢原子而产生的任何衍生物。
合适的乙烯基交联剂包括具有两个或更多个乙烯基的交联剂、具有双键可聚合基团-CH=CH2、-C(R)=CH2、-C(R1)=C(R2)H、-C(R1)=C(R2)(R3)、-CH=C(R1)(R2)的乙烯基交联剂,其中R、R1、R2、R3为烷基,包括甲基、乙基、丙基、异丙基等。双键可以直接连接到苯基、联苯或蒽基,例如在二乙烯基苯的情况下。双键还可以连接到酯基,例如在丙烯酸酯或甲基丙烯酸酯的情况下。丙烯酸酯和甲基丙烯酸酯交联剂的合适实例包括三、四、五或六丙烯酸酯和甲基丙烯酸酯,例如三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷乙氧基化物三丙烯酸酯、二(三羟甲基丙烷)四丙烯酸酯、二季戊四醇五/六丙烯酸酯三甲基丙烯酰基金刚烷、二季戊四醇、三羟甲基丙烷三甲基丙烯酸酯、二乙烯基苯、亚苯基二甲基丙烯酸酯、亚苯基二丙烯酸酯和1,6-己二醇二丙烯酸酯和类似物。
用作成孔剂的合适的溶剂包括极性非质子有机溶剂,例如二甲基甲酰胺、甲乙酮、四氢呋喃、二甘醇二甲醚(二乙二醇二甲醚)、1,2-二甲氧基乙烷、乙酸乙酯等。特别合适的是沸腾温度大于160℃、大于150℃或高于130℃的高沸点溶剂,例如苯乙酮(202℃)、二甲基亚砜(DMSO)(189℃)、环丁砜或n-甲基吡咯烷酮(202℃)。可以调节溶剂/单体相互作用强度以影响孔隙率和孔径。通常不利的相互作用导致较大的孔径和较大的孔壁特征。
合适的自由基引发剂包括热引发剂(通过热活化)和光引发剂(其通过光活化,典型地在约200nm-400nm波长范围内的紫外线)。热引发剂的非限制性实例包括(a)过氧化物,例如过氧化苯甲酰、二乙酰基过氧化物、二叔丁基过氧化物、过氧化月桂酰、过氧化二异丙苯;或偶氮化合物,例如偶氮二异丁腈(AIBN)和苯基偶氮三苯基甲烷。光引发剂的非限制性实例包括二苯甲酮、蒽醌、樟脑醌、苄基、安息香等。
合适的硝基氧介体包括衍生自烷氧基胺、4-羟基-TEMPO、TEMPO和其它TEMPO衍生物、TIPNO和TIPNO衍生物、氯苄基-TIPNO、SG1和其它SG1衍生物以及甲基丙烯酸基团的分解的硝基氧物质。一部分稳定的自由基可以保留在气凝胶结构中。
合适的反应温度通常在70℃-200℃的范围内,这取决于自由基引发剂的引发温度和稳定的自由基的反应性。
含胺的乙烯基单体与交联剂一起在溶剂中的浓度为总溶液的1%至60重量%的范围内。通常,单体和交联剂的浓度越低,吸附剂的孔隙率越高。
聚合后,通常通过在碱性或酸性条件下水解,随后漂洗并用离子交换树脂(Wang)处理来去除甲酰基。在本公开内容提出的方法中,通过用水和具有水混溶性有机溶剂的水混合物浸泡和漂洗而去除过量试剂和可溶性脱保护反应副产物。合适的水混溶性溶剂包括醇,包括甲醇、乙醇、丙醇、异丙醇等,以及例如丙酮和THF。可以使用一种或多种水混溶性溶剂。水溶液中水混溶性溶剂的量可以在溶液总重量的0.5%至99.5%的范围内。
干燥可以涉及环境干燥、冷冻干燥或超临界CO2干燥。在环境干燥中,首先在室温和常压下干燥浸没在溶剂中的凝胶,所述溶剂例如烷烃(包括己烷、庚烷)或更大极性的溶剂,例如丙酮、四氢呋喃(THF)或醇(包括甲醇、乙醇、异丙醇等),并然后可能在真空中干燥。在冷冻干燥中,首先将吸附剂冷冻(通过将温度降低至低于溶剂的凝固点),然后通过在真空中升华去除溶剂。在超临界CO2干燥中,凝胶与液体CO2进行溶剂交换并超临界干燥。
为了减少动力学障碍,实施方案必须表现出高孔隙率、高比表面积和薄的孔壁。薄的孔壁使得气体能够快速扩散、CO2化学吸附和扩散到10nm尺度的本体中。在一些实施方案中,孔隙率大于10%。在其它实施方案中,孔隙率大于20%、30%、40%、50%、60%和70%。热力学上,需要高负载的选择性化学吸附部分以在低分压下捕获大量CO2。实施方案平台提供了对胺负载和吸附剂孔特性的明确控制。与在图3中所示的使用不受控自由基聚合合成的凝胶相比,SFRP气凝胶方法产生的凝胶具有更高的比表面积和更小的孔壁厚度。
可以利用重要的反应参数来调节这些权衡因素。硝基氧介体在SFRP期间可逆地覆盖聚合物链的末端;然而,在反应过程中,由于链终止而形成过量的硝基氧。如果未检查到过量的硝基氧,聚合停止。为了抵消这种作用,使用还原剂,例如还原糖(例如葡萄糖)、含半缩醛基团的试剂、羟基丙酮或衍生自酮和醛的烯二醇物质(例如酮糖和醛糖),以逐渐消耗硝基氧并保持硝基氧与活性自由基的比率。具有缓慢分解速率的引发剂在抵消过量游离硝基氧的累积方面也是有效的。通过系统地调整参数,例如溶剂-单体相互作用强度、自由基引发剂半衰期以及溶剂、硝基氧、还原剂和自由基引发剂的浓度,可以从相同的单体组获得各种孔结构。
控制胺的空间环境使稳定性和胺利用率最大化。预期在更灵活的键合环境中胺将更强烈地吸附CO2,具有更高的吸附热,而更大的空间位阻将抑制氧化。由于实施方案平台的可调性,乙烯基胺的变体(例如烯丙基胺或仲胺单体)可以在合成中容易地被取代以微调节胺的空间环境和柔性。
本文的实施方案提供了对孔壁厚度的控制。通过改变聚合活性,可以将构成孔壁的粗糙多孔颗粒的尺寸调节在10-100nm范围或5-200nm范围、5-500nm范围、10-1000纳米,所述聚合活性是硝基氧介体对聚合的影响的量度。孔壁颗粒对气体可渗透,并通过使与聚合物壁内部的胺基相互作用成为可能而最大化CO2捕获容量。这是来自这些实施方案的吸附剂的独特优点。基于典型的孔隙率和表面积,孔壁结构的硬球长度尺度为约10-100nm。
通过大大降低惰性显热负荷和降低化学降解,用于在烟道气浓度下吸附实施方案具有优于液体胺吸附剂的优点。对于烟道气条件优化的高度流动的胺比固体固定化的胺更易于氧化和副反应。
这些实施方案的吸附剂可以在具有固定床、流化床或整料型吸附体的系统中使用。气凝胶合成方法是灵活的,并且可以用于生产从1-100μm颗粒到0.3×10×10cm3或更大的整料范围内的各种形状因子的气凝胶。吸附剂可以作为整料、无粘结剂的粒料、含粘结剂的粒料、颗粒、可流化颗粒或浇铸到大孔基材和其它材料上的颗粒来生产。
实施方案在中等的、不是极高的孔隙率下实现高比表面积。由于孔隙率较低,实施方案将具有比二氧化硅气凝胶更高的热导率,约为0.14W/mK,或大于0.02、0.05、0.07或0.1W/mK,能够进行快速热交换。
虽然较小尺寸的孔优选在10-30nm的范围内,但较大尺寸的孔也是合适的,例如在10nm-1000nm的范围内,但它们可以改变吸附剂的表面积。孔壁越薄,气体通过孔壁的扩散越好,并且CO2负载容量越高。在10-100nm范围内的较厚壁也适用于实施方案,因为它们可以有利于改进吸附剂的机械强度,但它们可能降低CO2捕获负载效率。可能需要在这两个性能度量之间进行权衡以实现最佳机械强度和CO2负载容量。最佳范围取决于吸附剂的使用模式。
由于气凝胶中的伯胺结构和在骨架中共价并入胺,实施方案预期氧化稳定性比常规负载的聚乙烯亚胺(PEI)吸附剂提高7倍。气凝胶也可以含有仲胺。与其它聚胺一样,在环境湿度的DAC条件下,氧化降解将是主要的。最近,仅含有伯胺的负载型聚烯丙基胺(PAA)显示比含有较不稳定的仲胺和伯胺的混合物的聚乙烯亚胺(PEI)氧化更慢,前者为后者的1/7(Bali,S.,Chen,T.T.,Chaikittisilp,W.&Jones,C.W.Oxidative stability of aminopolymer-alumina hybrid adsorbents for carbon dioxide capture.Energy and Fuels27,1547-1554(2013))。由于结构相似性,实施方案应具有与PAA相似的氧化行为。由于聚合物骨架中的胺的刚性结构和共价并入,实施方案还将证明低的物理和化学降解速率。实施方案具有达到经济上可行的10,000次循环的寿命的潜力,以保持90%的容量。通过基于氧化稳定性的预期7倍改进和较短的循环时间(假定在低于65℃的温度下引入空气),从仲胺吸附剂的循环寿命外推,来估计实施方案的循环寿命。
由于高的胺利用率,以及低含量的CO2非活性共聚单体,通过高的CO2吸收容量,实施方案实现低于50kJ/mol的低的最小显热负荷,例如每半个循环26kJ/mol CO2。最小显热负荷也可以小于10kJ/mol、20kJ/mol、30kJ/mol、40kJ/mol和50kJ/mol。该参数对于CO2捕获的能量和DAC工艺操作支出是关键的。最小能量需求比常规负载的聚胺低40-70%(表1),并且低于吸附热,其在45-90kJ/mol CO2的范围内。
由DOE资助的关于用于烟道气捕获的苄胺离子交换树脂的文献评估压碎强度和磨耗指数(AI)值,其指示吸附剂与固定床和流化床吸附体的相容性(Sjostrom,S.&Senior,C.Pilot testing of CO2 capture from a coal-fired power plant-Part 1:Sorbentcharacterization.Clean Energy 3,144-162(2019))。这些具有与实施方案类似的化学结构和孔隙率(Alesi,W.R.&Kitchin,J.R.Evaluation of a primary amine-functionalized ion-exchange resin for CO 2capture.Ind.Eng.Chem.Res.51,6907-6915(2012)),但实施方案的AI低于0.5,并具有较高的CO2容量和受控孔隙率的增加的益处。这些值与AI在0.2-0.5范围内的相比是好的(Green,A.D.等人Carbon Dioxide Capturefrom Flue Gas Using Dry Regenerable Sorbents.DOE Report,DE-FC26-00NT40923 128(2004)),经常将新的流化床颗粒与现有技术耐磨流化裂化催化剂比较。为了比较,对于二氧化硅/PEI,AI大于2(Kim,J.Y.等人Continuous testing of silica-PEI adsorbents inalab.-scale twin bubbling fluidized-bed system.Int.J.Greenh.Gas Control82,184-191(2019)),对于MOF,AI大于10(Luz,I.,Soukri,M.&Lail,M.Confining Metal-Organic Framework Nanocrystals within Mesoporous Materials:A General Approachvia‘solid-State’Synthesis.Chem.Mater.29,9628-9638(2017))。实施方案的改进的性能是由于聚合物的固有韧性和塑性变形。
来自实施方案的吸附剂可以用于DAC以外的其它应用,包括捕获燃烧后气体或室内CO2去除。在DAC应用中,吸附可以在环境条件下发生。环境条件为环境湿度(40-70%RH)、空气组成、CO2浓度(空气中100-5000ppm CO2,空气中400-500ppm CO2)、温度(-40℃至50℃、或20-30℃)和绝对压力(0.5-2巴或1巴)。在其它应用中,吸附可以在更宽范围的条件下发生,例如0.1-50% CO2、或1-90%CO2、3-15% CO2或3-50%CO2、0-100% RH、1毫巴-10巴压力以及15-80℃或15-50℃。吸附剂可以用于多种系统和配置中以从空气或其它环境气体中分离CO2或其它酸性气体。
在说明书(包括权利要求、摘要和附图)中公开的所有特征以及在公开的任何方法或过程中的所有步骤可以以任何组合方式组合,除了其中至少一些这样的特征和/或步骤是相互排斥的组合。除非另外明确说明,否则在说明书(包括权利要求、摘要和附图)中公开的每个特征可以由用于相同、等同或类似目的的替代特征来替换。
应当理解,上述公开的变体和其它特征和功能或其替代方案可以组合到许多其它不同的系统或应用中。本领域技术人员随后可以做出各种目前未预见或未预期的替代、修改、变化或改进,这些也旨在被上述实施方案所涵盖。

Claims (30)

1.多孔聚合物气凝胶,所述气凝胶具有大于5重量%的整合到聚合物骨架中的含胺的乙烯基单体。
2.权利要求1所述的气凝胶,其中所述气凝胶的氮原子含量在1重量%至33重量%的范围内。
3.权利要求1所述的气凝胶,其中由乙烯基胺单体的聚合得到的胺基通过由0-6个碳原子组成的烃链连接到所述聚合物骨架。
4.权利要求1所述的气凝胶,其中所述气凝胶的孔隙率大于10%。
5.权利要求1所述的气凝胶,其中所述气凝胶的比表面积为至少100m2/g。
6.权利要求1所述的气凝胶,其中所述气凝胶的壁厚在10-100纳米的范围内。
7.权利要求1所述的气凝胶,其中所述气凝胶的孔的尺寸在10-1000纳米的范围内。
8.权利要求1所述的气凝胶,其中所述气凝胶含有伯胺。
9.权利要求1所述的气凝胶,其中所述气凝胶含有仲胺。
10.权利要求1所述的气凝胶,其中所述气凝胶含有一部分稳定的自由基。
11.权利要求1所述的气凝胶,其中所述气凝胶的负载容量超过1mol CO2/千克气凝胶。
12.权利要求1所述的气凝胶,其中在温度大于0℃且CO2浓度小于1000ppm下,所述气凝胶的负载容量大于1mmol/g吸附剂。
13.权利要求1所述的气凝胶,其中所述气凝胶的吸收动力学大于0.05mol CO2/千克分钟。
14.权利要求1所述的气凝胶,其中在温度大于0℃且CO2浓度小于1000ppm下,所述气凝胶的吸收动力学大于0.05mol CO2/千克分钟。
15.权利要求1所述的气凝胶,其中与固体或液体胺吸附剂相比,所述气凝胶具有更好的热和氧化稳定性。
16.权利要求1所述的气凝胶,其中所述气凝胶的磨耗指数低于0.5。
17.权利要求1所述的气凝胶,其中所述气凝胶的最小显热负荷低于50kJ/mol。
18.制造多孔聚合物气凝胶胺材料的方法,其包括:
制备包含至少溶剂、胺单体、一种或多种交联剂、一种或多种自由基引发剂和硝基氧介体的溶液;
从所述溶液中去除氧;
加热所述溶液以促进聚合并生产聚合的材料;
与所述聚合的材料进行溶剂交换;
在所述聚合的材料中引起脱保护反应以去除保护所述氨基的基团;
浸泡和漂洗所述材料以去除过量的试剂和所述脱保护反应的任何副产物;和
干燥所述材料以生产所述胺吸附剂。
19.权利要求18所述的方法,其中制备溶液包括制备包含一种或多种还原剂的溶液。
20.权利要求18所述的方法,其中制备所述包含至少胺单体的溶液包括制备包含一种或多种选自以下的溶液:具有受保护的氨基的胺单体、低分子量乙烯基胺单体、含有可聚合双键的乙烯基单体、含有可聚合双键的胺单体、乙烯基胺、烯丙基胺、3-丁烯-1-胺、4-戊烯-1-胺、3-乙烯基苯胺、4-乙烯基苯胺、包括4-环己烯-1,2-二胺的二胺乙烯基单体、含胺的丙烯酸酯和甲基丙烯酸酯、2-氨基乙基甲基丙烯酸酯和3-氨基丙基甲基丙烯酸酯、N-甲基乙烯基胺、N-乙基乙烯基胺、N-甲基-烯丙基胺、N-异丙基乙烯基胺、N-叔丁基乙烯基胺和由取代来自含伯胺的乙烯基单体的氢原子而产生的其任何衍生物。
21.权利要求18所述的方法,其中制备所述包含至少一种或多种交联剂的溶液包括制备其中所述交联剂包含一种或多种选自以下的溶液:由两个或更多个乙烯基组成的交联剂、包含双键可聚合基团-CH=CH2、-C(R)=CH2、-C(R1)=C(R2)H、-C(R1)=C(R2)(R3)、-CH=C(R1)(R2)的乙烯基交联剂,其中R、R1、R2、R3是烷基,包括甲基、乙基、丙基、异丙基、三、四、五或六丙烯酸酯和甲基丙烯酸酯、三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷乙氧基化三丙烯酸酯、二(三羟甲基丙烷)四丙烯酸酯、二季戊四醇五/六丙烯酸酯三甲基丙烯酰基金刚烷、二季戊四醇、三羟甲基丙烷三甲基丙烯酸酯、二乙烯基苯、亚苯基二甲基丙烯酸酯、亚苯基二丙烯酸酯和1,6-己二醇二丙烯酸酯。
22.权利要求18所述的方法,其中制备所述包含至少溶剂的溶液包括制备其中所述溶剂包含一种或多种选自以下的溶液:极性非质子有机溶剂、二甲基甲酰胺、甲乙酮、四氢呋喃、二甘醇二甲醚(二乙二醇二甲醚)、1,2-二甲氧基-乙烷、乙酸乙酯、高沸点溶剂、苯乙酮、二甲基亚砜(DMSO)、环丁砜和n-甲基吡咯烷酮。
23.权利要求18所述的方法,其中制备所述包含至少溶剂的溶液包括制备包含浓度为总溶液的20-99重量%的溶剂的溶液。
24.权利要求18所述的方法,其中制备所述包含至少自由基引发剂的溶液包括制备具有一种或多种选自以下的溶液:热引发剂、光引发剂、过氧化物、过氧化苯甲酰、二乙酰基过氧化物、二叔丁基过氧化物、过氧化月桂酰、过氧化二异丙苯、偶氮化合物、偶氮二异丁腈(AIBN)、苯基偶氮三苯基甲烷、二苯甲酮、蒽醌、樟脑醌、苄基和安息香。
25.权利要求18所述的方法,其中制备所述包含至少硝基氧介体的溶液包括制备具有一种或多种选自以下的溶液:衍生自烷氧基胺、4-羟基-TEMPO、TEMPO、TEMPO衍生物、TIPNO、TIPNO衍生物、氯苄基-TIPNO、SG1、SG1衍生物和甲基丙烯酸自由基的分解的硝基氧物质。
26.权利要求18所述的方法,其中加热所述溶液包括将所述溶液加热至70℃至200℃范围内的温度,其中所述温度取决于所述自由基引发剂的引发温度。
27.权利要求18所述的方法,其中干燥所述材料包括以下中的一种:在室温和常压下环境干燥所述材料;在室温和常压下,并然后在真空中环境干燥所述材料;冷冻干燥所述材料,随后通过在真空中升华去除冰;和与液体CO2进行溶剂交换并超临界干燥所述材料。
28.从其它气体中分离CO2的系统,其包含聚合物多孔气凝胶吸附剂,所述聚合物多孔气凝胶吸附剂具有大于5重量%的整合到聚合物骨架中的含胺的乙烯基单体。
29.权利要求28所述的系统,其中所述气凝胶吸附剂是无粘结剂的粒料、含粘结剂的粒料、颗粒、整料、可流化颗粒和浇铸到其它材料上的颗粒中的一种。
30.权利要求28所述的系统,其中多孔聚合物气凝胶用于包含固定床、流化床和整料型吸附体中的一种的吸附体。
CN202180049053.0A 2020-05-28 2021-05-04 用于捕获co2的可调的快速吸收的氨基聚合物气凝胶吸收剂 Active CN116018200B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202063031098P 2020-05-28 2020-05-28
US63/031098 2020-05-28
US17/211588 2021-03-24
US17/211,588 US11612852B2 (en) 2020-05-28 2021-03-24 Tunable, rapid uptake, aminopolymer aerogel sorbent for direct air capture of CO2
PCT/US2021/030661 WO2021242485A1 (en) 2020-05-28 2021-05-04 Tunable, rapid uptake, aminopolymer aerogel sorbent for capture of co2

Publications (2)

Publication Number Publication Date
CN116018200A true CN116018200A (zh) 2023-04-25
CN116018200B CN116018200B (zh) 2024-06-11

Family

ID=78706700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180049053.0A Active CN116018200B (zh) 2020-05-28 2021-05-04 用于捕获co2的可调的快速吸收的氨基聚合物气凝胶吸收剂

Country Status (9)

Country Link
US (3) US11612852B2 (zh)
EP (1) EP4157509A1 (zh)
JP (1) JP2023539977A (zh)
KR (1) KR20230034977A (zh)
CN (1) CN116018200B (zh)
AU (1) AU2021280889A1 (zh)
CA (1) CA3184335A1 (zh)
TW (1) TWI802874B (zh)
WO (1) WO2021242485A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11612852B2 (en) 2020-05-28 2023-03-28 Palo Alto Research Center Incorporated Tunable, rapid uptake, aminopolymer aerogel sorbent for direct air capture of CO2
CN114849665B (zh) * 2022-04-29 2023-04-07 浙江大学 可吸附空气中二氧化碳的胺基金属有机骨架吸附剂及其制备和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056790A1 (en) * 1999-03-22 2000-09-28 Amersham Pharmacia Biotech Ab Amino group containing support matrices, their use and manufacture
CN101037494A (zh) * 2007-04-02 2007-09-19 东华大学 温度和pH值敏感性纳米级的微凝胶及其制备方法
CN106832386A (zh) * 2017-01-09 2017-06-13 淮阴工学院 一种有机气凝胶及其制备方法和应用
US20180008958A1 (en) * 2016-07-08 2018-01-11 Korea Advanced Institute Of Science And Technology Polymeric amine based carbon dioxide adsorbents
CN108192153A (zh) * 2018-01-15 2018-06-22 大连工业大学 一种基于双网络结构设计制备气凝胶的方法
CN110105617A (zh) * 2019-06-06 2019-08-09 浙江理工大学 一种聚丙烯酰胺气凝胶、制备方法及其应用
CN110124632A (zh) * 2019-04-16 2019-08-16 绍兴文理学院元培学院 一种多孔纤维基气凝胶吸附剂的制备方法
CN110368904A (zh) * 2019-06-26 2019-10-25 浙江跃维新材料科技有限公司 一种固态多孔的气体吸附材料的制备方法及其应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507848A (en) 1993-03-12 1996-04-16 Beckman; Eric J. Polymers capable of reversibly complexing acid gases and a method of using the same
CZ297821B6 (cs) 2000-08-29 2007-04-04 Mallinckrodt Baker Inc. Funkcionalizovaná polymerní média pro separaci analytu
FR3025205B1 (fr) * 2014-08-28 2016-09-09 Univ De Lorraine Materiau isolant thermique a base d'aerogel
US10421253B2 (en) 2016-10-05 2019-09-24 Palo Alto Research Center Incorporated Polymer aerogel for window glazings
US10626224B2 (en) 2017-10-09 2020-04-21 Palo Alto Research Center Incorporated Method to produce transparent polymer aerogels using chain transfer agents
CN108636378A (zh) * 2018-05-03 2018-10-12 淮北师范大学 一种有机胺功能化三维有序大孔材料co2吸附剂及其制备方法
JP7536297B2 (ja) * 2018-06-13 2024-08-20 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・コロラド,ア・ボディー・コーポレイト バクテリアセルロースゲル、製造方法および使用方法
US10836855B2 (en) 2018-07-26 2020-11-17 Palo Alto Research Center Incorporated Method to produce colorless, high porosity, transparent polymer aerogels
CN110711567A (zh) * 2019-10-12 2020-01-21 大连理工大学 一种高性能含氮多孔炭二氧化碳吸附剂的制备方法
US11612852B2 (en) 2020-05-28 2023-03-28 Palo Alto Research Center Incorporated Tunable, rapid uptake, aminopolymer aerogel sorbent for direct air capture of CO2

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056790A1 (en) * 1999-03-22 2000-09-28 Amersham Pharmacia Biotech Ab Amino group containing support matrices, their use and manufacture
CN101037494A (zh) * 2007-04-02 2007-09-19 东华大学 温度和pH值敏感性纳米级的微凝胶及其制备方法
US20180008958A1 (en) * 2016-07-08 2018-01-11 Korea Advanced Institute Of Science And Technology Polymeric amine based carbon dioxide adsorbents
CN106832386A (zh) * 2017-01-09 2017-06-13 淮阴工学院 一种有机气凝胶及其制备方法和应用
CN108192153A (zh) * 2018-01-15 2018-06-22 大连工业大学 一种基于双网络结构设计制备气凝胶的方法
CN110124632A (zh) * 2019-04-16 2019-08-16 绍兴文理学院元培学院 一种多孔纤维基气凝胶吸附剂的制备方法
CN110105617A (zh) * 2019-06-06 2019-08-09 浙江理工大学 一种聚丙烯酰胺气凝胶、制备方法及其应用
CN110368904A (zh) * 2019-06-26 2019-10-25 浙江跃维新材料科技有限公司 一种固态多孔的气体吸附材料的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YASHWANT SHANDIL等: "New modified poly(vinylamine)-gels as selective and efficient Hg2+ ions adsorbents", CHEMICAL ENGINEERING JOURNAL, vol. 316, pages 978 - 987, XP029940587, DOI: 10.1016/j.cej.2017.01.133 *

Also Published As

Publication number Publication date
US20210370226A1 (en) 2021-12-02
US11612852B2 (en) 2023-03-28
EP4157509A1 (en) 2023-04-05
CN116018200B (zh) 2024-06-11
AU2021280889A1 (en) 2023-01-19
JP2023539977A (ja) 2023-09-21
WO2021242485A1 (en) 2021-12-02
TWI802874B (zh) 2023-05-21
US11944933B2 (en) 2024-04-02
KR20230034977A (ko) 2023-03-10
US20230126616A1 (en) 2023-04-27
US20230149849A1 (en) 2023-05-18
CA3184335A1 (en) 2021-12-02
TW202144073A (zh) 2021-12-01

Similar Documents

Publication Publication Date Title
US11944933B2 (en) Tunable, rapid uptake, aminopolymer aerogel sorbent for direct air capture of CO2
US8530613B2 (en) Preparation of meso-porous polymer based nano-polymerized composite material
US10508046B2 (en) Use and regeneration of an adsorbent to remove dyes from water
EP3638414B1 (en) Polymeric sorbents for aldehydes
Yang et al. Amine-functionalized micron-porous polymer foams with high CO2 adsorption efficiency and exceptional stability in PSA process
Han et al. Moisture-responsive hydrogel impregnated in porous polymer foam as CO2 adsorbent in high-humidity flue gas
KR101490202B1 (ko) 미세기공성 이산화탄소 흡착제 및 그의 제조방법
CN113797897A (zh) 一种用于捕集co2的改性壳聚糖基碳气凝胶的制备方法
AU2023241393A1 (en) Microporous aerogel
CN105418843B (zh) 一种用于二氧化碳捕集/吸收的多孔聚合离子液体的制备方法
WO2020235622A1 (ja) ポリマー材料およびその製造方法、ガス吸収材料、ガス回収装置
CN115193415A (zh) 具有增强的容量和动力学的水分波动co2吸附剂
WO2023205851A1 (en) Acidic gas absorbents comprising ionic liquids
KR101628033B1 (ko) 흡탈착 성능이 증진된 이산화탄소 흡착제 및 이의 제조방법
Özkahraman et al. The removal of Cu (II) and Pb (II) ions from aqueous solutions by temperature-sensitive hydrogels based on N-isopropylacrylamide and itaconic acid
Kaya et al. CO2 capture using polyethyleneimine functionalized silica xerogels
US20230056553A1 (en) Amidoxime Functionalized Polymers Loaded with Alkyl Amines, Methods of Making, And CO2 Capture Using Same
Ma et al. Preparation and CO2 Adsorption Performance of Porous Aluminum Fumarate MOFs Pellet
KR101587938B1 (ko) 고분자전해질 기반 중공사흡착제 및 그 제조방법
KR20240055026A (ko) 산성 기체 포집을 위한 열 전도성 하이드로겔
CN118748950A (zh) Co2吸附系统和使用湿度稳定性聚苯乙烯-二乙烯基苯胺官能化的聚合物吸附剂的co2吸附的方法
岳梦晨 Development of Hydrogel Films Consisting of Thermal Responsive Amine-Functionalized Microgel Particles and Linear Polymers as CO2 Absorbent in Wet Environment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant