CN115989042A - 含铜治疗诊断性化合物及使用方法 - Google Patents

含铜治疗诊断性化合物及使用方法 Download PDF

Info

Publication number
CN115989042A
CN115989042A CN202180048675.1A CN202180048675A CN115989042A CN 115989042 A CN115989042 A CN 115989042A CN 202180048675 A CN202180048675 A CN 202180048675A CN 115989042 A CN115989042 A CN 115989042A
Authority
CN
China
Prior art keywords
cancer
tumor
independently
compound
alkylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180048675.1A
Other languages
English (en)
Inventor
约翰·W·百祺
詹姆斯·M·凯利
亚历杭德罗·埃莫-科尔拉萨
沙希坎特·庞纳拉
保罗·斯蒂芬·唐纳利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Melbourne
Cornell University
Original Assignee
University of Melbourne
Cornell University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Melbourne, Cornell University filed Critical University of Melbourne
Publication of CN115989042A publication Critical patent/CN115989042A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0497Organic compounds conjugates with a carrier being an organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/5545Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having eight-membered rings not containing additional condensed or non-condensed nitrogen-containing 3-7 membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0402Organic compounds carboxylic acid carriers, fatty acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本发明提供了用于使以下成像和/或治疗以下的化合物、以及包含这种化合物的组合物:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和/或转移癌。所述化合物包括肿瘤靶向结构域(其包括能够识别肿瘤细胞表面上的分子靶标或与肿瘤细胞表面上的分子靶标相互作用的部分)、血液‑蛋白结合结构域、和含sarcophagine的结构域,其中肿瘤靶向结构域的部分位于血液‑蛋白结合结构域的远端并且在空间上不受血液‑蛋白结合结构域阻碍。

Description

含铜治疗诊断性化合物及使用方法
相关申请的交叉引用
本申请要求2020年5月6日提交的美国临时专利申请No.63/020,838的权益,其全部公开内容出于任何和所有目的通过引用并入本文。
技术领域
本发明一般地涉及三功能构建体,其包括肿瘤靶向结构域(其中肿瘤靶向结构域包括能够识别肿瘤细胞表面上的分子靶标或与肿瘤细胞表面上的分子靶标相互作用的部分)、血液-蛋白结合结构域和含sarcophagine的结构域,其中肿瘤靶向结构域的部分位于血液-蛋白结合结构域的远端并且在空间上不受血液-蛋白结合结构域阻碍。本发明的化合物的含sarcophagine的结构域能够螯合64Cu+267Cu+2。本发明还提供了包含这种化合物的组合物以及在成像和/或抗肿瘤疗法中的使用方法。例如,本发明的化合物和组合物是有用的治疗诊断性化合物。
发明内容
在一方面,提供了化合物,其包括肿瘤靶向结构域(其中肿瘤靶向结构域包括能够识别肿瘤细胞表面上的分子靶标或与肿瘤细胞表面上的分子靶标相互作用的部分)、血液-蛋白结合结构域和含sarcophagine的结构域,其中肿瘤靶向结构域的部分位于血液-蛋白结合结构域的远端并且在空间上不受血液-蛋白结合结构域阻碍。本文的实施方式的肿瘤靶向结构域能够结合至肿瘤相关分子靶标,其包括以下中的一者或多者:肿瘤相关分子靶标,其为肿瘤特异性细胞表面蛋白或其他标记,例如前列腺特异性膜抗原(PSMA)、生长激素抑制素肽受体-2(SSTR2)、alphavbeta3(αvβ3)、αvβ6、胃泌素释放肽受体、seprase(例如成纤维细胞激活蛋白α(FAP-α))、肠促胰岛素受体、葡萄糖依赖性促胰岛素多肽受体、VIP-1、NPY、叶酸受体、LHRH、神经元转运体(例如去甲肾上腺素转运体(NET))、EGFR、HER-2、VGFR、MUC-1、CEA、MUC-4、ED2、TF-抗原、内皮特异性标记、神经肽Y、uPAR、TAG-72、密封蛋白、CCK类似物、VIP、铃蟾肽、VEGFR、肿瘤特异性细胞表面蛋白、GLP-1、CXCR4、Hepsin、TMPRSS2、caspace、cMET、或过表达肽受体。本文公开的任何实施方式的肿瘤靶向结构域可包括经修饰抗体、经修饰抗体片段、经修饰结合肽、前列腺特异性膜抗原(“PSMA”)结合肽、生长激素抑制素受体激动剂、铃蟾肽受体激动剂、seprase结合化合物、或其任一种或多种的结合片段。
在本发明所公开的任何实施方式中,化合物可以是式I至V中的任一者或其药学上可接受的盐和/或溶剂合物:
TTD-L1-Sarc-L2-BBD (I)
Figure BDA0004041809000000021
Figure BDA0004041809000000031
其中
TTD是本文公开的任何实施方式的肿瘤靶向结构域;
BBD是本文公开的任何实施方式的血液-蛋白结合结构域;
Sarc是本文公开的任何实施方式的含sarcophagine的结构域;
X1在每次出现时独立为不存在、O、S、NH、-C(O)-、-C(O)-NR1-、–NR2-C(O)-、-C(O)-NR3-C1-C12亚烷基-、-C1-C12亚烷基-C(O)-、-C(O)-NR4-C1-C12亚烷基-C(O)-、-亚芳基-、-杂亚环基-、–O(CH2CH2O)a–、–CH2CH2–O(CH2CH2O)b–、–CH2CH2–O(CH2CH2O)c–CH2CH2–、–O(CH2CH2O)d–CH2CH2–、–C(O)–O(CH2CH2O)e–、–O(CH2CH2O)f–CH2CH2C(O)–、–C(O)–O(CH2CH2O)g–、–C(O)–O(CH2CH2O)h–CH2CH2–、–C(O)–O(CH2CH2O)i–CH2CH2C(O)–、–CH2CH2–O(CH2CH2O)j–CH2CH2C(O)–、–C(O)–NR5–CH2CH2O(CH2CH2O)k–、–C(O)–NR6–CH2CH2O(CH2CH2O)l–CH2CH2–、–C(O)–NR7–CH2CH2O(CH2CH2O)m–CH2CH2C(O)–、氨基酸、2、3、4、5、6、7、8、9或10个氨基酸的肽、或其任两个或多个的组合,其中a、b、c、d、e、f、g、h、i、j、k、l和m在每次出现时独立为0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18或19,并且其中R1、R2、R3、R4、R5、R6和R7在每次出现时独立为H、烷基或芳基;
L1在每次出现时独立为不存在、O、S、NH、-C(O)-、-C(O)-NR8-、–NR9-C(O)-、-C(O)-NR10-C1-C12亚烷基-、-C1-C12亚烷基-C(O)-、-C(O)-NR11-C1-C12亚烷基-C(O)-、-亚芳基-、-杂亚环基-、–O(CH2CH2O)a’–、–CH2CH2–O(CH2CH2O)b’–、–CH2CH2–O(CH2CH2O)c’–CH2CH2–、–O(CH2CH2O)d’–CH2CH2–、–C(O)–O(CH2CH2O)e’–、–O(CH2CH2O)f’–CH2CH2C(O)–、–C(O)–O(CH2CH2O)g’–、–C(O)–O(CH2CH2O)h’–CH2CH2–、–C(O)–O(CH2CH2O)i'–CH2CH2C(O)–、–CH2CH2–O(CH2CH2O)j’–CH2CH2C(O)–、–C(O)–NR12–CH2CH2O(CH2CH2O)k’–、–C(O)–NR13–CH2CH2O(CH2CH2O)l’–CH2CH2–、–C(O)–NR14–CH2CH2O(CH2CH2O)m’–CH2CH2C(O)–、氨基酸、2、3、4、5、6、7、8、9或10个氨基酸的肽、或其任两个或多个的组合,其中a’、b’、c’、d’、e’、f’、g’、h’、i’、j’、k’、l’和m’在每次出现时独立为0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18或19,并且其中R8、R9、R10、R11、R12、R13和R14在每次出现时独立为H、烷基或芳基;
L2在每次出现时独立为不存在、O、S、NH、-C(O)-、-C(O)-NR15-、–NR16-C(O)-、-C(O)-NR17-C1-C12亚烷基-、-C1-C12亚烷基-C(O)-、-C(O)-NR18-C1-C12亚烷基-C(O)-、-亚芳基-、-杂亚环基-、–O(CH2CH2O)a”–、–CH2CH2–O(CH2CH2O)b”–、–CH2CH2–O(CH2CH2O)c”–CH2CH2–、–O(CH2CH2O)d”–CH2CH2–、–C(O)–O(CH2CH2O)e”–、–O(CH2CH2O)f”–CH2CH2C(O)–、–C(O)–O(CH2CH2O)g”–、–C(O)–O(CH2CH2O)h”–CH2CH2–、–C(O)–O(CH2CH2O)i'’–CH2CH2C(O)–、–CH2CH2–O(CH2CH2O)j”–CH2CH2C(O)–、–C(O)–NR19–CH2CH2O(CH2CH2O)k”–、–C(O)–NR20–CH2CH2O(CH2CH2O)l”–CH2CH2–、–C(O)–NR21–CH2CH2O(CH2CH2O)m”–CH2CH2C(O)–、氨基酸、2、3、4、5、6、7、8、9或10个氨基酸的肽、或其任两个或多个的组合,其中a”、b”、c”、d”、e”、f”、g”、h”、i”、j”、k”、l”和m”在每次出现时独立为0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18或19,并且其中R15、R16、R17、R18、R19、R20和R21在每次出现时独立为H、烷基或芳基;
p在每次出现时独立为0、1、2、3、4或5;和
q在每次出现时独立为1或2。
在化合物的本文公开的任何实施方式中,含sarcophagine的结构域可以或不可以螯合64Cu+267Cu+2
在一方面,提供了一种组合物,其包含本文公开的任何实施方式的化合物并且还包含药学上可接受的载体。
在一方面,提供了一种药物组合物,其中组合物包含有效量的本文公开的任何实施方式的化合物,其螯合64Cu+267Cu+2用于使以下中的一者或多者成像和/或检测以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌;和药学上可接受的载体。在相关方面,提供了一种方法,其中所述方法包括向对象施用有效量的螯合64Cu+267Cu+2的本文公开的任何实施方式的化合物用于使癌症成像和/或检测癌症;以及在施用之后,检测以下中的一者或多者:正电子发射、正电子发射和湮灭的伽马射线,以及由正电子发射引起的切伦科夫辐射(Cerenkovradiation)。
在一方面,提供了一种药物组合物,其中组合物包含有效量的螯合64Cu+267Cu+2的本文公开的任何实施方式的化合物用于治疗以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌;和药学上可接受的载体。在相关方面,提供了一种方法,所述方法包括向对象施用有效量的螯合64Cu+267Cu+2的本文公开的任何实施方式的化合物用于治疗癌症。
附图说明
图1A-1B显示根据工作实施例的本发明的加标样品的HPLC色谱图,其中图1A是[64Cu]Cu-RPS-085样品的并且图1B是[67Cu]Cu-RPS-085样品的,其中上面的色谱图中的每一个是在280nm的UV吸光度,并且下面的是相应的放射色谱图。
图2A-2B显示25℃下20分钟之后[67Cu]Cu-RPS-063的RadioHPLC色谱图(图2A)和根据工作实施例的通过固相提取进行的后续纯化(图2B)。
图3显示根据工作实施例的携带LNCaP异种移植肿瘤的雄性Balb/C nu/nu小鼠中的[64Cu]Cu-RPS-085分布的microPET/CT图像。
图4示出根据工作实施例的携带LNCaP异种移植物的雄性Balb/C nu/nu小鼠中的[64Cu]Cu-RPS-085的组织生物分布。
图5显示根据工作实施例的携带LNCaP异种移植物的雄性Balb/C nu/nu小鼠中[67Cu]Cu-RPS-085的组织生物分布。
图6显示根据工作实施例的雄性Balb/C nu/nu小鼠的LNCaP肿瘤和肾中[67Cu]Cu-RPS-085和[177Lu]Lu-RPS-063的时间-活性曲线。
具体实施方式
以下术语如下定义地全文使用。
如本文和所附权利要求中所使用,在描述要素的上下文中(特别是在以下权利要求的上下文中)的单数冠词,例如“一个”和“一种”和“所述”以及类似指代物应被解释为涵盖单数和复数,除非本文另有说明或与上下文明显矛盾。在本文列举值的范围仅仅意在用作一种单独地指代落在范围内的每个单独值的简略方法,除非本文另有说明,并且每个单独值被并入说明书中,就像在本文中单独列举一样。本文描述的所有方法都可以以任何合适的顺序执行,除非在本文中另有说明或除非与上下文明显矛盾。本文提供的任何和所有实例或示例性语言(例如,“例如”)的使用仅意在更好地阐明实施方式,并非不对权利要求的范围构成限制,除非另有说明。说明书中的任何语言都不应被解释为表明任何非要求保护的要素是必要的。
如本文所用,“约”将为本领域技术人员所理解,并将在一定程度上根据其使用的上下文所变化。如果本领域技术人员不清楚该术语的用途,则鉴于其使用的上下文,“约”将意指高达该特定术语的正负10%-例如,“约10重量%”将理解为意指“9重量%至11重量%”。当“约”位于术语之前时,该术语应被解释为公开“约”该术语以及未经“约”修改的术语-例如,“约10wt.%”公开了“9wt.%至11wt.%”以及公开了“10wt.%”。
如本发明中使用的短语“和/或”将被理解为意指所述成员中的任一个单独或其任两个或多个的组合-例如,“A、B和/或C”将意指“A、B、C,A和B,A和C,或B和C”。
如本文所用,术语“氨基酸”包括天然存在的α-氨基酸和合成的α-氨基酸(例如,2-氨基-2-苯乙酸,也称为苯甘氨酸),以及功能类似于天然存在的氨基酸的α-氨基酸类似物和氨基酸模拟物。该术语还包括此类α-氨基酸的L型和D型两者,除非指明了特定的立体异构体。天然存在的氨基酸是由遗传密码编码的那些,以及后来修饰的那些氨基酸,例如羟脯氨酸、γ-羧谷氨酸和O-磷酸丝氨酸。氨基酸类似物是指与天然存在氨基酸具有相同碱性化学结构的化合物,例如携带有机基团的α-碳,例如高丝氨酸、正亮氨酸、蛋氨酸亚砜、蛋氨酸甲基锍。此类类似物可以具有修饰的有机基团(例如,去亮氨酸)或修饰的肽骨架,但保留与自然存在的氨基酸相同的基本化学结构。氨基酸模拟物是指具有不同于氨基酸一般化学结构的结构但功能类似于天然存在的氨基酸的化学化合物。氨基酸在本文中可以用其通常已知的三个字母符号来指代,或用IUPAC-IUB生化命名委员会(IUPAC-IUB BiochemicalNomenclature Commission)推荐的一个字母符号来指代。
如本文所用,术语“多肽”、“肽”和“蛋白”在本文中可互换使用来意指包含由肽键或经修饰的肽键彼此连接两个或多个氨基酸的聚合物,即肽等排体。多肽既是指短链(通常称为多肽、糖肽或寡聚物),并且是指长链(通常称为蛋白质)两者。多肽可以含有20种基因编码氨基酸以外的氨基酸。多肽包括通过天然过程(例如翻译后加工)或通过本领域公知的化学修饰技术修饰的氨基酸序列,以及氨基酸。
通常,提及某种元素,例如氢或H,意在包括此元素的所有同位素。例如,如果R基团被定义为包括氢或H,它还包括氘和氚。因此,包含放射性同位素(例如氚、C14、P32和S35)的化合物在本发明的范围内。将此类标签插入到本发明的化合物中的程序基于本文公开内容对于本领域技术人员来说是明显的。
通常,“取代的”是指如下所定义的有机基团(例如烷基基团),其中至其中所含氢原子的一个或多个键被至非氢或非碳原子的键所替代。经取代的基团还包括其中至一个或多个碳原子或氢原子的一个或多个键被至杂原子的一个或多个键(包括双键或三键)所替代的基团。因此,除非另有说明,否则经取代的基团被一种或多种取代基取代。在一些实施方式中,经取代的基团被1、2、3、4、5或6个取代基取代。取代基基团的实例包括但不限于:卤素(即F、Cl、Br和I);羟基;烷氧基、烯氧基、芳氧基、芳烷氧基、杂环基、杂环烷基、杂环氧基和杂环烷氧基基团;羰基(氧代基);羧酸根;酯;尿烷;肟;羟胺;烷氧基胺;芳烷氧基胺;硫醇;硫化物;亚砜;砜;磺酰基;五氟硫烷基(即SF5)、磺酰胺;胺;N-氧化物;肼;酰肼;腙;叠氮化物;酰胺;脲;脒;胍;烯胺;酰亚胺;异氰酸酯;异硫氰酸酯;氰酸酯;硫氰酸酯;亚胺;硝基基团;和腈(即CN)。
经取代的环基团例如经取代的环烷基、芳基、杂环基和杂芳基基团,也包括其中至氢原子的键被至碳原子的键替代的环和环体系。因此,经取代的环烷基、芳基、杂环基和杂芳基基团还可被如下所定义的经取代或未取代的烷基、烯基和炔基基团取代。
如本文所用,Cm-Cn,例如C1-C12、C1-C8或C1-C6当在基团前使用时,是指含有m至n个碳原子的该基团。
烷基基团包括具有1至12个碳原子且通常1至10个碳、或在一些实施方式中1至8个、1至6个、或1至4个碳原子的直链和支链烷基基团。直链烷基基团的实例包括基团例如甲基、乙基、正丙基、正丁基、正戊基、正己基、正庚基和正辛基基团。支化烷基基团的实例包括但不限于异丙基、异丁基、仲丁基、叔丁基、新戊基、异戊基和2,2-二甲基丙基基团。烷基基团可以是取代的或未取代的。代表性取代的烷基基团可被取代基、例如以上列出的那些取代一次或多次,并且包括但不限于卤代烷基(例如三氟甲基)、羟烷基、硫代烷基、氨基烷基、烷基氨基烷基、二烷基氨基烷基、烷氧基烷基和羧基烷基。
环烷基基团包括在环中具有3至12个碳原子或在一些实施方式中具有3至10、3至8或3至4、5或6个碳原子的单环状、双环状或三环状烷基基团。示例性单环状环烷基基团包括但不限于环丙基、环丁基、环戊基、环己基、环庚基和环辛基基团。在一些实施方式中,环烷基基团具有3至8个环成员,而在其他实施方式中,环碳原子的数量范围为3至5、3至6或3至7。双环状和三环状环体系包括桥接环烷基基团和稠合环,例如但不限于双环[2.1.1]己烷、金刚烷基、十氢化萘基等。环烷基基团可以是取代的或未取代的。取代的环烷基基团可以用如上定义的非氢和非碳基团取代一次或多次。然而,取代的环烷基基团还包括被如上所定义的直链或支链烷基基团取代的环。代表性取代的环烷基基团可以是单取代的或取代多于一次,例如但不限于2,2-、2,3-、2,4-2,5-或2,6-二取代的环己基基团,其可被取代基例如以上列出的那些取代。
环烷基烷基基团是如上所定义的烷基基团,其中烷基基团的氢或碳键被至如上所定义的环烷基基团的键替代。在一些实施方式中,环烷基烷基基团具有4至16个碳原子、4至12个碳原子和通常4至10个碳原子。环烷基烷基基团可以是取代的或未取代的。取代的环烷基烷基基团可在基团的烷基、环烷基或烷基和环烷基两部分处被取代。代表性取代的环烷基烷基基团可以是单取代的或取代多于一次,例如但不限于被取代基例如以上列出的那些单取代、二取代或三取代。
烯基基团包括如上文定义的直链和支链烷基基团,除两个碳原子之间至少存在一个双键外。烯基基团具有2至12个碳原子且通常2至10个碳、或在一些实施方式中2至8个、2至6个、或2至4个碳原子的直链和支链烷基基团。在一些实施方式中,烯基基团具有一个、两个或三个碳-碳双键。实例尤其包括但不限于乙烯基、烯丙基、-CH=CH(CH3)、-CH=C(CH3)2、-C(CH3)=CH2、-C(CH3)=CH(CH3)、-C(CH2CH3)=CH2。烯基基团可以是取代的或未取代的。代表性取代的烯基基团可以是单取代的或取代多于一次,例如但不限于被取代基例如以上列出的那些单取代、二取代或三取代。
环烯基基团包括在两个碳键之间具有至少一个双键的如上所定义的环烷基基团。环烯基基团可以是取代的或未取代的。在一些实施方式中,环烯基基团可以有一个、两个或三个双键,但不包括芳族化合物。环烯基基团具有4至14个碳原子,或在一些实施方式中,5至14个碳原子、5至10个碳原子,或甚至5、6、7或8个碳原子。环烯基基团的实例包括环己烯基、环戊烯基、环己二烯基、环丁二烯基和环戊二烯基。
环烯基烷基基团是如上所定义的烷基基团,其中烷基基团的氢或碳键被至如上所定义的环烯基基团的键替代。环烯基烷基基团可以是取代的或未取代的。取代的环烯基烷基基团可在基团的烷基、环烯基或烷基和环烯基两部分处取代。代表性取代的环烯基烷基基团可被取代基例如以上列出的那些取代一次或多次。
炔基基团包括如上所定义的直链和支链烷基基团,除了两个碳原子之间存在至少一个三键之外。炔基基团具有2至12个碳原子,并且通常是2至10个碳原子,或在一些实施方式中,2至8、2至6、或2至4个碳原子。在一些实施方式中,炔基基团具有一个、两个或三个碳-碳三键。实例包括但不限于-C≡CH、-C≡CCH3、-CH2C≡CCH3、-C≡CCH2CH(CH2CH3)2等。炔基基团可以是取代的或未取代的。代表性取代的炔基基团可以是单取代的或取代多于一次,例如但不限于被取代基例如以上列出的那些单取代、二取代或三取代。
芳基基团是不含杂原子的环状芳族烃。本文的芳基基团单环、双环和三环体系。因此,芳基基团包括但不限于苯基、薁基、庚烯基、联苯基、芴基、菲基、蒽烯基、茚基、茚满基、戊烯基和萘基基团。在一些实施方式中,芳基基团在基团的环部分中含有6至14个碳,并且在其他中,6至12或甚至6至10个碳原子。在一些实施方式中,芳基基团是苯基或萘基。芳基基团可以是取代的或未取代的。短语“芳基基团”包括含有稠环的基团,例如稠合芳族-脂族环体系(例如茚满基、四氢萘基等)。代表性取代的芳基基团可以是单取代的或取代多于一次。例如,单取代的芳基基团包括但不限于2-、3-、4-、5-或6-取代的苯基或萘基基团,其可被取代基例如以上列出的那些取代。
芳烷基基团是如上文所定义的烷基基团,其中烷基基团的氢或碳键被至如上所定义的芳基基团的键替代。在一些实施方式中,芳烷基基团含有7至16个碳原子、7至14个碳原子、或7至10个碳原子。芳烷基基团可以是取代的或未取代的。经取代的芳烷基基团可在基团的烷基、芳基或烷基和芳基两部分处取代。代表性芳烷基基团包括但不限于苄基和苯乙基基团,以及稠合(环烷基芳基)烷基基团、例如4-茚满基乙基。代表性取代的芳烷基基团可以被取代基、例如以上列出的那些取代一次或多次。
杂环基基团包括含有3或多个环成员的芳族(也称为杂芳基)和非芳族环化合物,其中的一个或多个是杂原子,例如但不限于N、O和S。在一些实施方式中,杂环基基团含有1、2、3或4个杂原子。在一些实施方式中,杂环基基团包括具有3至16个环成员的单环状环、双环状环和三环状环,而其他这种基团具有3至6个、3至10个、3至12个或3至14个环成员。杂环基基团涵盖芳族、部分不饱和的和饱和的环体系,例如咪唑基、咪唑啉基和咪唑烷基基团。短语“杂环基基团”包括稠环物质,包括包含稠合芳族和非芳族基团的那些,例如苯并三唑基、2,3-二氢苯并[1,4]二噁英基和苯并[1,3]二代基。短语还包括含有杂原子的桥接多环状环体系,例如但不限于奎宁环基(quinuclidyl)。杂环基基团可以是取代的或未取代的。杂环基基团包括但不限于氮丙啶基、吖丁啶基、吡咯烷基、咪唑烷基、吡唑烷基、噻唑烷基、四氢噻吩基、四氢呋喃基、间二氧杂环戊烯基、呋喃基、噻吩基、吡咯基、吡咯啉基、咪唑基、咪唑啉基、吡唑基、吡唑啉基、三唑基、四唑基、噁唑基、异噁唑基、噻唑基、噻唑啉基、异噻唑基、噻二唑基、噁二唑基、哌啶基、哌嗪基、吗啉基、硫代吗啉基、四氢吡喃基、四氢硫代吡喃基、氧硫杂环己烷、dioxyl、二噻烷基、吡喃基、吡啶基、嘧啶基、哒嗪基、吡嗪基、三嗪基、二氢吡啶基、二氢二硫杂环己二烯基(dihydrodithiinyl)、二氢二硫酮基基、高哌嗪基、奎宁环基、吲哚基、吲哚啉基、异吲哚基、氮杂吲哚基(吡咯并吡啶基)、吲唑基、吲哚嗪基、苯并三唑基、苯并咪唑基、苯并呋喃基、苯并噻吩基、苯并噻唑基、苯并噁二唑基、苯并噁嗪基、苯并二硫杂环己二烯基、苯并氧硫杂环己二烯基、苯并噻嗪基、苯并噁唑基、苯并噻唑基、苯并噻二唑基、苯并[1,3]间二氧杂环戊烯基、吡唑并吡啶基、咪唑并吡啶基(氮杂苯并咪唑基)、三唑并吡啶基、异噁唑并吡啶基、嘌呤基、黄嘌呤基、腺嘌呤基、鸟嘌呤基、喹啉基、异喹啉基、喹嗪基、喹喔啉基、喹唑啉基、噌啉基、酞嗪基、萘啶基、蝶啶基、硫杂萘基、二氢苯并噻嗪基、二氢苯并呋喃基、二氢吲哚基、二氢苯并二噁英基、四氢吲哚基、四氢吲唑基、四氢苯并咪唑基、四氢苯并三唑基、四氢吡咯并吡啶基、四氢吡唑并吡啶基、四氢咪唑并吡啶基、四氢三唑并吡啶基和四氢喹啉基基团。代表性取代的杂环基基团可以是单取代的或被取代多于一次,例如但不限于吡啶基或吗啉基基团,其是2-、3-、4-、5-或6-取代的,或被各种取代基例如以上列出的那些进行二取代。
杂芳基基团是含有5或多个环成员的芳族环化合物,其中一个或多个是杂原子例如但不限于N、O和S。杂芳基基团包括但不限于基团例如吡咯基、吡唑基、三唑基、四唑基、噁唑基、异噁唑基、噻唑基、吡啶基、哒嗪基、嘧啶基、吡嗪基、噻吩基、苯并噻吩基、呋喃基、苯并呋喃基、吲哚基、氮杂吲哚基(吡咯并吡啶基)、吲唑基、苯并咪唑基、咪唑并吡啶基(氮杂苯并咪唑基)、吡唑并吡啶基、三唑并吡啶基、苯并三唑基、苯并噁唑基、苯并噻唑基、苯并噻二唑基、咪唑并吡啶基、异噁唑并吡啶基、硫杂萘基、嘌呤基、黄嘌呤基、腺嘌呤基、鸟嘌呤基、喹啉基、异喹啉基、四氢喹啉基、喹喔啉基和喹唑啉基基团。杂芳基基团包括其中所有环都是芳族的稠环化合物,例如吲哚基基团;并且包括其中只有一个环是芳族的稠环化合物,例如2,3-二氢吲哚基基团。杂芳基基团可以是取代的或未取代的。因此,短语“杂芳基基团”包括稠环化合物,以及包括具有其他基团键合至环成员之一(例如烷基基团)的杂芳基基团。代表性取代的杂芳基基团可被各种取代基例如以上列出的那些取代一次或多次。
杂环基烷基基团是如上所定义的烷基基团,其中烷基基团的氢或碳键被至如上所定义的杂环基基团的键替代。杂环基烷基基团可以是取代的或未取代的。取代的杂环基烷基基团可以在基团的烷基、杂环基或烷基和杂环基两个部分处被取代。代表性杂环基烷基基团包括但不限于吗啉-4-基-乙基、呋喃-2-基-甲基、咪唑-4-基-甲基、吡啶-3-基-甲基、四氢呋喃-2-基-乙基和吲哚-2-基-丙基。代表性取代的杂环基烷基基团可以用取代基例如上文列出的那些取代一次或多次。
杂芳烷基基团是如上所定义的烷基基团,其中烷基基团的氢或碳键被至如上所定义的杂芳基基团的键替代。杂芳烷基基团可以是取代的或未取代的。经取代的杂芳烷基基团可以在基团的烷基、杂芳基或烷基和杂芳基两个部分处被取代。代表性取代的杂芳烷基基团可以用取代基例如以上列出的那些取代一次或多次。
本文所述的在本发明的化合物中具有两个或多个附接点(即二价、三价或多价)的基团通过使用后缀“ene”来指定。例如,二价烷基基团是亚烷基基团、二价芳基基团是亚芳基基团、二价杂环基基团是杂亚环基基团、二价杂芳基基团是亚杂芳基基团等。具有至本发明的化合物的单点附接的取代基团不使用“ene”命名指代。因此,如氯乙基在本文中不称为亚氯乙基。此类基团还可以被取代或不取代。
烷氧基基团是羟基基团(-OH),其中至氢原子的键被至如上定义的经取代或未取代的烷基基团的碳原子的键替代。线性烷氧基基团的实例包括但不限于甲氧基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基等。支化烷氧基基团的实例包括但不限于异丙氧基、仲丁氧基、叔丁氧基、异戊氧基、异己氧基等。环烷氧基基团的实例包括但不限于环丙氧基、环丁氧基、环戊氧基、环己氧基等。烷氧基基团可以是取代的或未取代的。代表性取代的烷氧基基团可以用取代基例如上文列出的那些取代一次或多次。
如本文所用的语“烷酰基”和“烷酰基氧基”可分别是指–C(O)–烷基和–O–C(O)–烷基基团,其中在一些实施方式中,烷酰基或烷酰基氧基基团各自含有2–5个碳原子。类似地,术语“芳酰基”和“芳酰基氧基”分别是至–C(O)–芳基和–O–C(O)–芳基基团。
术语“芳基氧基”和“芳基烷氧基”分别是指键合至氧原子的经取代或未取代的芳基基团和键合至烷基处的氧原子的经取代或未取代的芳烷基基团。实例包括但不限于苯氧基、萘氧基和苄氧基。代表性取代的芳基氧基和芳基烷氧基基团可以用取代基例如上文列出的那些取代一次或多次。
如本文所用的术语“羧酸”是指具有–C(O)OH基团的化合物。如本文所用的术语“羧酸根”是指–C(O)O基团。“经保护的羧酸根”是指–C(O)O-G,其中G是羧酸根保护基团。羧酸根保护基团是本领域技术人员所熟知的。羧酸根基团官能性的保护基团的广泛列表可以存在于Organic Synthesis,Greene,T.W.;Wuts,P.G.M.,John Wiley&Sons,纽约,NY,(第3版,1999)中,其可以使用其中所示的程序添加或去除,并在此通过引用整体并出于任何和所有目的并入,就如同在本文中完全列出一样。
如本文所用的术语“酯”是指–COOR70基团。R70是如本文所定义的经取代或未取代的烷基、环烷基、烯基、炔基、芳基、芳烷基、杂环基烷基或杂环基基团。
术语“酰胺”(或“酰氨基”)包括C-和N-酰胺基团,即分别是-C(O)NR71R72和–NR71C(O)R72基团。R71和R72独立地是如本文所定义的氢、或经取代或未取代的烷基、烯基、炔基、环烷基、芳基、芳烷基、杂环基烷基或杂环基基团。酰氨基基团因此包括但不限于氨基甲酰基基团(-C(O)NH2)和甲酰胺基团(-NHC(O)H)。在一些实施方式中,酰胺是–NR71C(O)-(C1-5烷基)并且基团被称为“羰基氨基”,并且在其他中,酰胺是–NHC(O)-烷基且基团被称为“烷酰基氨基”。
如本文所用的术语“腈”或“氰基”是指–CN基团。
尿烷基团分别包括N-和O-尿烷基团,即-NR73C(O)OR74和-OC(O)NR73R74基团。R73和R74独立地是如本文所定义的经取代或未取代的烷基、烯基、炔基、环烷基、芳基、芳烷基、杂环基烷基、或杂环基基团。R73还可以是H。
如本文所定义的术语“胺”(或“氨基”)是指–NR75R76基团,其中R75和R76独立地是如本文所定义的氢、或经取代或未取代的烷基、烯基、炔基、环烷基、芳基、芳烷基、杂环基烷基或杂环基基团。在一些实施方式中,胺是烷基氨基、二烷基氨基、芳基氨基、或烷基芳基氨基。在其他实施方式中,胺是NH2、甲基氨基、二甲基氨基、乙基氨基、二乙基氨基、丙基氨基、异丙基氨基、苯基氨基、或苄基氨基。
术语“磺酰氨基”分别包括S-和N-磺酰胺基基团,即-SO2NR78R79和–NR78SO2R79基团。R78和R79独立地是如本文所定义的氢、或经取代或未取代的烷基、烯基、炔基、环烷基、芳基、芳烷基、杂环基烷基、或杂环基基团。磺酰氨基基团因此包括但不限于氨磺酰基基团(-SO2NH2)。在本文的一些实施方式中,磺酰氨基是–NHSO2-烷基并且被称为“烷基磺酰基氨基”基团。
术语“巯基”是指–SH基团,而硫化物包括–SR80基团、亚砜包括–S(O)R81基团、砜包括-SO2R82基团并且磺酰基包括–SO2OR83。R80、R81、R82和R83各自独立为如本文所定义的经取代或未取代的烷基、环烷基、烯基、炔基、芳基芳烷基、杂环基或杂环基烷基基团。在一些实施方式中,硫化物是烷基硫代基团,-S-烷基。
术语“脲”是指–NR84-C(O)-NR85R86基团。R84、R85和R86基团独立为如本文定义的氢、或经取代或未取代的烷基、烯基、炔基、环烷基、芳基、芳烷基、杂环基、或杂环基烷基基团。
术语“脒”是指如本文所定义的–C(NR87)NR88R89和–NR87C(NR88)R89,其中R87、R88和R89各自独立为氢、或经取代或未取代的烷基、环烷基、烯基、炔基、芳基芳烷基、杂环基或杂环基烷基基团。
术语“胍”是指–NR90C(NR91)NR92R93,其中R90、R91、R92和R93各自独立为如本文所定义的氢、或经取代或未取代的烷基、环烷基、烯基、炔基、芳基芳烷基、杂环基或杂环基烷基基团。
术语“烯胺”是指–C(R94)=C(R95)NR96R97和–NR94C(R95)=C(R96)R97,其中R94、R95、R96和R97各自独立为如本文所定义的氢、经取代或未取代的烷基、环烷基、烯基、炔基、芳基芳烷基、杂环基或杂环基烷基基团。
如本文所用的术语“卤素(halogen)”或“卤素(halo)”是指溴、氯、氟或碘。在一些实施方式中,卤素是氟。在其他实施方式中,卤素是氯或溴。
如本文所用的术语“羟基”可以是指–OH或其电离形式–O
术语“酰亚胺”是指–C(O)NR98C(O)R99,其中R98和R99各自独立为如本文所定义的氢、或经取代或未取代的烷基、环烷基、烯基、炔基、芳基芳烷基、杂环基或杂环基烷基基团。
术语“亚胺”是指–CR100(NR101)和–N(CR100R101)基团,其中R100和R101各自独立为如本文所定义的氢或经取代或未取代的烷基、环烷基、烯基、炔基、芳基芳烷基、杂环基或杂环基烷基基团,前提是R100和R101两者不同时为氢。
如本文所用的术语“硝基”是指–NO2基团。
如本文所用的术语“三氟甲基”是指–CF3
如本文所用的术语“三氟甲氧基”是指–OCF3
术语“叠氮基”是指–N3
术语“三烷基铵”是指–N(烷基)3基团。三烷基铵基团是带正电荷的并且因此通常具有相关的阴离子,例如卤素阴离子。
术语“三氟甲基二氮环甲烷”是指
Figure BDA0004041809000000161
术语“异氰基”是指–NC。
术语“异硫代氰基”是指–NCS。
术语“五氟硫烷基”是指–SF5
如本领域技术人员将理解,对于任何和所有目的,特别是在提供书面描述方面,本文公开的所有范围还涵盖任何和所有可能的子范围及其子范围的组合。任何列出的范围都可以很容易地识别为足够的描述,并使相同的范围被分解为至少相等的二分之一、三分之一、四分之一、五分之一、十分之一等。作为非限制性实例,本文讨论的每个范围都可以很容易地分解为下三分之一、中三分之一和上三分之一等。如本领域技术人员也将理解,例如“至多”、“至少”、“大于”、“小于”等的所有语言都包括所列举的数字,并且是指随后可分解为如上所讨论的子范围的范围。最终,如本领域技术人员所理解,范围包括每个单独的成员。因此,例如具有1至3个原子的基团是指具有1、2或3个原子的基团。类似地,具有1至5个原子的基团是指具有1、2、3、4或5个原子的基团,以此类推。
本文所述的化合物的药学上可接受的盐在本发明的范围内,并且包括保留所需药理活性并且在生物学上不是不可取的酸或碱加成盐(例如,盐没有不适当的毒性、致敏性或刺激性,并且是生物可利用的)。当本发明的化合物具有碱性基团,例如例如氨基基团时,药学上可接受的盐可以与无机酸(例如盐酸、氢硼酸、硝酸、硫酸和磷酸)、有机酸(例如海藻酸、甲酸、乙酸、苯甲酸、葡萄糖酸、富马酸、草酸、酒石酸、乳酸、马来酸、柠檬酸、琥珀酸、苹果酸、甲磺酸、苯磺酸、萘磺酸和对甲苯磺酸)或酸性氨基酸(例如天冬氨酸和谷氨酸)。当本发明的化合物含有酸性基团,例如例如羧酸基团时,它可以与金属例如碱金属和碱土金属(例如Na+、Li+、K+、Ca2+、Mg2+、Zn2+)、氨或有机胺(例如二环己胺、三甲胺、三乙胺、吡啶、皮考啉、乙醇胺、二乙醇胺、三乙醇胺)或碱性氨基酸(例如精氨酸、赖氨酸和鸟氨酸)形成盐。此类盐可以在化合物的分离和纯化期间原位制备,或通过将纯化的化合物以其游离碱或游离酸形式分别与合适的酸或碱反应并分离由此形成的盐来制备。
本领域技术人员将认识到,本发明的化合物可以表现出互变异构、构象异构、几何异构和/或立体异构现象。由于说明书和权利要求中的式图只能表示可能的互变异构、构象异构、立体化学或几何异构形式中的一种,因此应该理解,本发明涵盖具有本文所述的一种或多种用途的化合物的任何互变异构、构象异构、立体化学和/或几何异构形式,以及这些各种不同形式的混合物。
“互变异构体”是指化合物的异构形式,它们彼此之间处于平衡。异构形式的存在和浓度将取决于化合物所处的环境,并且可能不同,例如,取决于化合物是固体,还是在有机或水溶液中。例如,在水溶液中,喹唑啉酮可表现出以下异构形式,它们被称为彼此的互变异构体:
Figure BDA0004041809000000171
作为另一个实例,胍在质子有机溶液中可以表现出以下异构形式,也称为彼此的互变异构体:
Figure BDA0004041809000000181
由于用结构式表示化合物的局限性,应理解,本文所述化合物的所有化学式都表示化合物的所有互变异构形式,并且在本发明的范围内。
化合物的立体异构体(也称为光学异构体)包括结构的所有手性、非对映异构体和外消旋形式,除非明确指出了特定的立体化学。因此,在本发明中使用的化合物包括在任何或所有不对称原子上的富集或拆分光学异构体,如从描述中很明显。外消旋和非对映异构体体混合物两者,以及单独的光学异构体都可以被分离或合成,从而基本上不含它们的对映异构体或非对映异构体伴侣,并且这些立体异构体都在本发明的范围内。
本发明的化合物可以以溶剂合物、特别是水合物存在。水合物可以在化合物或包含化合物的组合物的制造过程中形成,或者由于化合物的吸湿性质,水合物可以随着时间的推移而形成。本发明的化合物也可以作为有机溶剂存在,包括DMF、醚和醇溶剂合物等。任何特定溶剂合物的鉴定和制备都在合成有机化学或药物化学的普通技术人员的技能范围内。
在整个本发明中,各种出版物、专利和公布的专利说明书都通过识别引文引用。在本发明中还包括指代引用的引文的阿拉伯数字,其完整的书目细节在实施例内章节中提供。这些出版物、专利和公布的专利说明书的公开内容在此通过引用并入本发明,以更全面地描述本发明。
本发明
靶向前列腺特异性膜抗原(PSMA)的放射性配体在前列腺癌的临床成像和疗法中表现出令人鼓舞的功效。第一个进行临床评价的配体是靶向PSMA的抗体,但最近放射标记的PSMA小分子抑制剂因其在肿瘤中快速积累、从非靶组织中清除以及被认为是患者相当可接受的副作用特性而受到关注。这些化合物中的许多利用谷氨酸-脲-赖氨酸或谷氨酸-脲-谷氨酸部分来实现对PSMA的靶向和高亲和力结合。在目前临床研究中的一些PSMA-靶向配体中,有某些用氟-18或镓-68标记的诊断性化合物用于通过正电子发射断层扫描(PET)进行的肿瘤成像,或用碘-131、镥-177、铋-213或锕-225标记的治疗性化合物用于PSMA-表达癌症的靶向放射性配体疗法。
虽然小分子的组织分布和清除通常是快速的,但铜-64较长的半衰期(t1/2=12.7h)提供相对于镓-68(t1/2=68min)或氟-18(t1/2=109min)的药代动力学和后勤优势,包括从集中生产设施分配放射性配体的可能性。较长的半衰期允许延长成像,这可增强在具有相对高背景的区域中的小转移病变的检测。尽管铜-64正电子发射导致的衰变概率(17.9%)低于其他射电金属、例如镓-68(89%),但发射的β+的低能量使高分辨率PET成像成为可能。此外,铜-64也通过β-发射(39.0%)衰变,从而促进了可能应用于放射性配体疗法。在这方面,铜-64本身就是一种治疗诊断性放射性同位素。
治疗诊断的概念描述了使用一对匹配的放射性核素来使得能够量化体内的放射性分布,然后使用相同的传递载体进行放射性配体疗法。在使用靶向PSMA的177Lu-标记配体的临床靶向放射性配体疗法中,铟-111通常用作与镥-177的匹配对,用于初步剂量学研究。这种策略是可能的,因为在此类化合物上,DOTA大环能够稳定地螯合许多三价射电金属,这意味着递送载体的化学结构原则上应该保持大致相同。然而,配体对其靶蛋白的亲和力可以随着待络合的金属的改变而改变,从而可以改变其组织分布,并可能使剂量学和药代动力学模型的估计复杂化。
铜-64(t1/2=12.7h,β+=17.9%,β-=39.0%)和铜-67(t1/2=2.58d,β-=100%)形成有吸引力的治疗诊断对。铜-67是一种用于靶向放射性配体疗法的有前途同位素,基于其当缀合至许多递送载体时的物理半衰期和生物半衰期之间的密切匹配,其衰变为无毒子代,以及其发射的β-颗粒的组织范围(约为组织中几个细胞直径的数量级)。在临床前模型中,67Cu-标记的放射性配体显示出与靶向相同受体的177Lu-标记的放射性配体相当的功效。产生具有高比活性的铜-67的适当活性的新兴方法重新引起了对这种治疗诊断放射性核素的兴趣。匹配的铜-64和铜-67对已被认为有利于靶向放射性配体疗法的前瞻性剂量学,其照射安全性特性与目前使用的治疗诊断疗对相当。Cu-64/Cu-67的诱人特性刺激了64Cu-标记的PSMA-617应用于前列腺癌成像。尽管对转移性病变的良好靶向,但施用[64Cu]Cu-PSMA-617后肝脏中放射性的摄取表明次优体内稳定性,限制了此类DOTA-偶联配体的潜在应用。在本领域仍然需要更好的化合物,其靶向癌症抗原并在癌症的治疗和诊断中提供治疗诊断。还需要在肿瘤中积累到更大程度而没有被正常器官不可接受的吸收的放射治疗性化合物,因为吸收剂量是根据累积活性的积分。
本发明提供了克服这些问题的新型化合物,特别是提供了具有多个结构域的三功能化合物,包括一个以相对高亲和力靶向并结合至肿瘤标记的结构域,和另一个以一系列中度至弱亲和力结合血蛋白(例如血清白蛋白)的结构域。这些化合物包括对铜具有高选择性的螯合部分–具体地说,是3,6,10,13,16,19-六氮杂双环[6.6.6]二十烷的衍生物,称为sarcophagine。
因此,在一方面,提供了一种化合物,其包括肿瘤靶向结构域(其中肿瘤靶向结构域包括能够识别肿瘤细胞表面上的分子靶标或与肿瘤细胞表面上的分子靶标相互作用的部分)、血液-蛋白结合结构域和含sarcophagine的结构域,其中肿瘤靶向结构域的部分位于血液-蛋白结合结构域的远端并且在空间上不受血液-蛋白结合结构域阻碍。
如上文所讨论,肿瘤靶向结构域(“TTD”)包括能够识别肿瘤细胞表面上的分子靶标或与肿瘤细胞表面上的分子靶标相互作用的部分。此类分子靶标包括细胞表面蛋白,例如受体、酶和抗原。例如,分子靶标可以是能够与肿瘤靶向结构域相互作用的在肿瘤细胞表面上表达的受体、酶和/或抗原(例如肿瘤特异性细胞表面蛋白)。此类肿瘤靶向结构域的实例是被在大多数前列腺癌细胞表面上表达的前列腺特异性膜抗原(PSMA)识别的谷氨酸-脲-赖氨酸基序。另一个实例是依多曲肽,被许多神经内分泌癌症表面上表达的生长激素抑制素受体识别。因此,本文的任何方面和实施方式的肿瘤靶向结构域可能能够结合至肿瘤相关分子靶标,其包括以下中的一者或多者:肿瘤相关分子靶标,其为肿瘤特异性细胞表面蛋白或其他标记,例如前列腺特异性膜抗原(PSMA)、生长激素抑制素肽受体-2(SSTR2)、alphavbeta3(αvβ3)、αvβ6、胃泌素释放肽受体、seprase(例如成纤维细胞激活蛋白α(FAP-α))、肠促胰岛素受体、葡萄糖依赖性促胰岛素多肽受体、VIP-1、NPY、叶酸受体、LHRH、神经元转运体(例如去甲肾上腺素转运体(NET))、EGFR、HER-2、VGFR、MUC-1、CEA、MUC-4、ED2、TF-抗原、内皮特异性标记、神经肽Y、uPAR、TAG-72、密封蛋白、CCK类似物、VIP、铃蟾肽、VEGFR、肿瘤特异性细胞表面蛋白、GLP-1、CXCR4、Hepsin、TMPRSS2、caspace、cMET或过表达肽受体。上述只是代表性的肿瘤相关分子靶标,并且其靶标和与之结合的化合物都存在详细的结构信息。对这些特定细胞靶标显示特定亲和力的各种抗体、多肽和化合物广泛描述在科学文献中,并且可以适应本发明作为肿瘤靶向结构域。本文的任何方面和实施方式的肿瘤靶向结构域能够以至少中度亲和力至高度亲和力结合至肿瘤相关分子靶标(如,平衡结合常数(KD)范围为约10^-8M至约10^-10M)。
因此,肿瘤靶向结构域的实例包括靶向并结合至PSMA的活性位点的部分,包括例如谷氨酸-脲基-氨基酸序列、在赖氨酸的ε胺处具有或不具有芳族取代基的谷氨酸-脲-赖氨酸序列,或可以中度至高度亲和力结合PSMA的活性位点的其任何衍生物。本文提供了示例性结构,然而可以靶向PSMA的其他区域,并且这些与本文详述的化合物中的PSMA肿瘤靶向结构域可互换。一个对PSMA具有亲和力的示例性含铜三功能化合物如下:
Figure BDA0004041809000000221
其中“Cu”可以是64Cu+267Cu+2
Seprase(或成纤维细胞活化蛋白(FAP))是一种完整的膜丝氨酸肽酶。除了明胶酶活性外,seprase在肿瘤进展中具有双重功能。Seprase促进细胞对ECM的侵入,并且也支持肿瘤的生长和增殖。如上所讨论,肿瘤靶向结构域可包括结合至seprase的部分,例如seprase抑制剂。含铜三功能化合物的示例性结构如下所提供,其对FAP具有亲和力并且可用于大多数癌症的诊断和疗法中:
Figure BDA0004041809000000231
其中“Cu”可以是64Cu+267Cu+2
生长激素抑制素是一种肽激素,其调控内分泌系统,并经由与G蛋白偶联生长激素抑制素受体相互作用和抑制许多次生激素释放来影响神经传递和细胞增殖。生长激素抑制素有由单个前原蛋白的交替切割产生的两种活性形式。有五种已知的生长激素抑制素受体,都是G蛋白偶联的7个跨膜受体:SST1(SSTR1);SST2(SSTR2);SST3(SSTR3);SST4(SSTR4);和SST5(SSTR5)。示例性生长激素抑制素受体激动剂包括生长激素抑制素自身、兰瑞肽、奥曲肽酸(octreotate)、奥曲肽、帕瑞肽和伐普肽。许多神经内分泌瘤表达SSTR2和其他生长激素抑制素受体。长效生长激素抑制激动剂(例如奥曲肽、兰瑞肽)用于刺激SSTR2受体,并从而抑制进一步的肿瘤增殖。参见Zatelli MC,等人,(2007年4月)."Control ofpituitary adenoma cell proliferation by somatostatin analogs,dopamineagonists and novel chimeric compounds".European Journal of Endocrinology/European Federation of Endocrine Societies.156增刊1:S29–35。奥曲肽是一种模仿天然生长激素抑制素但在体内具有明显较长的半衰期的八肽。奥曲肽用于治疗产生生长激素的肿瘤(肢端肥大症和巨人症),当手术是禁忌的时,分泌甲状腺刺激激素的垂体瘤(促甲状腺素瘤)、与类癌综合征相关的腹泻和潮红发作,及血管活性肠肽分泌肿瘤(VIPomas)患者的腹泻。兰瑞肽用于管理肢端肥大症和由神经内分泌瘤引起的症状,最显著的是类癌综合征。帕瑞肽是一种与其他生长激素抑制素激动剂相比对SSTR5具有更高的亲和力的生长激素抑制素类似物,并被批准用于治疗库欣病(Cushing's disease)和肢端肥大症。伐普肽用于治疗肝硬化病和AIDS-相关腹泻患者体内的食管静脉曲张出血。因此,就本发明而言,下面描述了基于兰瑞肽衍生物的含铜三功能化合物的示例结构,其对SSTR2具有亲和力并且可用于上述疾病的诊断和治疗:
Figure BDA0004041809000000241
其中“Cu”可以是64Cu+267Cu+2
铃蟾肽是一种最初从欧洲火腹蟾蜍(红腹铃蟾(Bombina bombina))的皮肤中分离的肽。除了刺激G细胞释放胃泌素外,铃蟾肽还激活至少三种不同的G蛋白偶联受体:BBR1、BBR2和BBR3,其中这种活性包括大脑中此类受体的激动。铃蟾肽也是小细胞肺癌、胃癌、胆囊癌、胰腺癌和成神经细胞瘤的肿瘤标记。铃蟾肽受体激动剂包括但不限于BBR-1激动剂、BBR-2激动剂和BBR-3激动剂。含铜三功能化合物的示例性结构如下所提供,其对铃蟾肽具有亲和力并且可以用于以上癌症的诊断和疗法中:
Figure BDA0004041809000000251
其中“Cu”可以是64Cu+267Cu+2
因此,本文公开的任何实施方式的肿瘤靶向结构域可包括经修饰抗体、经修饰抗体片段、经修饰结合肽、前列腺特异性膜抗原(“PSMA”)结合肽、生长激素抑制素受体激动剂、铃蟾肽受体激动剂、seprase结合化合物、或其任一种或多种的结合片段。本文公开的任何实施方式的肿瘤靶向结构域可包括贝利单抗、莫格利珠单抗、博纳吐单抗、替伊莫单抗、奥妥珠单抗、奥法木单抗、利妥昔单抗、奥英妥珠单抗、帕西妥莫单抗、维布妥昔单抗、达雷木单抗、伊匹单抗、西妥昔单抗、耐昔妥珠单抗、帕尼单抗、地努妥昔单抗、帕妥珠单抗、曲妥珠单抗、恩美曲妥珠单抗、司妥昔单抗、西米普利单抗、纳武单抗、派姆单抗、奥拉妥单抗、阿特珠单抗、阿维单抗、德瓦鲁单抗、喷地肽卡罗单抗、艾洛珠单抗、地诺单抗、Ziv-阿柏西普、贝伐珠单抗、雷莫芦单抗、托西莫单抗、奥加米星吉妥珠单抗、阿仑单抗、西妥木单抗、吉妥昔单抗、尼妥珠单抗、卡妥索单抗或埃达珠单抗。本文公开的任何实施方式的肿瘤靶向结构域可包括以下的抗原结合片段:贝利单抗、莫格利珠单抗、博纳吐单抗、替伊莫单抗、奥妥珠单抗、奥法木单抗、利妥昔单抗、奥英妥珠单抗、帕西妥莫单抗、维布妥昔单抗、达雷木单抗、伊匹单抗、西妥昔单抗、耐昔妥珠单抗、帕尼单抗、地努妥昔单抗、帕妥珠单抗、曲妥珠单抗、恩美曲妥珠单抗、司妥昔单抗、西米普利单抗、纳武单抗、派姆单抗、奥拉妥单抗、阿特珠单抗、阿维单抗、德瓦鲁单抗、喷地肽卡罗单抗、艾洛珠单抗、地诺单抗、Ziv-阿柏西普、贝伐珠单抗、雷莫芦单抗、托西莫单抗、奥加米星吉妥珠单抗、阿仑单抗、西妥木单抗、吉妥昔单抗、尼妥珠单抗、卡妥索单抗或埃达珠单抗。
血液-蛋白结合结构域“BBD”(例如白蛋白结合结构域;白蛋白结合部分)在调节对象中化合物的血液血浆清除率中起作用,从而增加循环时间和分隔含细胞毒素结构域的细胞毒性作用和/或含显像剂结构域在血浆空间中而不是可能表达抗原的正常器官和组织中的成像能力。不受理论所束缚,化合物的该组分被认为与血清蛋白(例如白蛋白和/或细胞要素)可逆地相互作用。该血液-蛋白结合结构域(例如白蛋白结合结构域;白蛋白结合部分)对血液的血浆或细胞组分的亲和力可以被配置为影响化合物在对象的血池中的滞留时间。在本文的任何实施方式中,血液-蛋白结合结构域(例如白蛋白结合结构域;白蛋白结合部分)可以被配置成当它在血液血浆中时可逆或不可逆地与白蛋白结合。
举例来说,本文的任何方面或实施方式的血液-蛋白结合结构域可包括短链脂肪酸、中链脂肪酸、长链脂肪酸、肉豆蔻酸、经取代或未取代的吲哚-2-羧酸、经取代或未取代的硫代酰胺、经取代或未取代的4-氧代-4-(5,6,7,8-四氢萘-2-基)丁酸、经取代或未取代的萘酰基磺酰胺、经取代或未取代的二苯基环己醇磷酸酯、经取代或未取代的4-碘代苯基烷酸、经取代或未取代的3-(4-碘代苯基)丙酸、经取代或未取代的2-(4-碘代苯基)乙酸、或经取代或未取代的4-(4-碘代苯基)丁酸。在本文公开的任何实施方式中,可能的是血液-蛋白结合结构域是
Figure BDA0004041809000000271
其中Y1、Y2、Y3、Y4和Y5在每次出现时独立为H、卤素或烷基;X2和X3各自独立为O或S,t在每次出现时独立为0、1或2;u在每次出现时独立为0或1;v在每次出现时独立为0或1;并且w在每次出现时独立为0、1、2、3或4,任选地其中u和v不能是相同的值。可包括在本文的任何实施方式中的结合血蛋白白蛋白的部分的某些代表性实例包括以下中的一者或多者:
Figure BDA0004041809000000272
Figure BDA0004041809000000281
在本发明的任何实施方式中,化合物可以是式I至V中的任一者或其药学上可接受的盐和/或溶剂合物:
TTD-L1-Sarc-L2-BBD (I)
Figure BDA0004041809000000282
Figure BDA0004041809000000291
其中
TTD是本文公开的任何实施方式的肿瘤靶向结构域;
BBD是本文公开的任何实施方式的血液-蛋白结合结构域;
Sarc是本文公开的任何实施方式的含sarcophagine的结构域;
X1在每次出现时独立为不存在、O、S、NH、-C(O)-、-C(O)-NR1-、–NR2-C(O)-、-C(O)-NR3-C1-C12亚烷基-、-C1-C12亚烷基-C(O)-、-C(O)-NR4-C1-C12亚烷基-C(O)-、-亚芳基-、-杂亚环基-、–O(CH2CH2O)a–、–CH2CH2–O(CH2CH2O)b–、–CH2CH2–O(CH2CH2O)c–CH2CH2–、–O(CH2CH2O)d–CH2CH2–、–C(O)–O(CH2CH2O)e–、–O(CH2CH2O)f–CH2CH2C(O)–、–C(O)–O(CH2CH2O)g–、–C(O)–O(CH2CH2O)h–CH2CH2–、–C(O)–O(CH2CH2O)i–CH2CH2C(O)–、–CH2CH2–O(CH2CH2O)j–CH2CH2C(O)–、–C(O)–NR5–CH2CH2O(CH2CH2O)k–、–C(O)–NR6–CH2CH2O(CH2CH2O)l–CH2CH2–、–C(O)–NR7–CH2CH2O(CH2CH2O)m–CH2CH2C(O)–、氨基酸、2、3、4、5、6、7、8、9或10个氨基酸的肽、或其任两个或多个的组合,其中a、b、c、d、e、f、g、h、i、j、k、l和m在每次出现时独立为0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18或19,并且其中R1、R2、R3、R4、R5、R6和R7在每次出现时独立为H、烷基或芳基;
L1在每次出现时独立为不存在、O、S、NH、-C(O)-、-C(O)-NR8-、–NR9-C(O)-、-C(O)-NR10-C1-C12亚烷基-、-C1-C12亚烷基-C(O)-、-C(O)-NR11-C1-C12亚烷基-C(O)-、-亚芳基-、-杂亚环基-、–O(CH2CH2O)a’–、–CH2CH2–O(CH2CH2O)b’–、–CH2CH2–O(CH2CH2O)c’–CH2CH2–、–O(CH2CH2O)d’–CH2CH2–、–C(O)–O(CH2CH2O)e’–、–O(CH2CH2O)f’–CH2CH2C(O)–、–C(O)–O(CH2CH2O)g’–、–C(O)–O(CH2CH2O)h’–CH2CH2–、–C(O)–O(CH2CH2O)i'–CH2CH2C(O)–、–CH2CH2–O(CH2CH2O)j’–CH2CH2C(O)–、–C(O)–NR12–CH2CH2O(CH2CH2O)k’–、–C(O)–NR13–CH2CH2O(CH2CH2O)l’–CH2CH2–、–C(O)–NR14–CH2CH2O(CH2CH2O)m’–CH2CH2C(O)–、氨基酸、2、3、4、5、6、7、8、9或10个氨基酸的肽、或其任两个或多个的组合,其中a’、b’、c’、d’、e’、f’、g’、h’、i’、j’、k’、l’和m’在每次出现时独立为0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18或19,并且其中R8、R9、R10、R11、R12、R13和R14在每次出现时独立为H、烷基或芳基;
L2在每次出现时独立为不存在、O、S、NH、-C(O)-、-C(O)-NR15-、–NR16-C(O)-、-C(O)-NR17-C1-C12亚烷基-、-C1-C12亚烷基-C(O)-、-C(O)-NR18-C1-C12亚烷基-C(O)-、-亚芳基-、-杂亚环基-、–O(CH2CH2O)a”–、–CH2CH2–O(CH2CH2O)b”–、–CH2CH2–O(CH2CH2O)c”–CH2CH2–、–O(CH2CH2O)d”–CH2CH2–、–C(O)–O(CH2CH2O)e”–、–O(CH2CH2O)f”–CH2CH2C(O)–、–C(O)–O(CH2CH2O)g”–、–C(O)–O(CH2CH2O)h”–CH2CH2–、–C(O)–O(CH2CH2O)i'’–CH2CH2C(O)–、–CH2CH2–O(CH2CH2O)j”–CH2CH2C(O)–、–C(O)–NR19–CH2CH2O(CH2CH2O)k”–、–C(O)–NR20–CH2CH2O(CH2CH2O)l”–CH2CH2–、–C(O)–NR21–CH2CH2O(CH2CH2O)m”–CH2CH2C(O)–、氨基酸、2、3、4、5、6、7、8、9或10个氨基酸的肽、或其任两个或多个的组合,其中a”、b”、c”、d”、e”、f”、g”、h”、i”、j”、k”、l”和m”在每次出现时独立为0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18或19,并且其中R15、R16、R17、R18、R19、R20和R21在每次出现时独立为H、烷基或芳基;
p在每次出现时独立为0、1、2、3、4或5;和
q在每次出现时独立为1或2。
在本发明的任何实施方式中,肿瘤靶向结构域可以是
Figure BDA0004041809000000311
Figure BDA0004041809000000321
其中W1、W2、W3和W4各自独立为–C(O)–、–(CH2)r–或–(CH2)s–NH-C(O)–;r在每次出现时独立为1或2;s在每次出现时独立为1或2;P1、P2、P3、P4、P5、P6、P7、P8、P9、P10、P11和P12各自独立为H、甲基、苄基、4-甲氧基苄基或叔丁基;并且o、o’和o”各自独立为0或1。在本文的任何实施方式中,可能的是P1、P2、P3、P4、P5、P6、P7、P8、P9、P10、P11和P12各自独立为H或叔丁基。在本文的任何实施方式中,可能的是P1、P2、P3、P4、P5、P6、P7、P8、P9、P10、P11和P12各自独立为H。
本发明的化合物的含sarcophagine的结构域是能够螯合64Cu+267Cu+2的结构域。在本文的任何实施方式中,含sarcophagine的结构域可以是
Figure BDA0004041809000000331
其中R22是H、烷基、芳基或NR23R24;R23和R24各自独立为H、烷基、芳基、烷酰基或芳酰基;L3为不存在、-C(O)-、-C1-C12亚烷基-、-C1-C12亚烷基-C(O)-、-NR25C(O)-C1-C12亚烷基-C(O)-、-C1-C12亚烷基-NR25C(O)-C1-C12亚烷基-C(O)-、-亚芳基-、-C1-C12亚烷基-C(O)NR25-CH2-亚苯基-CH2-、-C1-C12亚烷基-C(O)NR25-CH2-亚苯基-C(O)-、-C1-C12亚烷基-NR25C(O)-C1-C12亚烷基-C(O)-C(O)NR25-CH2-亚苯基-CH2-或-C1-C12亚烷基-NR25C(O)-C1-C12亚烷基-C(O)-C(O)NR25-CH2-亚苯基-C(O);并且R25在每次出现时独立为H、烷基或芳基。在本文的任何实施方式中,可能的是R22是H、甲基或NH2。在本文的任何实施方式中,化合物的含sarcophagine的结构域可螯合64Cu+267Cu+2
本发明还提供了组合物和药物,该药物包含本发明化合物的任一个方面和实施方式以及药学上可接受的载体或一种或多种赋形剂或填料(除非另有说明,否则统称为“药学上可接受的载体”)。所述组合物可用于本文所述的方法和治疗中。本发明还提供了药物组合物,其包含药学上可接受的载体和有效量的用于使病症成像和/或治疗病症的本发明的化合物的方法和实施方式中任一种的化合物;并且其中病症可包括以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌。例如,这种病症可包括过表达PSMA的哺乳动物组织,例如表达PSMA的癌症(包括癌症组织、癌症相关的新血管或其组合)、克罗恩病或IBD。
在进一步相关的方面,提供了一种成像方法,其包括将本发明的化合物的任一方面和实施方式的化合物施用(例如施用有效量)或将包含有效量的本发明化合物的任一方面和实施方式的化合物的药物组合物施用给对象,并且在施用之后检测正电子发射、检测来自正电子发射和湮灭的伽马射线(例如通过正电子发射断层扫描),和/或检测由正电子发射导致的切伦科夫辐射(例如通过切伦科夫发光成像)。在成像方法的任何实施方式中,对象可疑似患有包括以下中的一者或多者的病症:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌、转移癌、过表达PSMA的哺乳动物组织,例如表达PSMA的癌症(包括癌症组织、癌症相关的新血管或其组合)、克罗恩病或IBD。检测步骤可以例如在对对象进行外科手术期间发生以去除过表达PSMA的哺乳动物组织。检测步骤可以包括使用手持设备来进行检测步骤。例如,切伦科夫发光图像可以通过使用超高灵敏度光学相机(例如电子倍增电荷耦合设备(EMCCD)相机)检测切伦科夫光来获得。
在以上实施方式的任一个中,有效量可以根据对象确定。“有效量”是指产生所想要效果所需的化合物或组合物的量。有效量或剂量的一个非限制性实例包括产生可接受的毒性和用于治疗(制药)用途的生物利用性水平的量或剂量,包括但不限于例如以下中的一者或多者的治疗:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌(例如去势难治性前列腺癌)、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌。有效量的另一个实例包括能够减少与如以下中的一者或多者相关的症状的量或剂量:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌(例如去势难治性前列腺癌)、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌,例如增殖和/或转移的减少。本发明的化合物的有效量可以包括足以能够检测该化合物与包括但不限于以下中的一者或多者的目标靶标的结合的量:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌(例如去势难治性前列腺癌)、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌。有效量的另一实例包括能够在具有组织的对象中从正电子发射和湮灭(高于背景)中提供可检测伽马射线发射的量或剂量,所述组织包括以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌(例如去势难治性前列腺癌)、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌、转移癌和过表达PSMA,例如统计学显著的发射高于背景。有效量的另一实例包括能够在具有组织的对象中提供由于正电子发射(高于背景)导致的可检测切伦科夫辐射发射的量或剂量,所述组织包括以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌(例如去势难治性前列腺癌)、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌、转移癌、和过表达PSMA,例如统计学显著的发射高于背景。有效量可为每克组合物中约0.01μg至约1mg化合物,并且优选为每克组合物中约0.1μg至约500μg化合物。
如本文所用,“对象”或“患者”是哺乳动物,例如猫、狗、啮齿动物或灵长类动物。通常,对象是人,并且优选是患有或疑似患有以下中的一者或多者的人:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌(例如去势难治性前列腺癌)、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌。术语“对象”和“患者”可以互换使用。
特别地,用于治疗癌症(例如以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌(例如去势难治性前列腺癌)、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌)和/或过表达PSMA的哺乳动物组织的本文公开的任何实施方式的化合物的有效量可以是约0.1μg至约50μg/kg对象质量。因此,为了治疗癌症(如以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌(例如去势难治性前列腺癌)、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌)和/或过表达PSMA的哺乳动物组织;本文所述的任何实施方式的化合物的有效量可为约0.1μg/kg、约0.2μg/kg、约0.3μg/kg、约0.4μg/kg、约0.5μg/kg、约0.6μg/kg、约0.7μg/kg、约0.8μg/kg、约0.9μg/kg、约1μg/kg、约2μg/kg、约3μg/kg、约4μg/kg、约5μg/kg、约6μg/kg、约7μg/kg、约8μg/kg、约9μg/kg、约10μg/kg、约11μg/kg、约12μg/kg、约13μg/kg、约14μg/kg、约15μg/kg、约16μg/kg、约17μg/kg、约18μg/kg、约19μg/kg、约20μg/kg、约22μg/kg、约24μg/kg、约26μg/kg、约28μg/kg、约30μg/kg、约32μg/kg、约34μg/kg、约36μg/kg、约38μg/kg、约40μg/kg、约42μg/kg、约44μg/kg、约46μg/kg、约48μg/kg、约50μg/kg或包括这些值的和/或这些值中任两个之间的任何范围。
特别地,用于使癌症(例如以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌(例如去势难治性前列腺癌)、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌)和/或过表达PSMA的哺乳动物组织成像的本文任何实施方式的化合物的有效量可为约0.1μg至约50μg/kg对象质量。因此,为了治疗癌症(例如以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌(例如去势难治性前列腺癌)、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌)和/或过表达PSMA的哺乳动物组织;本文所述的任何实施方式的化合物的有效量可为约0.1μg/kg、约0.2μg/kg、约0.3μg/kg、约0.4μg/kg、约0.5μg/kg、约0.6μg/kg、约0.7μg/kg、约0.8μg/kg、约0.9μg/kg、约1μg/kg、约2μg/kg、约3μg/kg、约4μg/kg、约5μg/kg、约6μg/kg、约7μg/kg、约8μg/kg、约9μg/kg、约10μg/kg、约11μg/kg、约12μg/kg、约13μg/kg、约14μg/kg、约15μg/kg、约16μg/kg、约17μg/kg、约18μg/kg、约19μg/kg、约20μg/kg、约22μg/kg、约24μg/kg、约26μg/kg、约28μg/kg、约30μg/kg、约32μg/kg、约34μg/kg、约36μg/kg、约38μg/kg、约40μg/kg、约42μg/kg、约44μg/kg、约46μg/kg、约48μg/kg、约50μg/kg、或包括这些值的和/或这些值中任两个之间的任何范围。
本发明的化合物还可连同可用于使以下中的一者或多者成像和/或治疗以下中的一者或多者的其他常规成像剂施用给患者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌(例如去势难治性前列腺癌)、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌、转移癌、或过表达PSMA的哺乳动物组织。这种哺乳动物组织包括但不限于表达PSMA的癌症(包括癌症组织、癌症相关的新血管,或其组合)、克罗恩病或IBD。因此,本发明的药物组合物和/或方法还可包括不同于本发明的化合物的成像剂;本发明的药物组合物和/或方法可包括不同于本发明的化合物的治疗剂;本发明的药物组合物和/或方法还可包括根据本发明的化合物的任何所述方案的成像剂和还根据本发明的化合物的任何实施方式的治疗剂。根据本发明的化合物可能既是一种治疗剂又是一种成像剂。施用可包括口服施用、肠胃外施用或经鼻施用。在这些实施方式的任一个中,施用可以包括皮下注射、静脉内注射、腹腔内注射或肌肉内注射。在这些实施方式的任一个中,施用可以包括口服施用。本发明的方法还可以包括按顺序或与本发明的一种或多种化合物联合施用常规成像剂,其量可以潜在地或协同地使以下中的一者或多者成像有效:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌(例如去势难治性前列腺癌)、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌、转移癌和过表达PSMA的哺乳动物组织。
在本文所述的本发明的任何实施方式中,药物组合物可以以单位剂型包装。单位剂型可有效治疗以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌(例如去势难治性前列腺癌)、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌。通常,包括本发明的化合物的单位剂量将根据患者的考虑而变化。此类考虑包括,例如年龄、方案、情况、性别、疾病程度、禁忌症、伴随疗法等。基于这些考虑的示例性单位剂量也可以由本领域技术人员调整或修改。例如,包含本发明的化合物的患者用单位剂量可以从1×10–4g/kg变为1g/kg,优选1×10–3g/kg至1.0g/kg。本发明的化合物的剂量也可以从0.01mg/kg变为100mg/kg,或优选0.1mg/kg至10mg/kg。合适的单位剂型包括但不限于粉剂、片剂、丸剂、胶囊剂、锭剂、栓剂、贴剂、鼻腔喷雾剂、注射剂、植入式持续释放制剂、粘膜粘着膜(rnucoadherentfilm)、局部清漆、脂类复合物等。
药物组合物可以通过将本发明的一种或多种化合物与药学上可接受的载体、赋形剂、粘合剂、稀释剂等混合来制备,以预防和治疗与癌症相关的病症(例如,以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌(例如去势难治性前列腺癌)、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌)。本文所述的化合物和组合物可用于制备制剂和药物,其治疗例如以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌(例如去势难治性前列腺癌)、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌。此类组合物可以呈例如颗粒剂、粉剂、片剂、胶囊剂、糖浆剂栓剂、注射剂、乳剂、酏剂、混悬剂或溶液的形式。即时组合物可被配制为用于各种施用途径,例如通过口服、肠胃外、局部、经直肠、经鼻、经阴道施用或经由植入贮库。肠胃外或全身施用包括但不限于皮下、静脉内、腹膜内和肌肉内注射。以下剂型是作为示例给出的,并且不应被解释为限制即时本发明。
对于口服、经颊和舌下施用,粉剂、混悬剂、颗粒剂、片剂、丸剂、胶囊剂、凝胶盖和囊片剂可作为固体剂型接受。例如,可以通过将即时本发明的一种或多种化合物或药学上可接受的盐或其互变异构体与至少一种添加剂(例如淀粉或其他添加剂)混合来制备这些。合适的添加剂是蔗糖、乳糖、纤维素糖、甘露糖醇、麦芽糖醇、右旋糖酐、淀粉、琼脂、海藻酸盐、几丁质、壳聚糖、果胶、黄蓍胶、阿拉伯胶、明胶、胶原蛋白、酪蛋白、白蛋白、合成或半合成聚合物或甘油。任选地,口服剂型可以含有其他成分以帮助施用,例如非活性稀释剂,或润滑剂,例如硬脂酸镁,或防腐剂,例如对羟基苯甲酸酯或山梨酸,或抗氧化剂,例如抗坏血酸、生育酚或半胱氨酸,崩解剂、粘合剂、增稠剂、缓冲剂、甜味剂、调味剂或香料剂。片剂和丸剂可以用本领域已知的合适包衣材料进一步处理。
用于口服施用的液体剂型可以是可以含有非活性稀释剂例如水的药学上可接受的乳剂、糖浆剂、酏剂、混悬剂和溶液的形式。药物制剂和药物可以使用无菌液体(例如但不限于油、水、醇以及这些的组合)制备为液体混悬液或溶液。可加入药学上合适的表面活性剂、助悬剂、乳化剂以用于口服或肠胃外施用。
如上所述,混悬液可包含油。此类油包括但不限于花生油、芝麻油、棉籽油、玉米油和橄榄油。混悬液制剂还可含有脂肪酸酯,例如油酸乙酯、肉豆蔻酸异丙酯、脂肪酸甘油酯和乙酰化脂肪酸甘油酯。混悬液制剂可包含醇,例如但不限于乙醇、异丙醇、十六醇、甘油和丙二醇。醚,例如但不限于聚(乙二醇)、石油烃例如矿物油和凡士林;并且水也可以用于混悬液制剂中。
可注射剂型一般包括可使用合适的分散剂或润湿剂和助悬剂制备的水混悬液或油混悬液。可注射形式可以是溶液相或混悬液的形式,其用溶剂或稀释剂制备。可接受的溶剂或媒介物包括无菌水、林格氏溶液(Ringer's solution)或等渗盐水溶液。替选地,无菌油可用作溶剂或助悬剂。通常,油或脂肪酸是非挥发性的,包括天然油或合成油、脂肪酸、单甘油酯、二甘油酯或三甘油酯。
对于注射,药物制剂和/或药物可以是适合于用如上所述的适当溶液复溶的粉末。这些的实例包括但不限于冷冻干燥、旋转干燥或喷雾干燥的粉末、无定形粉末、颗粒、沉淀物或微粒。对于注射,制剂可任选地含有稳定剂、pH调节剂、表面活性剂、生物利用度调节剂及这些的组合。
本发明的化合物可通过经过鼻或口吸入施用至肺。适用于吸入的药物制剂包括含有任何适当溶剂和任选其他化合物(例如但不限于稳定剂、抗微生物剂、抗氧化剂、pH调节剂、表面活性剂、生物利用度调节剂及这些的组合)的溶液、喷雾剂、干粉或气溶胶。载体和稳定剂因特定化合物的要求而异,但通常包括非离子表面活性剂(Tween、Pluronic或聚乙二醇)、无害蛋白质(如血清白蛋白、山梨糖醇酯、油酸、卵磷脂)、氨基酸(例如甘氨酸)、缓冲液、盐、糖或糖醇。水性和非水性(如,在氟碳推进剂中)气溶胶通常用于通过吸入递送本发明的化合物。
除了上述那些代表性剂型之外,药学上可接受的赋形剂和载体通常为本领域技术人员所知,因此包括在即时本发明中。此类赋形剂和载体描述于例如“RemingtonsPharmaceutical Sciences”Mack Pub.Co.,新泽西(1991),其通过引用并入本文。即时组合物还可包括例如胶束或脂质体或某些其他囊封形式。
具体剂量可根据对象的疾病情况、年龄、体重、一般健康状况、性别和饮食、剂量间隔、施用途径、排泄率和药物组合进行调整。上述任一种含有有效量的剂型都完全在常规实验的范围内,并因此也完全在即时本发明的范围内。
可以很容易地使用各种测定和模型系统来确定根据本发明的治疗的治疗效果。
对于指定疾患,与安慰剂治疗或其他合适的对照对象相比,测试对象将表现出由对象体内的病症导致的或与对象体内的病症相关的一种或多种症状的10%、20%、30%、50%或更大的减少、高达75–90%、或95%或更大的减少。
本文提供的实施例是为了说明本发明的优点,并进一步帮助本领域的普通技术人员制备或使用本发明的化合物或盐、药物组合物、衍生物、前药或其互变异构形式。本文的实施例也被提出,以更充分地说明本发明的优选方面。实施例绝不应被解释为限制本发明的范围,如所附权利要求所定义的。实施例可以包括或合并上述本发明的任何变型、方面或实施方式。上述变型、方面或实施方式还可以进一步各自包括或合并本发明的任何或所有其他变型、方面或实施方式的变型。
实施例
材料和仪器.所有溶剂和试剂,除非另有说明,否则均从商业来源购买,并在收到后未经进一步纯化就使用。在
Figure BDA0004041809000000421
分子筛上储存之后,获得注明为“无水”的溶剂后。通过薄层色谱(TLC,Whatman UV254铝衬底硅胶)对反应进行监测。
合成RPS-085、[64Cu]Cu-RPS-085和[67Cu]Cu-RPS-085
三功能骨架(((S)-5-(3-(3-(1-((14S,17S)-14-(4-氨基丁基)-17-羧基-24-(4-碘代苯基)-12,15,23-三氧代-3,6,9-三氧杂-13,16,22-三氮杂二十四基)-1H-1,2,3-三唑-4-基)苯基)脲基)-1-羧基戊基)氨基甲酰基)-L-谷氨酸如Kelly等人(Eur J Nucl MedMol Imaging.2018;45:1841-51)所述合成。将该胺(13mg,10μmol,1eq)溶解于无水DMF(1mL;Sigma Aldrich,USA)中,并在室温(rt)下用N,N-二异丙基乙胺(18μL,100μmol,10eq)搅拌5分钟。
通过MeCOSar的NHS酯衍生物和Lys的Nε之间的反应,实现了sarcophagine螯合剂缀合至骨架。以下提供了该合成的综述:
Figure BDA0004041809000000431
将MeCOSar的N-琥珀酰亚胺酯(6.2mg,12μmol,1.2eq)于DMF(0.5mL)中的溶液滴加至反应物,并将所得混合物在室温下搅拌5小时。将粗混合物通过HPLC使用配备有Phenomenex
Figure BDA0004041809000000441
C18(2)
Figure BDA0004041809000000442
250cm x 21.2mm I.D.,10μm反相柱的双泵Agilent 1200系列HPLC纯化。流动相为梯度10%乙腈(MeCN)/水(H2O)+0.05%三氟乙酸(TFA)至90%MeCN/H2O+0.05% TFA,经40分钟,流速为12mL/min。采集对应于RPS-085的峰并进行冻干。RPS-085分离为白色粉末(8.6mg,53%)。
产物纯度通过分析型HPLC使用配备有Agilent ProStar 325双波长UV-Vis检测器的双泵Agilent ProStar HPLC(Agilent Technologies,USA)确认。在220nm和280nm下监测紫外吸收。在XSelectTM CSHTM C18 5μm 4.6x 50mm柱(Waters,USA)上采用梯度法以2mL/min的流速进行分析。梯度是:0-1min:0% B;1-8min:0-100% B;8-9min:100% B;9-10min:100-0% B。流动相A由H2O+0.01%v/v TFA(Sigma Aldrich,USA)组成,并且流动相B由90%v/v MeCN/H2O+0.01%TFA组成。用质谱确认了产物的身份。质量使用耦合至WatersSQ检测器2的Waters ACQUITY
Figure BDA0004041809000000443
(Waters,USA)测定。MS(ESI+):1620.14。计算的质量:1618.74。
相对于母化合物RPS-063,所得的RPS-085化合物对PSMA的亲和力降低了大约一个数量级。无金属RPS-085抑制了PSMA,其IC50=29.1±2.4nM。对人血清白蛋白(HSA)的亲和力也降低了,其Kd=9.9±1.7μM。
在20分钟内在25℃下在10X PBS(pH 7.4)和0.5M NH4OAc(pH 5.5)两者中对[64Cu]Cu-RPS-085定量放射标记(n=6)。在相同温度下,在3N NaOAc(pH 4.5)中完成标记,收率为35±2%(n=2)。[64Cu]CuCl2是从威斯康星大学(University of Wisconsin)作为稀HCl中的溶液购买的。将[64Cu]CuCl2溶液的等分试样(50-100μL,含350-800MBq)转入Eppendorf管,并用300μL 0.5M NH4OAc稀释。向该溶液中添加RPS-085于DMSO中的5μL 1mg/mL溶液。将反应物在25℃下在Eppendorf
Figure BDA0004041809000000444
C(VWR,USA)中孵育20分钟。然后将样品用H2O稀释至10mL并通过预调节Sep-Pak C18 Plus Light筒(Waters,USA)。用5mL H2O洗涤反应容器和筒。将保留在筒上的活性用100μL EtOH(300proof;VWR,USA),然后用900μL盐水(0.9% NaCl溶液;VWR,USA)洗脱。放射化学纯度由分析反相(放射)HPLC使用装备有双UV-Vis检测器的双泵Varian Dynamax HPLC系统(Agilent Technologies,USA)测定,并且放射化学纯度使用NaI(Tl)流量计数检测器(Bioscan,USA)测定。在220nm和280nm下监测紫外吸收。在Symmetry C18柱(5μm,4.6×50mm,
Figure BDA0004041809000000451
Waters,USA)上使用梯度方法以2mL/min的流速进行分析。梯度和流动相组成与上述相同。根据[64Cu]Cu2+的活性,摩尔活性也不同。当起始活性为800MBq时,分离出[64Cu]Cu-RPS-085,其摩尔活性为117GBq/μmol且放射化学纯度为>99%(图1A-1B)。
[67Cu]Cu-RPS-085在于0.1M NH4OAc中的6.2μM的浓度下在20分钟内在25℃下定量放射性标记。反应混合物的pH约为6。Cu-67是由美国能源部科学办公室核物理办公室(Office of Nuclear Physics in the Department of Energy’s Office of Science)的同位素项目(Isotope Program)提供的。用100μL 0.1M NH4OAc稀释活性,以达到放射性浓度约为4GBq/mL。添加60μL等份的溶液(含有245MBq)至用930μL 0.1M NH4OAc稀释的RPS-085于DMSO中的10μL的1mg/mL溶液。将反应物在25℃下在Eppendorf
Figure BDA0004041809000000452
C(VWR,USA)中孵育20分钟。然后将样品用H2O稀释至10mL并通过预调节Sep-Pak C18 PlusLight筒(Waters,USA)。用5mL H2O洗涤反应容器和筒。保留在筒上的活性用200μL EtOH(300proof;VWR,USA),然后用1.8mL盐水(0.9% NaCl溶液;VWR,USA)洗脱。放射化学纯度通过如上所述的分析反相(放射)HPLC测定。在起始活性为245MBq的情况下,分离出[67Cu]Cu-RPS-085,其摩尔活性为41GBq/μmol且放射化学纯度>99%(图2A-2B)。相较而言,在相同的标记条件下,分离出[67Cu]Cu-RPS-063,其放射化学产率43%且放射化学纯度>99%。
化合物的稳定性测试
在25℃下一式三份地测定重新配制的[64Cu]Cu-RPS-085溶液的稳定性。将放射性浓度约为10MBq/mL且放射化学纯度>99%的三个1mL样品转移到Eppendorf管(VWR,USA)。将样品在Eppendorf
Figure BDA0004041809000000453
C(VWR,USA)中在25℃下孵育24小时。放射化学纯度由分析反相(放射)HPLC测定,并表示为孵育前样品纯度的分数。在重新配制之后,[64Cu]Cu-RPS-085在室温下稳定大于24小时。
[67Cu]Cu-RPS-085的血浆稳定性根据前述方法测定(Alt等人,MolPharmaceutics.2014;11:2855-63)。简单地说,冷冻的人血浆从Sigma Aldrich(USA)购买,在37℃下解冻,并将200μL等分试样转移至Eppendorf管。将100μL等份的于10% EtOH/盐水中的[67Cu]Cu-RPS-085添加至每个管,并将混合物在37℃下在Eppendorf
Figure BDA0004041809000000461
C(VWR,USA)上以300rpm振荡24小时。实验一式三份进行。通过加入600μL乙腈沉淀蛋白。将样品在Eppendorf5424-R离心机中以13500rpm离心3分钟。上清液通过如上所述的分析反相(放射)HPLC分析。在人血浆中孵育24小时后,[67Cu]Cu-RPS-085是97.4±0.4%完整的。唯一的放射化学杂质是母化合物的未鉴定片段。未观察到非络合的[67Cu]Cu2+
细胞培养、体外测定IC50和对人血清白蛋白的亲和力
PSMA-表达性人前列腺癌细胞系LNCaP获自美国菌种保藏中心(American TypeCulture Collection)。除非另有说明,否则细胞培养用品均获自Invitrogen(USA)。将LNCaP细胞维持在37℃/5% CO2下的加湿孵育箱内的补充有10%胎牛血清(Hyclone)、4mML-谷氨酰胺、1mM丙酮酸钠、10mM N-2-羟乙基哌嗪-N-2-乙磺酸(HEPES)、2.5mg/mL D-葡萄糖和50μg/mL庆大霉素的RPMI-1640培养基中。通过将细胞与0.25%胰蛋白酶/乙二胺四乙酸(EDTA)一起孵育,从烧瓶中取出细胞进行传代或转移到12孔测定板。
根据前述方法(Kelly等人,Eur J Nucl Med Mol Imaging.2018;45:1841-51),在针对99mTc-MIP-1427的多浓度竞争性结合测定(Hillier等人,J Nucl Med.2013;54:1369-76)中测定无金属RPS-085与LNCaP细胞上的PSMA结合的IC50。将RPS-085以1pM-10μM范围内的最终浓度添加至各孔中。测定一式三份进行,并且IC50表示为均值±标准偏差。
对人血清白蛋白的亲和力通过如前所述的高效亲和色谱进行测定(Kelly等人,JNucl Med.2019;60:656-63)。简单地说,[67Cu]Cu-RPS-085上样至Chiralpak HSA分析高效液相色谱柱100x2mm,5mm(Daicel Corp.)上,作为10%v/v EtOH/盐水中的溶液,最大注射质量为80ng且最大注射体积为20μL。使用恒定流量为0.3mL/min的5%v/v异丙醇/0.067M磷酸盐缓冲液(pH 7.4)的等容流动相,一式四份地进行分析。[67Cu]Cu-RPS-085的滞留时间是4.64±0.52min。Kd使用之前针对分析条件推导的以下等式测定:
Figure BDA0004041809000000471
针对UV检测器与放射检测器之间的偏移,对[67Cu]Cu-RPS-085的滞留时间进行校正。表观Kd值由对白蛋白的已知亲和力的非放射性标准的滞留时间定义的标准曲线推导出。
LNCaP异种移植小鼠模型和microPET/CT成像
所有动物研究均经威尔康奈尔医学机构动物护理和使用委员会(InstitutionalAnimal Care and Use Committee of Weill Cornell Medicine)批准,并按照关于实验室动物人道护理和使用的USPHS政策(USPHS Policy on Humane Care and Use ofLaboratory Animals)规定的指导方针进行。将小鼠在标准条件下圈养在批准设施中,光照/黑暗周期为12小时。在整个研究过程中,自由提供食物和水。雄性BALB/c无胸腺nu/nu小鼠购自Jackson Laboratory(USA)。接种前,LNCaP细胞以4x107个细胞/mL的密度混悬在1:1的PBS(VWR,USA):基质胶(BD Biosciences,USA)混合物中。每只小鼠左胁腹皮下注射0.25mL细胞混悬液。每周两次监测动物,直到出现可触及的肿瘤。
LNCaP异种移植肿瘤用[64Cu]Cu-RPS-085清楚地可视化(图3)。肾清除是主要排泄途径,导致在肾和膀胱中初始摄取化合物。背景组织活性低。通过绘制每个组织周围的ROI来估计肿瘤和肾中的摄取。根据这种半定量方法,肿瘤中的活性在3小时p.i.时最大,但在48小时成像窗口内基本稳定。到6小时p.i.,肿瘤中的摄取超过了肾,并且到24小时,只有肿瘤可以通过microPET/CT可视化。
当肿瘤尺寸在200-500mm3的范围内时,通过静脉内注射向小鼠(n=4)施用21.2±0.5MBq[64Cu]Cu-RPS-085。每只动物接收的总质量剂量约为300ng(185pmol)。将小鼠在异氟烷麻醉下分别于注射后(p.i.)1小时、3小时、6小时、24小时和48小时通过microPET/CT(InveonTM;Siemens Medical Solutions,USA)成像。总采集时间为30分钟。在PET采集前立即获得CT扫描,以进行解剖学共配准和衰减校正两者。使用厂商提供的InveonTM软件重构图像。
生物分布和剂量测定
当肿瘤尺寸达到大约200mm3时,通过静脉内注射向小鼠(n=4/时间点)施用3.8±0.1MBq[64Cu]Cu-RPS-085或0.8±0.005MBq[67Cu]Cu-RPS-085。对于[64Cu]Cu-RPS-085和[67Cu]Cu-RPS-085研究,由每只动物接收的总质量剂量分别约为50ng(31pmol)和约为28ng(17pmol)。将小鼠在4h、24h或48h p.i.([64Cu]Cu-RPS-085),或4h、24h和96h([67Cu]Cu-RPS-085)处死。采集血液样品,并收集以下组织并使用数字秤进行湿称重:心脏、肺、肝、胃、小肠、大肠、脾、胰腺、肾、肌肉、骨骼和肿瘤。在Wizard2自动伽马计数器(Wizard2Automatic Gamma Counter,Perkin Elmer,USA)上针对1%注射剂量标准品对组织进行计数。针对衰变和注射活性对计数进行校正,并且组织摄取表示为每克注射剂量百分比(%ID/g)。计算了每个数据点的均值标准偏差(SEM)。使用用GraphPad Prism软件的未配对t检验进行统计分析。P值小于0.05被认为是显著的。在注射之后4h、24h和96h(n=4/个时间点),血液、心脏、肺、肝、小肠、大肠、胃、脾、胰腺、肾、肌肉和骨骼中存在的[67Cu]Cu-RPS-085的浓度显示于下表1中。显示了[177Lu]Lu-RPS-063的公布值以供比较;所有浓度均以每个器官注射剂量的百分比表示。
表1.剂量学
[67Cu]Cu-RPS-085的浓度
Figure BDA0004041809000000481
Figure BDA0004041809000000491
[67Cu]Cu-RPS-063的浓度
Figure BDA0004041809000000492
Figure BDA0004041809000000501
用于剂量学计算的数据基于注射后4、24和96小时的每个时间点平均4至5只动物。首先得到的是血液、心脏、肺、肝、小肠、大肠、胃、脾、胰腺、肾、肌肉、骨骼、肿瘤和尾巴中每个器官的注射剂量百分比。在前96小时内使用幂函数对生物分布数据进行拟合。每个器官的幂函数用于以2小时区间对浓度进行插值,以更好地估计动力学。积分时间又延长了96小时,假设前96小时后每个器官的注射剂量百分比恒定,并且96小时至192小时之间浓度的唯一变化是由于放射性衰变导致的。然后使用梯形近似来获得两小时区间内的积分。区间积分被缩放到完整积分的值,以给出更好的估计。这些滞留时间用来使用有成人男性模型和无膀胱清除的OLINDA程序来估计人对象的吸收剂量。对身体其他部位的剂量没有在该计算中使用。
在生物分布研究之后对[64Cu]Cu-RPS-085在肿瘤中的摄取和肿瘤-与-背景比率进行定量。图4显示了携带LNCaP异种移植物的雄性Balb/C nu/nu小鼠中的[64Cu]Cu-RPS-085的生物分布。小鼠(n=4/时间点)静脉内施用3.8±0.1MBq[64Cu]Cu-RPS-085并在4、24或48hp.i时处死。每个组织的活性通过与1%ID活性标准的比较来确定,并表示为%ID/g±SEM。统计学显著差异由*(P<0.05)和**(P<0.01)表示。在4h p.i.(12.9±1.4%ID/g)时观察到峰值肿瘤摄取,当在24h(8.3±0.8%ID/g)和48h p.i.(9.8±1.3%ID/g)时的清除不是统计学显著的(P>0.15)。相比之下,肾中的活性从4h p.i.时的13.7±2.3%ID/g清除至24hp.i.时的2.4±0.4%ID/g,其进一步清除至48h p.i.时的1.6±0.1%ID/g。包括肝在内的所有其他组织中的活性在所有时间点小于0.5%ID/g。[64Cu]Cu-RPS-085的分布导致肿瘤-与-肾比率为4h p.i.时的0.9±0.2,其显著增加至24h p.i.时的3.4±0.7和48h p.i.时的6.1±0.8(P<0.02)。肿瘤-与-血液是4h p.i.时的230±33,并且之后超过400。肿瘤-与-肌肉比率在所有观察到的时间点大于500。
图5显示了携带LNCaP异种移植物的雄性Balb/C nu/nu小鼠中的[67Cu]Cu-RPS-085的生物分布。小鼠(n=4/时间点)静脉内施用0.8±0.005MBq[67Cu]Cu-RPS-085并在4、24或96h p.i时处死。每个组织的活性通过与1%ID活性标准的比较来确定,并表示为%ID/g±SEM。统计学显著差异由*(P<0.05)和**(P<0.01)表示。[67Cu]Cu-RPS-085的生物分布在4h和24h p.i.时与[64Cu]Cu-RPS-085非常相似。其中放射性配体累积的主要组织是肿瘤和肾(图5)。在这些时间点,肿瘤摄取分别是12.5±2.7%ID/g和7.9±0.9%ID/g。肾中的活性分别是19.7±5.0%ID/g和4.5±0.8%ID/g。这些值比[64Cu]Cu-RPS-085实验中获得的那些相比没有显著更高(P>0.06)。到96h p.i.,肿瘤中的活性降低至5.1±3.3%ID/g,而肾中的活性是1.7±0.3%ID/g。在该时间点的肿瘤-与-肾比率是3.0±0.5。在192小时内肿瘤中的估计吸收剂量为14319mSv/MBq。相比之下,肾中的吸收剂量为884mSv/MBq,表示减少了16倍以上。全身吸收剂量为14.5mSv/MBq,而其他组织均未超过65mSv/MBq(表2)。
表2.全身和器官特异性有效剂量(mrem/mCi)和吸收剂量
Figure BDA0004041809000000511
Figure BDA0004041809000000521
靶向PSMA的68Ga-标记的小分子用于对原发性前列腺癌和复发性疾病成像和分期的值正在变得非常确实。然而,该放射性同位素半衰期短(t1/2=68min)不能在注射后数小时内定量测定放射性配体分布。因此,镓-68不适合在用镥-177靶向放射性配体疗法之前进行治疗前剂量测定估计(t1/2=6.65d)。因此,为了定量放射性配体分布和估计吸收剂量,剂量学研究可以使用In-111(t1/2=2.81d)作为Lu-177的替代品,或者使用低剂量的Lu-177本身进行。这些研究可以增加施用放射性物质至患者的次数,并且也可能经历相对于用Ga-68进行PET成像的成像精度降低。此外,68Ga-、111In-和177Lu-标记的放射性配体的分布即使在递送载体相同时也可能变化。就此而论,使用“姐妹”放射性同位素例如Y-86/Y-90、Sc-44/Sc-47和Cu-64/Cu-67进行定量成像和疗法是有吸引力的。铜-64和铜-67的物理特性包括良好匹配的半衰期、具有理想能量的短程粒子发射用于PET成像和疗法、以及不存在符合光子发射(表3),对于治疗诊断用途是理想的。此外,这两种放射性核素的大活性可以在高放射性核素纯度下获得。这有助于将64/67Cu-标记的放射性配体供应到位于离产生位点很远的中心。
表3.治疗诊断性放射性核素对的衰变特性.
用于PSMA治疗诊断的正电子发射放射性核素
Figure BDA0004041809000000531
用于PSMA治疗诊断的β-发射放射性核素
Figure BDA0004041809000000532
为了充分利用Cu-64/Cu-67治疗诊断的潜力,需要对这种射电金属进行有效和稳定的螯合。与可以作为64Cu(II)还原为64Cu(I)结果的体内不稳定的64Cu(II)-DOTA配合物相反,跨桥接大环螯合剂表现出更大的络合物稳定性。双官能化3,6,10,13,16,19-六氮杂双环[6.6.6]二十烷(称为sarcophagine)螯合剂已被证明当缀合至肽或肽二聚体时与64Cu2+形成高度稳定的络合物。我们证实,MeCOSar螯合剂允许低浓度(<10μM)的小分子RPS-085在温和条件下用铜-64或铜-67快速且有效地标记。即使在10-7M的配体浓度下定量络合Cu2+的能力是MeCOSar相较于其他可商购获得螯合剂的主要优势,其可以转化为放射性标记化合物的摩尔活性的大幅增加。[64/67Cu]Cu-RPS-085在室温下在溶液中稳定大于24小时。这支持其集中产生和分布至没有现场68Ge/68Ga发生器的中心。在37℃下放射性配体在人血浆中稳定超过24小时,并且在小鼠肝脏([64/67Cu]Cu2+在其中累积的主要器官)中没有放射性为体内络合物稳定性提供了进一步的证据。
治疗诊断性配体开发的挑战性方面是需要平衡成像的最佳药代动力学,例如快速组织分布和从血液中清除,具有用于疗法的最佳特征,例如进行性和持续性的肿瘤负荷与同时从正常组织中清除。该挑战在先前描述的低分子量64Cu-标记PSMA抑制剂的药代动力学中很明显:从血液和肾中快速清除的亚磷酰胺配体还表现出LNCaP异种移植肿瘤中的低摄取,到48h p.i.几乎完全冲洗掉,这是在PC3-PIP异种移植肿瘤中也观察到的基于脲配体的趋势。后一种配体家族最适合在后期时间点进行PET成像。[64Cu]Cu-RPS-085即使在早期时间点也表现出优异的成像特性,包括高肿瘤摄取和快速从背景中清除,导致到4h p.i.时肿瘤-与-背景比率高。此外,由于肿瘤的活性在长达48h p.i.内保持稳定,因此可以在稍后的时间点(即24小时)进行成像,以在不增加患者放射暴露的情况下增加与背景的对比度。这种概念已经通过[64Cu]Cu-PSMA-617在临床上得到验证,它能够在注射后17小时获得高质量的PET图像。
小分子配体设计的第二个挑战方面是无法精确和全面地预测结构变化对化合物药代动力学的全面影响。之前,我们和其他人已经证明,改变缀合PSMA结合基团、金属螯合部分和白蛋白结合基团的接头的长度影响肿瘤摄取和滞留以及肾脏清除和滞留两者。此外,在固定的接头结构上的不同白蛋白结合基团也深刻地影响从血液中清除。在这里,我们证明了在固定结构平台上金属螯合部分的变化也影响配体的药代动力学,即使当不预测螯合剂有助于PSMA结合或白蛋白结合时。最近对更紧凑的分子支架描述了这一发现。相对于含有DOTA的类似物相比,螯合剂看起来导致对PSMA的亲和力降低了10倍。此外,Cu2+-MeCOSar络合物的总电荷(+2)和Lu3+-p-SCN-Bn-DOTA络合物的总电荷(-1)是不同的。不受理论束缚,电荷分布的这种变化可能导致与这些蛋白质靶标结合的协同性变化,并增强了化合物药代动力学的变化,特别是在肾脏清除和滞留方面。
基于RPS-085与其先前报道的同源配体的结构相似性,对血清白蛋白的亲和力以及因此在血液中的活性低于预测。因此,我们没有观察到随时间推移的进展性肿瘤负荷。然而,[67Cu]Cu-RPS-085在24小时内没有从肿瘤中明显清除,导致了高的累积活性
Figure BDA0004041809000000551
尽管从肿瘤中消除到96h p.i.时是显著的,
Figure BDA0004041809000000552
是699(%ID/g)·h。同时,从肾中清除很快。相同时间间隔的累积活性是538(%ID/g)·h(图6)。不受理论束缚,这可能是由于相对于其他三功能配体的等离子体清除加速和对PSMA的亲和力略有下降。相比之下,[177Lu]Lu-RPS-063在相同的动物模型中获得了基本上更高的肿瘤积分1782(%ID/g)·h。然而,这伴随着肾中的
Figure BDA0004041809000000553
为4720(%ID/g)·h(图6)。这些药代动力学反映在肿瘤和肾中的吸收剂量。在192小时的时间段内,[67Cu]Cu-RPS-085在肿瘤中的吸收剂量约为肾脏的16倍,但对于[177Lu]Lu-RPS-063仅大6.5倍。此外,[67Cu]Cu-RPS-085的快速清除导致全身吸收剂量相对于[177Lu]Lu-RPS-063减少了5倍。我们之前测定了[177Lu]Lu-PSMA-617的在LNCaP肿瘤中的累积活性
Figure BDA0004041809000000554
为96h p.i.内的544(%ID/g)·h,并且肾中的活性
Figure BDA0004041809000000555
在相同窗口中为260(%ID/g)·h[31]。尽管[67Cu]Cu-RPS-085的
Figure BDA0004041809000000556
比率1.3略低于[177Lu]PSMA-617的2.1,但
Figure BDA0004041809000000557
大1.3倍。因此,[67Cu]Cu-RPS-085的治疗窗口可能与[177Lu]Lu-PSMA-617相当,且远远大于[177Lu]Lu-RPS-063。
尽管RPS-085作为放射性配体疗法的潜在配体的有前景特性,但可以通过延长血浆半衰期来获得进一步的收益。该方法最近被用于开发[64Cu]Cu-PSMA-ALB-89,其证明在异种移植肿瘤中累积超过24小时。然而,高肾活性和肝脏中不可忽视的活性积累可能损害该化合物相对于RPS-085的转变。我们最近探索了加长的聚乙二醇(PEG)接头作为一种调节血浆药代动力学的方法,并在持续的肿瘤活性下实现了加速肾清除。将双功能化MeCOSar螯合剂掺入该分子支架可以进一步增加递送至肿瘤的剂量。
据报道在唾液腺和泪腺中摄取大量PSMA-靶向配体,并且由于β-、特别是α-粒子的发射导致的这些结构中的毒性是剂量限制的。鼠唾液腺和泪腺的小尺寸使得通过成像或生物分布研究进行定量剂量吸收具有挑战性。因此,我们无法准确预测[67Cu]Cu-RPS-085在这些结构中可能的毒性。然而,铜-67发射的β-粒子具有中等能量(141keV),因此在正常组织中的预测吸收剂量与镥-177相似且小于碘-131。[67Cu]Cu-RPS-085在相同的异种移植小鼠模型中以与[177Lu]Lu-PSMA-617类似的速率从正常组织中清除。因此,我们预计对唾液腺的毒性应至少不比目前正在临床研究中的177Lu-标记的PSMA配体更差。
虽然已经说明和描述了某些实施方式,但本领域技术人员在阅读上述说明书后,可以对如本文所述的本发明的化合物或其盐、药物组合物、衍生物、前药、代谢物、互变异构体或外消旋混合物进行变化、等价物的取代和其他类型的改变。上面描述的每个方面和实施方式也可以包括或与之并入就任何或所有其他方面和实施方式所公开的此类变化或方面。
本发明也不限于本文所述的特定方面,所述方面旨在作为本发明的单个方面的单个说明。这种本发明的许多修改和变化可以在不偏离其精神和范围的情况下进行,这对于本领域的技术人员来说是明显的。本发明范围内的功能等效方法,除了在本文中列举的那些之外,对于本领域技术人员来说,从上述描述将是明显的。此类修改和变化旨在落在所附权利要求的范围内。应理解,该本发明并不局限于特定的方法、试剂、化合物、组合物、标记化合物或生物系统,当然它们可以变化。还应理解,本文使用的术语仅用于描述特定方面的目的,而不是有意限制。因此,本说明书意在仅被视为示例性,其本发明的广度、范围和精神仅由所附权利要求书、其中的定义及其任何等效方案所表明。
本文说明性地描述的实施方式可以在没有在本文中未具体公开的任一个或多个要素、一个或多个限制的情况下适当地实施。因此,例如,术语“包含”、“包括”、“含有”等应被广泛而不受限制地理解。此外,本文所使用的术语和表达只是用作描述术语,而不是限制术语,并且在使用此类术语和表达时不打算排除所示和所述的特征或其部分的任何等效方案,但是承认在所要求保护的技术范围内可以进行各种修改。此外,短语“基本上由……组成”将被理解为包括那些具体列举的要素和那些对所要求保护的技术的基本和新特征没有实质性影响的附加要素。短语“由……组成”排除不指定的任何要素。
此外,当以马库什组描述本发明的特征或方面时,本领域技术人员将认识到,本发明也因此以马库什组的任何单个成员或成员子组来描述。落入通用公开内容的范围内的每个较窄的种和亚属分组也构成本发明的一部分。这包括带有从属中移除任何主题的条件或否定限制的本发明的通用描述,无论所删除的材料是否在本文中具体列举。
如本领域技术人员将理解,对于任何和所有目的,特别是在提供书面描述方面,本文公开的所有范围还涵盖任何和所有可能的子范围及其子范围的组合。任何列出的范围都可以很容易地识别为足够的描述,并使相同的范围被分解为至少相等的二分之一、三分之一、四分之一、五分之一、十分之一等。作为非限制性实例,本文讨论的每个范围都可以很容易地分解为下三分之一、中三分之一和上三分之一等。如本领域技术人员也将理解,例如“至多”、“至少”、“大于”、“小于”等的所有语言都包括所列举的数字,并且是指随后可分解为如上所讨论的子范围的范围。最终,如本领域技术人员所理解,范围包括每个单独的成员。
本说明书中提到的所有出版物、专利申请、已发布的专利和其他文件(例如,期刊、文章和/或教科书)在此通过引用并入本文,如同每个单独的出版物、专利申请、已发布的专利或其他文件都被具体地且单独地表示通过引用整体并入一样。就其与本发明的定义相矛盾而言,排除通过引用并入的文本中所包含的定义。
本发明可以包括但不限于下列字母段落中所述的特征和特征组合,应理解,以下段落不应被解释为限制所附权利要求的范围或强制要求所有此类特征必须包含在此类权利要求中:
A.一种化合物,包含:
肿瘤靶向结构域,其包含能够识别肿瘤细胞表面上的分子靶标或与肿瘤细胞表面上的分子靶标相互作用的部分;
血液-蛋白结合结构域;和
含sarcophagine的结构域;其中,肿瘤靶向结构域的部分在血液-蛋白结合结构域的远端并且在空间上不受血液-蛋白结合结构域的阻碍。
B.如段落A所述的化合物,其中,肿瘤靶向结构域结合至选自以下中的一者或多者的肿瘤相关分子靶标:肿瘤特异性细胞表面蛋白、前列腺特异性膜抗原(PSMA)、生长激素抑制素肽受体-2(SSTR2)、alphavbeta3(αvβ3)、αvβ6、胃泌素释放肽受体、seprase、成纤维细胞激活蛋白α(FAP-α)、肠促胰岛素受体、葡萄糖依赖性促胰岛素多肽受体、VIP-1、NPY、叶酸受体、LHRH、神经元转运体(例如去甲肾上腺素转运体(NET))、EGFR、HER-2、VGFR、MUC-1、CEA、MUC-4、ED2、TF-抗原、内皮特异性标记、神经肽Y、uPAR、TAG-72、密封蛋白、CCK类似物、VIP、铃蟾肽、VEGFR、肿瘤特异性细胞表面蛋白、GLP-1、CXCR4、Hepsin、TMPRSS2、caspace、cMET或过表达肽受体。
C.如段落A或段落B所述的化合物,其中,肿瘤靶向结构域包含经修饰抗体、经修饰抗体片段、经修饰结合肽、前列腺特异性膜抗原(“PSMA”)结合肽、生长激素抑制素受体激动剂、铃蟾肽受体激动剂、seprase结合化合物、或其任一种或多种的结合片段。
D.如段落A-C中任一项所述的化合物,其中,肿瘤靶向结构域包含贝利单抗、莫格利珠单抗、博纳吐单抗、替伊莫单抗、奥妥珠单抗、奥法木单抗、利妥昔单抗、奥英妥珠单抗、帕西妥莫单抗、维布妥昔单抗、达雷木单抗、伊匹单抗、西妥昔单抗、耐昔妥珠单抗、帕尼单抗、地努妥昔单抗、帕妥珠单抗、曲妥珠单抗、恩美曲妥珠单抗、司妥昔单抗、西米普利单抗、纳武单抗、派姆单抗、奥拉妥单抗、阿特珠单抗、阿维单抗、德瓦鲁单抗、喷地肽卡罗单抗、艾洛珠单抗、地诺单抗、Ziv-阿柏西普、贝伐珠单抗、雷莫芦单抗、托西莫单抗、奥加米星吉妥珠单抗、阿仑单抗、西妥木单抗、吉妥昔单抗、尼妥珠单抗、卡妥索单抗或埃达珠单抗。
E.如段落A-C中任一项所述的化合物,其中,肿瘤靶向结构域包含以下的抗原结合片段:贝利单抗、莫格利珠单抗、博纳吐单抗、替伊莫单抗、奥妥珠单抗、奥法木单抗、利妥昔单抗、奥英妥珠单抗、帕西妥莫单抗、维布妥昔单抗、达雷木单抗、伊匹单抗、西妥昔单抗、耐昔妥珠单抗、帕尼单抗、地努妥昔单抗、帕妥珠单抗、曲妥珠单抗、恩美曲妥珠单抗、司妥昔单抗、西米普利单抗、纳武单抗、派姆单抗、奥拉妥单抗、阿特珠单抗、阿维单抗、德瓦鲁单抗、喷地肽卡罗单抗、艾洛珠单抗、地诺单抗、Ziv-阿柏西普、贝伐珠单抗、雷莫芦单抗、托西莫单抗、奥加米星吉妥珠单抗、阿仑单抗、西妥木单抗、吉妥昔单抗、尼妥珠单抗、卡妥索单抗或埃达珠单抗。
F.如段落A-E中任一项所述的化合物,其中,化合物是式I至V中任一者或其药学上可接受的盐和/或溶剂合物:
TTD-L1-Sarc-L2-BBD (I)
Figure BDA0004041809000000591
Figure BDA0004041809000000601
其中
TTD是肿瘤靶向结构域;
BBD是血液-蛋白结合结构域;
Sarc是含sarcophagine的结构域;
X1在每次出现时独立为不存在、O、S、NH、-C(O)-、-C(O)-NR1-、–NR2-C(O)-、-C(O)-NR3-C1-C12亚烷基-、-C1-C12亚烷基-C(O)-、-C(O)-NR4-C1-C12亚烷基-C(O)-、-亚芳基-、-杂亚环基-、–O(CH2CH2O)a–、–CH2CH2–O(CH2CH2O)b–、–CH2CH2–O(CH2CH2O)c–CH2CH2–、–O(CH2CH2O)d–CH2CH2–、–C(O)–O(CH2CH2O)e–、–O(CH2CH2O)f–CH2CH2C(O)–、–C(O)–O(CH2CH2O)g–、–C(O)–O(CH2CH2O)h–CH2CH2–、–C(O)–O(CH2CH2O)i–CH2CH2C(O)–、–CH2CH2–O(CH2CH2O)j–CH2CH2C(O)–、–C(O)–NR5–CH2CH2O(CH2CH2O)k–、–C(O)–NR6–CH2CH2O(CH2CH2O)l–CH2CH2–、–C(O)–NR7–CH2CH2O(CH2CH2O)m–CH2CH2C(O)–、氨基酸、2、3、4、5、6、7、8、9或10个氨基酸的肽、或其任两个或多个的组合,其中a、b、c、d、e、f、g、h、i、j、k、l和m在每次出现时独立为0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18或19,并且其中R1、R2、R3、R4、R5、R6和R7在每次出现时独立为H、烷基或芳基;
L1在每次出现时独立为不存在、O、S、NH、-C(O)-、-C(O)-NR8-、–NR9-C(O)-、-C(O)-NR10-C1-C12亚烷基-、-C1-C12亚烷基-C(O)-、-C(O)-NR11-C1-C12亚烷基-C(O)-、-亚芳基-、-杂亚环基-、–O(CH2CH2O)a’–、–CH2CH2–O(CH2CH2O)b’–、–CH2CH2–O(CH2CH2O)c’–CH2CH2–、–O(CH2CH2O)d’–CH2CH2–、–C(O)–O(CH2CH2O)e’–、–O(CH2CH2O)f’–CH2CH2C(O)–、–C(O)–O(CH2CH2O)g’–、–C(O)–O(CH2CH2O)h’–CH2CH2–、–C(O)–O(CH2CH2O)i'–CH2CH2C(O)–、–CH2CH2–O(CH2CH2O)j’–CH2CH2C(O)–、–C(O)–NR12–CH2CH2O(CH2CH2O)k’–、–C(O)–NR13–CH2CH2O(CH2CH2O)l’–CH2CH2–、–C(O)–NR14–CH2CH2O(CH2CH2O)m’–CH2CH2C(O)–、氨基酸、2、3、4、5、6、7、8、9或10个氨基酸的肽、或其任两个或多个的组合,其中a’、b’、c’、d’、e’、f’、g’、h’、i’、j’、k’、l’和m’在每次出现时独立为0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18或19,并且其中R8、R9、R10、R11、R12、R13和R14在每次出现时独立为H、烷基或芳基;
L2在每次出现时独立为不存在、O、S、NH、-C(O)-、-C(O)-NR15-、–NR16-C(O)-、-C(O)-NR17-C1-C12亚烷基-、-C1-C12亚烷基-C(O)-、-C(O)-NR18-C1-C12亚烷基-C(O)-、-亚芳基-、-杂亚环基-、–O(CH2CH2O)a”–、–CH2CH2–O(CH2CH2O)b”–、–CH2CH2–O(CH2CH2O)c”–CH2CH2–、–O(CH2CH2O)d”–CH2CH2–、–C(O)–O(CH2CH2O)e”–、–O(CH2CH2O)f”–CH2CH2C(O)–、–C(O)–O(CH2CH2O)g”–、–C(O)–O(CH2CH2O)h”–CH2CH2–、–C(O)–O(CH2CH2O)i'’–CH2CH2C(O)–、–CH2CH2–O(CH2CH2O)j”–CH2CH2C(O)–、–C(O)–NR19–CH2CH2O(CH2CH2O)k”–、–C(O)–NR20–CH2CH2O(CH2CH2O)l”–CH2CH2–、–C(O)–NR21–CH2CH2O(CH2CH2O)m”–CH2CH2C(O)–、氨基酸、2、3、4、5、6、7、8、9或10个氨基酸的肽、或其任两个或多个的组合,其中a”、b”、c”、d”、e”、f”、g”、h”、i”、j”、k”、l”和m”在每次出现时独立为0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18或19,并且其中R15、R16、R17、R18、R19、R20和R21在每次出现时独立为H、烷基或芳基;
p在每次出现时独立为0、1、2、3、4或5;和
q在每次出现时独立为1或2。
G.如段落A-F中任一项所述的化合物,其中,肿瘤靶向结构域是
Figure BDA0004041809000000621
Figure BDA0004041809000000631
Figure BDA0004041809000000632
其中
W1、W2、W3和W4各自独立为–C(O)–、–(CH2)r–或–(CH2)s–NH-C(O)–;
r在每次出现时独立为1或2;
s在每次出现时独立为1或2;
P1、P2、P3、P4、P5、P6、P7、P8、P9、P10、P11和P12各自独立为H、甲基、苄基、4-甲氧基苄基或叔丁基;和
o、o’和o”各自独立为0或1。
H.如段落G所述的化合物,其中,P1、P2、P3、P4、P5、P6、P7、P8、P9、P10、P11和P12各自独立为H或叔丁基。
I.如段落G或段落H所述的化合物,其中,P1、P2、P3、P4、P5、P6、P7、P8、P9、P10、P11和P12各自独立为H。
J.如段落A-I中任一项所述的化合物,其中,血液-蛋白结合结构域是
Figure BDA0004041809000000641
Figure BDA0004041809000000642
其中
Y1、Y2、Y3、Y4和Y5在每次出现时独立为H、卤素或烷基;
X2和X3各自独立为O或S
t在每次出现时独立为0、1或2;
u在每次出现时独立为0或1;
v在每次出现时独立为0或1;和
w在每次出现时独立为0、1、2、3或4,任选地其中u和v不能为相同的值。
K.如段落A-I中任一项所述的化合物,其中,血液-蛋白结合结构域包含肉豆蔻酸、经取代或未取代的吲哚-2-羧酸、经取代或未取代的硫代酰胺、经取代或未取代的4-氧代-4-(5,6,7,8-四氢萘-2-基)丁酸、经取代或未取代的萘酰基磺酰胺、经取代或未取代的二苯基环己醇磷酸酯、经取代或未取代的4-碘代苯基烷酸、经取代或未取代的3-(4-碘代苯基)丙酸、经取代或未取代的2-(4-碘代苯基)乙酸或经取代或未取代的4-(4-碘代苯基)丁酸。
L.如段落A-I中任一项所述的化合物,其中,血液-蛋白结合结构域是
Figure BDA0004041809000000651
M.如段落A-L中任一项所述的化合物,其中,含sarcophagine的结构域是
Figure BDA0004041809000000661
其中
R22是H、烷基、芳基或NR23R24
R23和R24各自独立为H、烷基、芳基、烷酰基或芳酰基;
L3为不存在、-C(O)-、-C1-C12亚烷基-、-C1-C12亚烷基-C(O)-、-NR25C(O)-C1-C12亚烷基-C(O)-、-C1-C12亚烷基-NR25C(O)-C1-C12亚烷基-C(O)-、-亚芳基-、-C1-C12亚烷基-C(O)NR25-CH2-亚苯基-CH2-、-C1-C12亚烷基-C(O)NR25-CH2-亚苯基-C(O)-、-C1-C12亚烷基-NR25C(O)-C1-C12亚烷基-C(O)-C(O)NR25-CH2-亚苯基-CH2-或-C1-C12亚烷基-NR25C(O)-C1-C12亚烷基-C(O)-C(O)NR25-CH2-亚苯基-C(O)-;和
R25在每次出现时独立为H、烷基或芳基。
N.如段落M所述的化合物,其中,R22是H、甲基或NH2
O.如段落A-N中任一项所述的化合物,其中,含sarcophagine的结构域螯合64Cu+267Cu+2
P.一种药物组合物,包含如段落A-O中任一项所述的化合物和药学上可接受的载体。
Q.一种药物组合物,所述组合物包含:
有效量的段落O的化合物用于使以下中的一者或多者成像和/或检测以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌;和
药学上可接受的载体。
R.如段落Q中任一项所述的药物组合物,其中,药物组合物配制用于静脉内施用,任选地包含无菌水、林格氏溶液或等渗盐水溶液。
S.如段落Q或段落R所述的药物组合物,其中,化合物的有效量是约0.01μg至约10mg化合物/g药物组合物。
T.如段落Q-S中任一项所述的药物组合物,其中,药物组合物以可注射剂型提供。
U.一种方法,包括:
向对象施用有效量的如段落O所述的化合物用于使癌症成像和/或检测癌症;和
在施用之后,检测正电子发射、来自正电子发射和湮灭的伽马射线以及由正电子发射引起的切伦科夫辐射中的一者或多者。
V.如段落U所述的方法,其中,癌症包括以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌。
W.如段落U或段落V所述的方法,其中,对象疑似患有过表达前列腺特异性膜抗原(“PSMA”)的哺乳动物组织。
X.如段落U-W中任一项所述的方法,其中,哺乳动物组织包括以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌。
Y.如段落X所述的方法,其中,施用化合物包括肠胃外施用或静脉内施用。
Z.一种药物组合物,包含:
有效量的如段落O所述的化合物用于治疗以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌;和
药学上可接受的载体。
AA.如段落Z所述的药物组合物,其中,药物组合物配制用于静脉内施用,任选地包含无菌水、林格氏溶液或等渗盐水溶液。
AB.如段落Z或段落AA所述的药物组合物,其中,化合物的有效量是约0.01μg至约10mg化合物/g药物组合物。
AC.如段落Z-AB中任一项所述的药物组合物,其中,药物组合物以可注射剂型提供。
AD.如段落Z-AC中任一项所述的药物组合物,其中,用于治疗非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌中的一者或多者的化合物的有效量还是用于使非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌中的一者或多者成像和/或检测的化合物的有效量。
AE.一种方法,包括:
向对象施用有效量的如段落O所述的化合物用于治疗癌症。
AF.如段落AE所述的方法,其中,癌症包括以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌。
AG.如段落AE或段落AF所述的方法,其中,施用化合物包括肠胃外施用。
AH.如段落AE-AG中任一项所述的方法,其中,施用化合物包括静脉内施用。
AI.如段落AE-AH中任一项所述的方法,其中,用于治疗癌症的化合物的有效量是约0.1μg至约50μg/kg对象质量。
AJ.如段落AE-AI中任一项所述的方法,其中,化合物的有效量也是用于使癌症成像和/或检测癌症的化合物的有效量。
其他实施方式列出在以下权利要求中,以及这些权利要求有权享有的等同方案的全部范围。

Claims (26)

1.一种化合物,包含:
肿瘤靶向结构域,其包含能够识别肿瘤细胞表面上的分子靶标或与肿瘤细胞表面上的分子靶标相互作用的部分;
血液-蛋白结合结构域;和
含sarcophagine的结构域;其中,所述肿瘤靶向结构域的部分在所述血液-蛋白结合结构域的远端并且在空间上不受所述血液-蛋白结合结构域的阻碍。
2.如权利要求1所述的化合物,其中,所述肿瘤靶向结构域结合至选自以下中的一者或多者的肿瘤相关分子靶标:肿瘤特异性细胞表面蛋白、前列腺特异性膜抗原(PSMA)、生长激素抑制素肽受体-2(SSTR2)、alphavbeta3(αvβ3)、αvβ6、胃泌素释放肽受体、seprase、成纤维细胞激活蛋白α(FAP-α)、肠促胰岛素受体、葡萄糖依赖性促胰岛素多肽受体、VIP-1、NPY、叶酸受体、LHRH、神经元转运体(例如去甲肾上腺素转运体(NET))、EGFR、HER-2、VGFR、MUC-1、CEA、MUC-4、ED2、TF-抗原、内皮特异性标记、神经肽Y、uPAR、TAG-72、密封蛋白、CCK类似物、VIP、铃蟾肽、VEGFR、肿瘤特异性细胞表面蛋白、GLP-1、CXCR4、Hepsin、TMPRSS2、caspace、cMET或过表达肽受体。
3.如权利要求1或权利要求2所述的化合物,其中,所述肿瘤靶向结构域包含经修饰抗体、经修饰抗体片段、经修饰结合肽、前列腺特异性膜抗原(“PSMA”)结合肽、生长激素抑制素受体激动剂、铃蟾肽受体激动剂、seprase结合化合物、或其任一种或多种的结合片段。
4.如权利要求1至3中任一项所述的化合物,其中,所述肿瘤靶向结构域包括贝利单抗、莫格利珠单抗、博纳吐单抗、替伊莫单抗、奥妥珠单抗、奥法木单抗、利妥昔单抗、奥英妥珠单抗、帕西妥莫单抗、维布妥昔单抗、达雷木单抗、伊匹单抗、西妥昔单抗、耐昔妥珠单抗、帕尼单抗、地努妥昔单抗、帕妥珠单抗、曲妥珠单抗、恩美曲妥珠单抗、司妥昔单抗、西米普利单抗、纳武单抗、派姆单抗、奥拉妥单抗、阿特珠单抗、阿维单抗、德瓦鲁单抗、喷地肽卡罗单抗、艾洛珠单抗、地诺单抗、Ziv-阿柏西普、贝伐珠单抗、雷莫芦单抗、托西莫单抗、奥加米星吉妥珠单抗、阿仑单抗、西妥木单抗、吉妥昔单抗、尼妥珠单抗、卡妥索单抗或埃达珠单抗。
5.如权利要求1至3中任一项所述的化合物,其中,所述肿瘤靶向结构域包括以下的抗原结合片段:贝利单抗、莫格利珠单抗、博纳吐单抗、替伊莫单抗、奥妥珠单抗、奥法木单抗、利妥昔单抗、奥英妥珠单抗、帕西妥莫单抗、维布妥昔单抗、达雷木单抗、伊匹单抗、西妥昔单抗、耐昔妥珠单抗、帕尼单抗、地努妥昔单抗、帕妥珠单抗、曲妥珠单抗、恩美曲妥珠单抗、司妥昔单抗、西米普利单抗、纳武单抗、派姆单抗、奥拉妥单抗、阿特珠单抗、阿维单抗、德瓦鲁单抗、喷地肽卡罗单抗、艾洛珠单抗、地诺单抗、Ziv-阿柏西普、贝伐珠单抗、雷莫芦单抗、托西莫单抗、奥加米星吉妥珠单抗、阿仑单抗、西妥木单抗、吉妥昔单抗、尼妥珠单抗、卡妥索单抗或埃达珠单抗。
6.如权利要求1至5中任一项所述的化合物,其中,所述化合物是式I至V中的任一者或其药学上可接受的盐和/或溶剂合物:
TTD-L1-Sarc-L2-BBD (I)
Figure FDA0004041808990000021
Figure FDA0004041808990000031
其中
TTD是肿瘤靶向结构域;
BBD是血液-蛋白结合结构域;
Sarc是含sarcophagine的结构域;
X1在每次出现时独立为不存在、O、S、NH、-C(O)-、-C(O)-NR1-、–NR2-C(O)-、-C(O)-NR3-C1-C12亚烷基-、-C1-C12亚烷基-C(O)-、-C(O)-NR4-C1-C12亚烷基-C(O)-、-亚芳基-、-杂亚环基-、–O(CH2CH2O)a–、–CH2CH2–O(CH2CH2O)b–、–CH2CH2–O(CH2CH2O)c–CH2CH2–、–O(CH2CH2O)d–CH2CH2–、–C(O)–O(CH2CH2O)e–、–O(CH2CH2O)f–CH2CH2C(O)–、–C(O)–O(CH2CH2O)g–、–C(O)–O(CH2CH2O)h–CH2CH2–、–C(O)–O(CH2CH2O)i–CH2CH2C(O)–、–CH2CH2–O(CH2CH2O)j–CH2CH2C(O)–、–C(O)–NR5–CH2CH2O(CH2CH2O)k–、–C(O)–NR6–CH2CH2O(CH2CH2O)l–CH2CH2–、–C(O)–NR7–CH2CH2O(CH2CH2O)m–CH2CH2C(O)–、氨基酸、2、3、4、5、6、7、8、9或10个氨基酸的肽、或其任两个或多个的组合,其中a、b、c、d、e、f、g、h、i、j、k、l和m在每次出现时独立为0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18或19,并且其中R1、R2、R3、R4、R5、R6和R7在每次出现时独立为H、烷基或芳基;
L1在每次出现时独立为不存在、O、S、NH、-C(O)-、-C(O)-NR8-、–NR9-C(O)-、-C(O)-NR10-C1-C12亚烷基-、-C1-C12亚烷基-C(O)-、-C(O)-NR11-C1-C12亚烷基-C(O)-、-亚芳基-、-杂亚环基-、–O(CH2CH2O)a’–、–CH2CH2–O(CH2CH2O)b’–、–CH2CH2–O(CH2CH2O)c’–CH2CH2–、–O(CH2CH2O)d’–CH2CH2–、–C(O)–O(CH2CH2O)e’–、–O(CH2CH2O)f’–CH2CH2C(O)–、–C(O)–O(CH2CH2O)g’–、–C(O)–O(CH2CH2O)h’–CH2CH2–、–C(O)–O(CH2CH2O)i'–CH2CH2C(O)–、–CH2CH2–O(CH2CH2O)j’–CH2CH2C(O)–、–C(O)–NR12–CH2CH2O(CH2CH2O)k’–、–C(O)–NR13–CH2CH2O(CH2CH2O)l’–CH2CH2–、–C(O)–NR14–CH2CH2O(CH2CH2O)m’–CH2CH2C(O)–、氨基酸、2、3、4、5、6、7、8、9或10个氨基酸的肽、或其任两个或多个的组合,其中a’、b’、c’、d’、e’、f’、g’、h’、i’、j’、k’、l’和m’在每次出现时独立为0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18或19,并且其中R8、R9、R10、R11、R12、R13和R14在每次出现时独立为H、烷基或芳基;
L2在每次出现时独立为不存在、O、S、NH、-C(O)-、-C(O)-NR15-、–NR16-C(O)-、-C(O)-NR17-C1-C12亚烷基-、-C1-C12亚烷基-C(O)-、-C(O)-NR18-C1-C12亚烷基-C(O)-、-亚芳基-、-杂亚环基-、–O(CH2CH2O)a”–、–CH2CH2–O(CH2CH2O)b”–、–CH2CH2–O(CH2CH2O)c”–CH2CH2–、–O(CH2CH2O)d”–CH2CH2–、–C(O)–O(CH2CH2O)e”–、–O(CH2CH2O)f”–CH2CH2C(O)–、–C(O)–O(CH2CH2O)g”–、–C(O)–O(CH2CH2O)h”–CH2CH2–、–C(O)–O(CH2CH2O)i'’–CH2CH2C(O)–、–CH2CH2–O(CH2CH2O)j”–CH2CH2C(O)–、–C(O)–NR19–CH2CH2O(CH2CH2O)k”–、–C(O)–NR20–CH2CH2O(CH2CH2O)l”–CH2CH2–、–C(O)–NR21–CH2CH2O(CH2CH2O)m”–CH2CH2C(O)–、氨基酸、2、3、4、5、6、7、8、9或10个氨基酸的肽、或其任两个或多个的组合,其中a”、b”、c”、d”、e”、f”、g”、h”、i”、j”、k”、l”和m”在每次出现时独立为0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18或19,并且其中R15、R16、R17、R18、R19、R20和R21在每次出现时独立为H、烷基或芳基;
p在每次出现时独立为0、1、2、3、4或5;和
q在每次出现时独立为1或2。
7.如权利要求1至6中任一项所述的化合物,其中,所述肿瘤靶向结构域是
Figure FDA0004041808990000051
Figure FDA0004041808990000061
Figure FDA0004041808990000062
其中
W1、W2、W3和W4各自独立为–C(O)–、–(CH2)r–或–(CH2)s–NH-C(O)–;
r在每次出现时独立为1或2;
s在每次出现时独立为1或2;
P1、P2、P3、P4、P5、P6、P7、P8、P9、P10、P11和P12各自独立为H、甲基、苄基、4-甲氧基苄基或叔丁基;和
o、o’和o”各自独立为0或1。
8.如权利要求7所述的化合物,其中,P1、P2、P3、P4、P5、P6、P7、P8、P9、P10、P11和P12各自独立为H或叔丁基。
9.如权利要求7或权利要求8所述的化合物,其中,P1、P2、P3、P4、P5、P6、P7、P8、P9、P10、P11和P12各自独立为H。
10.如权利要求1至9中任一项所述的化合物,其中,所述血液-蛋白结合结构域是
Figure FDA0004041808990000071
Figure FDA0004041808990000072
其中
Y1、Y2、Y3、Y4和Y5在每次出现时独立为H、卤素或烷基;
X2和X3各自独立为O或S
t在每次出现时独立为0、1或2;
u在每次出现时独立为0或1;
v在每次出现时独立为0或1;和
w在每次出现时独立为0、1、2、3或4,任选地其中u和v不能为相同的值。
11.如权利要求1至9中任一项所述的化合物,其中,所述血液-蛋白结合结构域包含肉豆蔻酸、经取代或未取代的吲哚-2-羧酸、经取代或未取代的硫代酰胺、经取代或未取代的4-氧代-4-(5,6,7,8-四氢萘-2-基)丁酸、经取代或未取代的萘酰基磺酰胺、经取代或未取代的二苯基环己醇磷酸酯、经取代或未取代的4-碘代苯基烷酸、经取代或未取代的3-(4-碘代苯基)丙酸、经取代或未取代的2-(4-碘代苯基)乙酸、或经取代或未取代的4-(4-碘代苯基)丁酸。
12.如权利要求1至9中任一项所述的化合物,其中,所述血液-蛋白结合结构域是
Figure FDA0004041808990000081
13.如权利要求1至12中任一项所述的化合物,其中,所述含sarcophagine的结构域是
Figure FDA0004041808990000091
其中
R22是H、烷基、芳基或NR23R24
R23和R24各自独立为H、烷基、芳基、烷酰基或芳酰基;
L3为不存在、-C(O)-、-C1-C12亚烷基-、-C1-C12亚烷基-C(O)-、-NR25C(O)-C1-C12亚烷基-C(O)-、-C1-C12亚烷基-NR25C(O)-C1-C12亚烷基-C(O)-、-亚芳基-、-C1-C12亚烷基-C(O)NR25-CH2-亚苯基-CH2-、-C1-C12亚烷基-C(O)NR25-CH2-亚苯基-C(O)-、-C1-C12亚烷基-NR25C(O)-C1-C12亚烷基-C(O)-C(O)NR25-CH2-亚苯基-CH2-或-C1-C12亚烷基-NR25C(O)-C1-C12亚烷基-C(O)-C(O)NR25-CH2-亚苯基-C(O)-;和
R25在每次出现时独立为H、烷基或芳基。
14.如权利要求13所述的化合物,其中,R22是H、甲基或NH2
15.如权利要求1至14中任一项所述的化合物,其中,所述含sarcophagine的结构域螯合64Cu+267Cu+2
16.一种组合物,包含如权利要求1至15中任一项所述的化合物和药学上可接受的载体。
17.一种药物组合物,所述组合物包含:
有效量的如权利要求15所述的化合物用于使以下中的一者或多者成像和/或检测以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌;和
药学上可接受的载体。
18.一种方法,包括:
向对象施用有效量的如权利要求15所述的化合物用于使癌症成像和/或检测癌症;和
在所述施用之后,检测正电子发射、来自正电子发射和湮灭的伽马射线以及由正电子发射引起的切伦科夫辐射中的一者或多者。
19.如权利要求18所述的方法,其中,所述癌症包括以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌。
20.如权利要求18或权利要求19所述的方法,其中,所述对象疑似患有过表达前列腺特异性膜抗原(“PSMA”)的哺乳动物组织。
21.如权利要求18至20中任一项所述的方法,其中,所述哺乳动物组织包括以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌。
22.如权利要求21所述的方法,其中,施用所述化合物包括肠胃外施用或静脉内施用。
23.一种药物组合物,包含
有效量的如权利要求15所述的化合物用于治疗以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌;和
药学上可接受的载体。
24.一种方法,包括:
向对象施用有效量的如权利要求15所述的化合物用于治疗癌症。
25.如权利要求24所述的方法,其中,所述癌症包括以下中的一者或多者:非小细胞肺癌、小细胞肺癌、膀胱癌、结肠癌、胆囊癌、胰腺癌、食道癌、黑素瘤、肝癌、原发性胃腺癌、原发性结直肠腺癌、肾细胞癌、前列腺癌、神经内分泌瘤、垂体瘤、血管活性肠肽分泌肿瘤、神经胶质瘤、乳腺癌、肾上腺皮质癌、宫颈癌、外阴癌、子宫内膜癌、原发性卵巢癌、转移性卵巢癌和转移癌。
26.如权利要求24或权利要求25所述的方法,其中,施用所述化合物包括肠胃外施用或静脉内施用。
CN202180048675.1A 2020-05-06 2021-04-14 含铜治疗诊断性化合物及使用方法 Pending CN115989042A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063020838P 2020-05-06 2020-05-06
US63/020,838 2020-05-06
PCT/US2021/027276 WO2021225760A1 (en) 2020-05-06 2021-04-14 Copper-containing theragnostic compounds and methods of use

Publications (1)

Publication Number Publication Date
CN115989042A true CN115989042A (zh) 2023-04-18

Family

ID=78468268

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180048675.1A Pending CN115989042A (zh) 2020-05-06 2021-04-14 含铜治疗诊断性化合物及使用方法

Country Status (10)

Country Link
US (1) US20230165979A1 (zh)
EP (1) EP4146236A1 (zh)
JP (1) JP2023524977A (zh)
KR (1) KR20230027004A (zh)
CN (1) CN115989042A (zh)
AU (1) AU2021267477A1 (zh)
CA (1) CA3178858A1 (zh)
IL (1) IL297946A (zh)
MX (1) MX2022013783A (zh)
WO (1) WO2021225760A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230277697A1 (en) * 2022-03-03 2023-09-07 Serena Valentini Theragnostic method for cancer patients
WO2024026072A1 (en) 2022-07-28 2024-02-01 Ratio Therapeutics, Inc. Fibroblast activation protein-targeted compositions and methods of use thereof
WO2024064969A2 (en) * 2022-09-23 2024-03-28 Nuclidium Ag High-purity copper radiopharmaceutical compositions and diagnostic and therapeutic uses thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130237686A1 (en) * 2012-03-06 2013-09-12 University Of Southern California Methods and Compositions for the Rapid Synthesis of Radiometal-Labeled Probes
WO2019222851A1 (en) * 2018-05-23 2019-11-28 Provincial Health Services Authority Radiolabeled melanocortin 1 receptor-specific alpha-melanocyte-stimulating hormone analogues for imaging or therapy
CN110612126A (zh) * 2017-04-05 2019-12-24 康奈尔大学 可用于成像和抗肿瘤治疗的具有可调的药代动力学的三功能构建体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160082137A1 (en) * 2013-07-25 2016-03-24 Sloan-Kettering Institute For Cancer Research Clinical Multimodality-Tools for Pre-And Intraoperative Insulinoma Diagnostics
EA037778B1 (ru) * 2013-10-18 2021-05-20 Дойчес Кребсфоршунгсцентрум Меченые ингибиторы простатического специфического мембранного антигена (псма), их применение в качестве агентов для визуализации и фармацевтических агентов для лечения рака предстательной железы
KR102484725B1 (ko) * 2016-11-04 2023-01-06 클라리티 파마슈티컬스 리미티드 방사선 요법 및 진단 영상용 제형
JP7128528B2 (ja) * 2016-12-16 2022-08-31 ジ・オーストラリアン・ナショナル・ユニバーシティー 標的投与のための放射性標識物質

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130237686A1 (en) * 2012-03-06 2013-09-12 University Of Southern California Methods and Compositions for the Rapid Synthesis of Radiometal-Labeled Probes
CN110612126A (zh) * 2017-04-05 2019-12-24 康奈尔大学 可用于成像和抗肿瘤治疗的具有可调的药代动力学的三功能构建体
WO2019222851A1 (en) * 2018-05-23 2019-11-28 Provincial Health Services Authority Radiolabeled melanocortin 1 receptor-specific alpha-melanocyte-stimulating hormone analogues for imaging or therapy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAMES M KELLY等: "reclinical Evaluation of a High-Affinity Sarcophagine-Containing PSMA Ligand for 64Cu/67Cu-Based Theranostics in Prostate Cancer", 《MOL PHARM.》, vol. 17, 14 April 2020 (2020-04-14), pages 1954 - 1962 *

Also Published As

Publication number Publication date
US20230165979A1 (en) 2023-06-01
EP4146236A1 (en) 2023-03-15
KR20230027004A (ko) 2023-02-27
MX2022013783A (es) 2023-04-19
CA3178858A1 (en) 2021-11-11
AU2021267477A1 (en) 2022-12-01
IL297946A (en) 2023-01-01
JP2023524977A (ja) 2023-06-14
WO2021225760A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
CN110612126B (zh) 可用于成像和抗肿瘤治疗的具有可调的药代动力学的三功能构建体
US12103922B2 (en) Macrocyclic complexes of alpha-emitting radionuclides and their use in targeted radiotherapy of cancer
JP6763069B2 (ja) 特にcck2受容体陽性腫瘍の診断および/または治療に使用するためのミニガストリン類似体
CN115989042A (zh) 含铜治疗诊断性化合物及使用方法
JP6576828B2 (ja) ニューロテンシン受容体リガンド
US20210121584A1 (en) Trifunctional constructs with tunable pharmacokinetics useful in imaging and anti-tumor therapies
CA2998420A1 (en) Compositions for therapeutics, targeted pet imaging and methods of their use
TWI605815B (zh) 用於製備包含阿米福丁與胺基酸之腎保護劑的組成物及方法
JP2023512660A (ja) がんに対するペプチド受容体を標的とした放射性核種療法の治療性能を改善するための構造最適化法
JP2003517037A (ja) 新規ソマトスタチン類似体
DK2795317T3 (en) Composition for use in a cancer selection method
Pujatti et al. Radiolabeling of substance p with lutetium-177 and biodistribution study in rat pancreatic tumor xenografted nude mice
JP2023536267A (ja) アルファ放射標識ガストリンアナログおよびcckb受容体陽性疾患の処置方法におけるその使用
JP2023536268A (ja) 特にcckb受容体陽性の癌もしくは腫瘍の処置および/または診断に使用するための、ラパログと放射標識ガストリンアナログとを含む組成物
US20220280662A1 (en) Compositions and methods for the treatment and imaging of cancer
JP2005068046A (ja) ソマトスタチンアナログ誘導体およびその利用
JP2015083546A (ja) 癌の原発巣・骨転移の検査・治療用放射性標識薬剤

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination