CN115986567A - Laser with double-end surface emission and preparation method thereof - Google Patents
Laser with double-end surface emission and preparation method thereof Download PDFInfo
- Publication number
- CN115986567A CN115986567A CN202111207058.XA CN202111207058A CN115986567A CN 115986567 A CN115986567 A CN 115986567A CN 202111207058 A CN202111207058 A CN 202111207058A CN 115986567 A CN115986567 A CN 115986567A
- Authority
- CN
- China
- Prior art keywords
- waveguide layer
- layer
- grating
- upper waveguide
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 50
- 238000005530 etching Methods 0.000 claims description 28
- 229910052681 coesite Inorganic materials 0.000 claims description 25
- 229910052906 cristobalite Inorganic materials 0.000 claims description 25
- 239000000377 silicon dioxide Substances 0.000 claims description 25
- 235000012239 silicon dioxide Nutrition 0.000 claims description 25
- 229910052682 stishovite Inorganic materials 0.000 claims description 25
- 229910052905 tridymite Inorganic materials 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 14
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 12
- 238000000206 photolithography Methods 0.000 claims description 11
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 238000005253 cladding Methods 0.000 claims description 10
- 238000005468 ion implantation Methods 0.000 claims description 9
- 238000002955 isolation Methods 0.000 claims description 9
- 229910004283 SiO 4 Inorganic materials 0.000 claims description 8
- 238000001039 wet etching Methods 0.000 claims description 6
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 claims description 5
- 230000007547 defect Effects 0.000 claims description 3
- 238000001259 photo etching Methods 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 5
- 238000004891 communication Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910001868 water Inorganic materials 0.000 description 1
Images
Landscapes
- Semiconductor Lasers (AREA)
Abstract
本发明一方面提供了一种双端面出光激光器及其制备方法,双端面出光激光器包括:衬底;后光栅区,形成在衬底上,后光栅区两侧由近至远依次对称分布有相位区、增益区、前光栅区、调制器区;其中,后光栅区及前光栅区由光栅层构成,后光栅区及前光栅区的光栅层表面具有光栅。本发明实现了激光器速率和波长调谐性能翻倍的效果,为光通信系统提供一种新的光发射芯片的解决方案。
One aspect of the present invention provides a double-end surface light-emitting laser and a preparation method thereof. The double-end surface light-emitting laser includes: a substrate; a rear grating area formed on the substrate, and phases are symmetrically distributed on both sides of the rear grating area from near to far. area, gain area, front grating area, and modulator area; wherein, the rear grating area and the front grating area are composed of grating layers, and the grating layer surfaces of the rear grating area and the front grating area have gratings. The invention realizes the effect of doubling the laser speed and wavelength tuning performance, and provides a new solution for the optical emission chip for the optical communication system.
Description
技术领域technical field
本发明涉及半导体光电子集成器件领域,涉及激光器,特别涉及一种双端面出光激光器及其制备方法。The invention relates to the field of semiconductor optoelectronic integrated devices, and relates to a laser, in particular to a double-end light emitting laser and a preparation method thereof.
背景技术Background technique
随着5G网络的快速发展,光纤通信系统对于光发射芯片的性能提出了更高的要求,其中高速率和多波长覆盖是满足互联网需要的两个重要发展方向。光发射芯片的速率由于受物理机制和工艺精度的制约,速率的提高会越来越难,为解决速率的提升,常采用带宽扩展技术,外调制技术等;多波长覆盖是为了充分利用现有网络的光纤资源,满足互联网不同的应用场景,目前多波长方案多采用并联多个固定波长激光器或者采用波长可调谐激光器来实现。这些技术使用,会带来多个问题:芯片的集成度变大,尺寸变大,功耗变高和成本增加等。With the rapid development of 5G networks, optical fiber communication systems put forward higher requirements for the performance of optical transmitter chips, among which high speed and multi-wavelength coverage are two important development directions to meet the needs of the Internet. The speed of the optical transmitter chip is restricted by the physical mechanism and process precision, and it will become more and more difficult to increase the speed. To solve the speed increase, bandwidth expansion technology, external modulation technology, etc. are often used; multi-wavelength coverage is to make full use of the existing The optical fiber resources of the network meet different application scenarios of the Internet. At present, the multi-wavelength solution is mostly implemented by connecting multiple fixed-wavelength lasers in parallel or using wavelength-tunable lasers. The use of these technologies will bring many problems: the integration of the chip becomes larger, the size becomes larger, the power consumption becomes higher, and the cost increases.
发明内容Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
有鉴于此,本发明一方面提供了一种双端面出光激光器,另一方面提供了一种双端面出光激光器的制备方法,用于至少部分解决上述问题。In view of this, on the one hand, the present invention provides a double-end surface-emitting laser, and on the other hand, it provides a preparation method of a double-end surface-emitting laser, which is used to at least partially solve the above problems.
(二)技术方案(2) Technical solution
本发明一方面提供了一种双端面出光激光器,包括:衬底;后光栅区,形成在衬底上,后光栅区两侧由近至远依次对称分布有相位区、增益区、前光栅区、调制器区;其中,后光栅区及前光栅区由光栅层构成,后光栅区及前光栅区的光栅层表面具有光栅。On the one hand, the present invention provides a double-end light-emitting laser, including: a substrate; a rear grating area, formed on the substrate, and a phase area, a gain area, and a front grating area are symmetrically distributed on both sides of the rear grating area from near to far. . The modulator area; wherein, the rear grating area and the front grating area are composed of a grating layer, and the surface of the grating layer in the rear grating area and the front grating area has a grating.
可选地,调制器区与增益区的带隙波长相比短10~100nm。Optionally, the modulator region is 10-100 nm shorter than the bandgap wavelength of the gain region.
可选地,后光栅区、前光栅区及相位区与增益区的带隙波长相比短90~200nm。Optionally, the bandgap wavelength of the rear grating region, the front grating region and the phase region is 90-200 nm shorter than that of the gain region.
可选地,双端面出光激光器还包括:增益区由依次叠设在衬底上的第一下波导层、第一多量子阱有源区及第一上波导层构成;调制器区由依次叠设在衬底上的第二下波导层、第二多量子阱有源区及第二上波导层构成;倒台浅脊波导,形成于第一上波导层、第二上波导层及光栅层上,倒台浅脊波导从下到上包括包层、电接触层;P电极,形成于倒台浅脊波导表面;N电极,形成于衬底底部。Optionally, the double-end surface-emitting laser further includes: the gain region is composed of a first lower waveguide layer, a first multi-quantum well active region, and a first upper waveguide layer stacked on the substrate in sequence; the modulator region is composed of sequentially stacked The second lower waveguide layer, the second multi-quantum well active region and the second upper waveguide layer are formed on the substrate; the inverted shallow ridge waveguide is formed on the first upper waveguide layer, the second upper waveguide layer and the grating layer , the inverted shallow ridge waveguide includes a cladding layer and an electrical contact layer from bottom to top; the P electrode is formed on the surface of the inverted shallow ridge waveguide; the N electrode is formed on the bottom of the substrate.
可选地,光栅层厚度为第一下波导层、第一多量子阱有源区及第一上波导层的总厚度。Optionally, the thickness of the grating layer is the total thickness of the first lower waveguide layer, the first multiple quantum well active region and the first upper waveguide layer.
本发明另一方面提供了一种如上的双端面出光激光器的制备方法,包括:在衬底上依次形成第一下波导层、第一多量子阱有源区及第一上波导层;在第一上波导层制备第一SiO2条形结构;刻蚀掉除第一SiO2条形结构覆盖的第一下波导层、第一多量子阱有源区及第一上波导层并对接生长第二下波导层、第二多量子阱有源区及第二上波导层;除去第一SiO2条形结构并在第一上波导层及第二上波导层制备第二SiO2条形结构;刻蚀掉除第二SiO2条形结构覆盖的第一下波导层、第一多量子阱有源区、第一上波导层、第二下波导层、第二多量子阱有源区及第二上波导层并对接生长光栅层;在光栅层表面制备光栅;在第一上波导层、第二上波导层及光栅层表面形成包层、电接触层并将包层、电接触层制备层倒台浅脊波导;对电接触层进行光刻并进行离子注入;在倒台浅脊波导上制备P电极及衬底底部制作N电极。Another aspect of the present invention provides a method for manufacturing the above-mentioned double-end surface emitting laser, including: sequentially forming a first lower waveguide layer, a first multi-quantum well active region, and a first upper waveguide layer on a substrate; Prepare the first SiO2 strip structure from an upper waveguide layer; etch away the first lower waveguide layer covered by the first SiO2 strip structure, the first multi-quantum well active region and the first upper waveguide layer, and grow the second The second lower waveguide layer, the second multi-quantum well active region and the second upper waveguide layer; the first SiO2 strip structure is removed and the second SiO2 strip structure is prepared on the first upper waveguide layer and the second upper waveguide layer; Etching away the first lower waveguide layer covered by the second SiO strip structure, the first multi-quantum well active region, the first upper waveguide layer, the second lower waveguide layer, the second multi-quantum well active region and the first multi-quantum well active region The second upper waveguide layer is connected to the growing grating layer; the grating is prepared on the surface of the grating layer; the cladding layer and the electrical contact layer are formed on the surface of the first upper waveguide layer, the second upper waveguide layer and the grating layer, and the cladding layer and the electrical contact layer are prepared. Inverting the shallow ridge waveguide; performing photolithography and ion implantation on the electrical contact layer; preparing a P electrode on the inverted shallow ridge waveguide and an N electrode at the bottom of the substrate.
可选地,在第一上波导层制备第一SiO2条形结构包括:在第一上波导层上生长SiO2层;Optionally, preparing the first SiO2 strip structure on the first upper waveguide layer includes: growing a SiO2 layer on the first upper waveguide layer;
采用光刻和湿法腐蚀在增益区及增益区制备第一SiO2条形结构。The first SiO 2 strip structure is prepared in the gain region and the gain region by photolithography and wet etching.
可选地,除去第一SiO2条形结构并在第一上波导层及第二上波导层制备第二SiO2条形结构包括:腐蚀除去第一SiO2条形结构;在第二上波导层及第一上波导层上生长SiO2层;采用光刻和湿法腐蚀在调制器区及调制器区和增益区及增益区制备第二SiO2条形结构。Optionally, removing the first SiO2 strip structure and preparing the second SiO2 strip structure on the first upper waveguide layer and the second upper waveguide layer includes: removing the first SiO2 strip structure by etching; The SiO 2 layer is grown on the layer and the first upper waveguide layer; the second SiO 2 strip structure is prepared in the modulator area, the modulator area, the gain area and the gain area by photolithography and wet etching.
可选地,刻蚀掉除第一SiO2条形结构覆盖的第一下波导层、第一多量子阱有源区及第一上波导层及刻蚀掉除第二SiO2条形结构覆盖的第一下波导层、第一多量子阱有源区、第一上波导层、第二下波导层、第二多量子阱有源区及第二上波导层包括:采用CH4和H2进行RIE刻蚀;刻蚀之后分别采用三氯乙烯、丙酮、乙醇对衬底清洗;采用H2SiO4和H2O2腐蚀刻蚀的缺陷。Optionally, etch away the first lower waveguide layer covered by the first SiO2 strip structure, the first multi-quantum well active region and the first upper waveguide layer and etch away the second SiO2 Strip structure covered The first lower waveguide layer, the first multi-quantum well active region, the first upper waveguide layer, the second lower waveguide layer, the second multi-quantum well active region and the second upper waveguide layer include: using CH 4 and H 2 Perform RIE etching; after etching, the substrate is cleaned with trichlorethylene, acetone, and ethanol; H 2 SiO 4 and H 2 O 2 are used to etch the etched defects.
可选地,对电接触层进行光刻并进行离子注入包括:在电接触层光刻出隔离沟图形;腐蚀出电隔离沟并进行He离子注入。Optionally, performing photolithography on the electrical contact layer and performing ion implantation includes: etching an isolation trench pattern on the electrical contact layer; etching the electrical isolation trench and performing He ion implantation.
(三)有益效果(3) Beneficial effects
本发明通过背靠背把两个波长可调谐电吸收激光器集成在一起,共用分布布拉格光栅区,从两个端面发射激光,实现速率和波长调谐性能翻倍的效果,同时降低布拉格光栅区的功耗,为光通信系统提供一种新的光发射芯片的解决方案。The present invention integrates two wavelength tunable electro-absorption lasers back to back, shares the distributed Bragg grating area, emits laser light from two end faces, realizes the effect of doubling the speed and wavelength tuning performance, and reduces the power consumption of the Bragg grating area at the same time. A solution for a new light emitting chip is provided for an optical communication system.
附图说明Description of drawings
图1示意性示出了本发明提供的双端面出光激光器的制备方法的流程图;Fig. 1 schematically shows the flow chart of the preparation method of the double end surface emitting laser provided by the present invention;
图2示意性示出了本发明提供的双端面出光激光器制备方法的步骤S1的示意图;FIG. 2 schematically shows a schematic diagram of step S1 of the method for preparing a double-end surface emitting laser provided by the present invention;
图3示意性示出了本发明提供的双端面出光激光器制备方法的步骤S2的俯视图;FIG. 3 schematically shows a top view of step S2 of the method for manufacturing a double-end surface emitting laser provided by the present invention;
图4及图5示意性示出了本发明提供的双端面出光激光器制备方法的步骤S3的示意图;FIG. 4 and FIG. 5 schematically show a schematic diagram of step S3 of the method for manufacturing a double-end surface emitting laser provided by the present invention;
图6示意性示出了本发明提供的双端面出光激光器制备方法的步骤S4的示意图;Fig. 6 schematically shows a schematic diagram of step S4 of the preparation method of a double-end surface emitting laser provided by the present invention;
图7及图8示意性示出了本发明提供的双端面出光激光器制备方法的步骤S5的示意图;Fig. 7 and Fig. 8 schematically show the schematic diagram of the step S5 of the preparation method of the double end surface emitting laser provided by the present invention;
图9示意性示出了本发明提供的双端面出光激光器制备方法的步骤S6的示意图;FIG. 9 schematically shows a schematic diagram of step S6 of the method for preparing a double-end surface emitting laser provided by the present invention;
图10示意性示出了本发明提供的双端面出光激光器制备方法的步骤S7的示意图;FIG. 10 schematically shows a schematic diagram of step S7 of the method for manufacturing a double-end surface emitting laser provided by the present invention;
图11示意性示出了本发明提供的双端面出光激光器制备方法的步骤S8的示意图;FIG. 11 schematically shows a schematic diagram of step S8 of the method for preparing a double-end surface emitting laser provided by the present invention;
图12示意性示出了本发明提供的双端面出光激光器制备方法的步骤S9的示意图。FIG. 12 schematically shows a schematic diagram of step S9 of the method for manufacturing a double-end surface emitting laser provided by the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
参见图12,图12示意性示出了本发明提供的双端面出光激光器的结构示意图,本发明提供了一种双端面出光激光器,包括:衬底;后光栅区,形成在衬底上,后光栅区两侧由近至远依次对称分布有相位区、增益区、前光栅区、调制器区;其中,后光栅区及前光栅区由光栅层构成,后光栅区及前光栅区的光栅层表面具有光栅;相位区由与光栅层相同的材料构成;增益区由依次叠设在衬底上的第一下波导层、第一多量子阱有源区及第一上波导层构成;调制器区由依次叠设在衬底上的第二下波导层、第二多量子阱有源区及第二上波导层构成。如图12所示,其中1和5区为调制器区,2和6区为后光栅区,3和7区为激光器增益区,4和8区为相位区,9区为后光栅区,各区之间用虚线区分。其中,第一下波导层、第一多量子阱有源区及第一上波导层与第二下波导层、第二多量子阱有源区及第二上波导层厚度根据性能分别独立优化;光栅层厚度为第一下波导层、第一多量子阱有源区及第一上波导层的总厚度。Referring to FIG. 12, FIG. 12 schematically shows a schematic structural view of a double-end surface emitting laser provided by the present invention. The present invention provides a double-end surface emitting laser, including: a substrate; a rear grating region, formed on the substrate, and a rear On both sides of the grating area, there are phase area, gain area, front grating area, and modulator area symmetrically distributed in order from near to far; among them, the rear grating area and the front grating area are composed of grating layers, and the grating layers of the rear grating area and the front grating area The surface has a grating; the phase region is composed of the same material as the grating layer; the gain region is composed of the first lower waveguide layer, the first multi-quantum well active region and the first upper waveguide layer stacked on the substrate; the modulator The region is composed of the second lower waveguide layer, the second multi-quantum well active region and the second upper waveguide layer stacked on the substrate in sequence. As shown in Figure 12,
本发明提供的双端面出光激光器中把两个波长可调谐电吸收激光器集成在一起,共用分布布拉格光栅区,从两个端面发射激光,实现速率和波长调谐性能翻倍的效果。In the dual-end surface light-emitting laser provided by the present invention, two wavelength-tunable electro-absorption lasers are integrated together, share the distributed Bragg grating area, and emit laser light from two end surfaces, thereby achieving the effect of doubling the speed and wavelength tuning performance.
在本发明的一实施例中,调制器区与增益区的带隙波长相比短10~100nm。后光栅区、前光栅区及相位区与增益区的带隙波长相比短90~200nm。调制器带隙波长短,在工作时加反向偏压,吸收谱红移,吸收激光器的产生的激光;而光栅区和相位区带隙波长短,激光器的产生的激光经过这些区域时,激光不被吸收。In one embodiment of the present invention, the bandgap wavelength of the modulator region is 10-100 nm shorter than that of the gain region. The bandgap wavelength of the rear grating region, front grating region and phase region is 90-200nm shorter than that of the gain region. The bandgap wavelength of the modulator is short, and the reverse bias is applied during operation, the absorption spectrum is red-shifted, and the laser light generated by the laser is absorbed; while the bandgap wavelength of the grating area and the phase area is short, when the laser light generated by the laser passes through these areas, the laser light Not absorbed.
在本发明的又一实施例中,双端面出光激光器还包括:倒台浅脊波导,形成于第一上波导层、第二上波导层及光栅层上,倒台浅脊波导从下到上包括包层、电接触层;P电极,形成于倒台浅脊波导表面;N电极,形成于衬底底部。In yet another embodiment of the present invention, the double-end surface light-emitting laser further includes: an inverted shallow ridge waveguide formed on the first upper waveguide layer, the second upper waveguide layer and the grating layer, and the inverted shallow ridge waveguide includes a package from bottom to top. Layer, electrical contact layer; P electrode, formed on the surface of the inverted shallow ridge waveguide; N electrode, formed on the bottom of the substrate.
参见图1,图1示意性示出了本发明另一方面还提供了一种如上所述的双端面出光激光器的制备方法的流程图,包括:Referring to FIG. 1, FIG. 1 schematically shows another aspect of the present invention also provides a flow chart of a method for manufacturing a double-end surface emitting laser as described above, including:
S1、在衬底10上依次形成第一下波导层11、第一多量子阱有源区12及第一上波导层13;S1, sequentially forming a first
S2、在第一上波导层13制备第一SiO2条形结构14;S2. Prepare a first SiO2 strip structure 14 on the first
S3、刻蚀掉除第一SiO2条形结构14覆盖的第一下波导层11、第一多量子阱有源区12及第一上波导层13并对接生长第二下波导层15、第二多量子阱有源区16及第二上波导层17;S3, etch away the first
S4、除去第一SiO2条形结构14并在第一上波导层13及第二上波导层17制备第二SiO2条形结构18;S4, removing the first SiO 2 strip structure 14 and preparing a second SiO 2 strip structure 18 on the first
S5、刻蚀掉除第二SiO2条形结构18覆盖的第一下波导层11、第一多量子阱有源区12、第一上波导层13、第二下波导层15、第二多量子阱有源区16及第二上波导层17并对接生长光栅层19;S5, etch away the first
S6、在光栅层19表面制备光栅20;S6, preparing a
S7、在第一上波导层13、第二上波导层17及光栅层19表面形成包层21、电接触层22并将包层21、电接触层22制备层倒台浅脊波导;S7, forming a
S8、对电接触层22进行光刻并进行离子注入;S8, performing photolithography and ion implantation on the
S9、在倒台浅脊波导上制备P电极24及衬底10底部制作N电极25。S9 , preparing the
其中,步骤S2包括:在第一上波导层13上生长SiO2层;采用光刻和湿法腐蚀在增益区3及增益区7制备第一SiO2条形结构14。Wherein, step S2 includes: growing a SiO 2 layer on the first
步骤S4包括:腐蚀除去第一SiO2条形结构14;第二上波导层17及第一上波导层13上生长SiO2层;采用光刻和湿法腐蚀在调制器区1及调制器区5和增益区3及增益区7制备第二SiO2条形结构18。Step S4 includes: removing the first SiO2 strip structure 14 by etching; growing a SiO2 layer on the second
步骤S3及步骤S5包括:采用CH4和H2进行RIE刻蚀;刻蚀之后分别采用三氯乙烯、丙酮、乙醇对衬底10清洗;采用H2SiO4和H2O2腐蚀刻蚀的缺陷。Steps S3 and S5 include: performing RIE etching with CH 4 and H 2 ; cleaning the
步骤S8包括:在电接触层22光刻出隔离沟图形;腐蚀出电隔离沟并进行He离子注入。Step S8 includes: etching an isolation trench pattern on the
下面结合具体的实施例进行说明。The following will be described in conjunction with specific embodiments.
S1、选择N型磷化铟衬底10,利用有机金属化合物气相沉积(MOCVD)在衬底上依次生长InGaAsP下波导层11(带隙波长为1200nm)、多量子阱有源区12(带隙波长为1550nm)、上波导层13(带隙波长为1200nm)。生长温度为680℃,生长压力为100mbar,上下波导层的厚度均为90nm,5个压应变阱层,每层厚度为5nm,6个张应变垒层,每层厚度为9nm,多量子阱有源区12被下波导层11和上波导层13夹在中间形成三明治结构。如图2所示。S1, select the N-type
S2、在上波导层13上面生长150nm厚的SiO2层,生长温度为300℃,生长压力为100Pa;并采用1μm厚光刻胶掩膜,利用缓冲氧化物腐蚀液(BOE)腐蚀出30μm宽的第一SiO2条形结构14,用来保护激光器增益区,俯视图如图3所示。S2, grow a 150nm thick SiO 2 layer on the
S3、采用RIE方法刻蚀去掉激光器增益区(3和7区)掩膜以外的InGaAsP材料,反应刻蚀压力为0.067mbar,功率为150W,反应气体为CH4∶H2=18∶45,刻蚀时间为5分钟,如图4所示。分别用三氯乙烯、丙酮、乙醇进行衬底10清洗,用H2SiO4和H2O2腐蚀掉RIE刻蚀剩余的InGaAsP材料,把衬底甩干后在浓H2SiO4溶液中浸泡20秒进行表面钝化;然后用去离子水冲干净并甩干;利用MOCVD依次生长InGaAsP下波导层15(带隙波长为1200nm)、多量子阱有源区16(带隙波长为1500nm)、上波导层17(带隙波长为1200nm)。生长温度为680℃,生长压力为100mbar,上下波导层的厚度均为90nm,5个压应变阱层,每层厚度为9nm,6个张应变垒层,每层厚度为5nm,如图5所示。S3. Use the RIE method to etch and remove the InGaAsP material outside the mask of the laser gain region (3 and 7 regions), the reaction etching pressure is 0.067mbar, the power is 150W, the reaction gas is CH4:H 2 =18:45, etch The time is 5 minutes, as shown in Figure 4. Clean the
S4、腐蚀去掉第一SiO2条形结构14,再次生长SiO2层,采用光刻和湿法腐蚀出激光器增益区和调制器区的20μm宽的第二SiO2条形结构18,如图6所示。S4, etch away the first SiO2 strip structure 14, grow the SiO2 layer again, use photolithography and wet etching to get the second SiO2 strip structure 18 with a width of 20 μm in the laser gain region and modulator region, as shown in Figure 6 shown.
S5、采用RIE方法刻蚀去掉第二SiO2条形结构18以外的InGaAsP材料,反应刻蚀压力为0.067mbar,功率为150W,反应气体为CH4∶H2=18∶45,刻蚀时间为5分钟,如图7所示。分别用三氯乙烯、丙酮、乙醇进行衬底10清洗,用H2SiO4和H2O2腐蚀掉RIE刻蚀剩余的InGaAsP材料,把衬底10甩干后在浓H2SiO4溶液中浸泡20秒进行表面钝化;然后用去离子水冲干净并甩干;利用MOCVD对接生长前后光栅区(2、6和9区)和相位区(4和8区)光栅层19,采用InGaAsP材料,生长温度为630℃,生长压力为100mbar,其带隙波长(1400nm)小于激光器发光波长,如图8所示。S5. Use RIE method to etch away the InGaAsP material other than the second SiO 2 strip structure 18, the reaction etching pressure is 0.067mbar, the power is 150W, the reaction gas is CH 4 : H 2 =18:45, and the etching time is 5 minutes, as shown in Figure 7. Clean the
S6、在前后光栅区(2、6和9区)的光栅层19表面制作光栅20,如图9所示。S6. Fabricate a grating 20 on the surface of the
S7、在第一上波导层13、第二上波导层17及光栅层19表面MOCVD生长P型Zn掺杂InP包层21(1500nm厚)和InGaAs电接触层22(200nm厚),生长温度为630℃,生长压力为100mbar。在包层21及电接触层22上,利用1μm光刻胶,光刻出3μm条形掩膜,先后采用腐蚀液Br2∶HBr∶H2O=1∶25∶80(腐蚀时间为40秒)和HCl∶H2O=9∶1(腐蚀时间为3分钟)制作出倒台浅脊波导结构,截面图如图10所示。S7. MOCVD growth of P-type Zn-doped InP cladding layer 21 (1500nm thick) and InGaAs electrical contact layer 22 (200nm thick) on the surface of the first
S8、在电接触层22上用3μm厚光刻胶光刻出隔离沟图形,用腐蚀液H2SiO4∶H2O2∶H2O=3∶1∶1腐蚀10秒,腐蚀出各区之间的电隔离沟(宽度为50μm),同时对隔离沟进行He离子注入23,注入能量为200KeV,注入剂量为1014cm-2,在各功能区之间实现电隔离,如图11所示。S8. Use a 3 μm thick photoresist to photoetch an isolation trench pattern on the
S9、在电极接触层22上制作P面电极24,衬底10减薄后在底部制作N面电极25,如图11所示。S9. Fabricate a P-
以上的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above specific embodiments have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principles of the present invention, any modifications, equivalent replacements, improvements, etc., shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111207058.XA CN115986567A (en) | 2021-10-15 | 2021-10-15 | Laser with double-end surface emission and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111207058.XA CN115986567A (en) | 2021-10-15 | 2021-10-15 | Laser with double-end surface emission and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115986567A true CN115986567A (en) | 2023-04-18 |
Family
ID=85965268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111207058.XA Pending CN115986567A (en) | 2021-10-15 | 2021-10-15 | Laser with double-end surface emission and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115986567A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116387975A (en) * | 2023-06-05 | 2023-07-04 | 福建慧芯激光科技有限公司 | Stable wavelength edge-emitting laser with adjustable lasing direction |
CN116387976A (en) * | 2023-06-05 | 2023-07-04 | 福建慧芯激光科技有限公司 | Preparation method of edge-emitting laser with embedded multi-order grating |
CN116387974A (en) * | 2023-06-05 | 2023-07-04 | 福建慧芯激光科技有限公司 | Preparation method of edge-emitting laser based on butt-joint growth process |
-
2021
- 2021-10-15 CN CN202111207058.XA patent/CN115986567A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116387975A (en) * | 2023-06-05 | 2023-07-04 | 福建慧芯激光科技有限公司 | Stable wavelength edge-emitting laser with adjustable lasing direction |
CN116387976A (en) * | 2023-06-05 | 2023-07-04 | 福建慧芯激光科技有限公司 | Preparation method of edge-emitting laser with embedded multi-order grating |
CN116387974A (en) * | 2023-06-05 | 2023-07-04 | 福建慧芯激光科技有限公司 | Preparation method of edge-emitting laser based on butt-joint growth process |
CN116387975B (en) * | 2023-06-05 | 2023-12-29 | 福建慧芯激光科技有限公司 | Stable wavelength edge-emitting laser with adjustable lasing direction |
CN116387976B (en) * | 2023-06-05 | 2023-12-29 | 福建慧芯激光科技有限公司 | Preparation method of edge-emitting laser with embedded multi-order grating |
CN116387974B (en) * | 2023-06-05 | 2023-12-29 | 福建慧芯激光科技有限公司 | Preparation method of edge-emitting laser based on butt-joint growth process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115986567A (en) | Laser with double-end surface emission and preparation method thereof | |
KR101374485B1 (en) | Tensile strained semiconductor photon emission and detection devices and integrated photonics system | |
CN107508143B (en) | Tunable laser and preparation method thereof | |
JP2010263153A (en) | Semiconductor integrated optical device and manufacturing method thereof | |
KR20100051833A (en) | Microresonantor systems and methods of fabricating the same | |
CN108110613B (en) | Multiwavelength semiconductor distributed feedback laser array and fabrication method thereof | |
JP2011134870A (en) | Ridge semiconductor laser and method of manufacturing the same | |
JP4947778B2 (en) | Optical semiconductor device and manufacturing method thereof | |
US10381798B2 (en) | Hybrid photon device having etch stop layer and method of fabricating the same | |
CN108400523B (en) | High-speed integrated DFB semiconductor laser chip and preparation method thereof | |
JP2013165201A (en) | Semiconductor optical element, semiconductor optical module and manufacturing method of the same | |
CN100429848C (en) | Wavelength selectable distributed feedback laser two-dimensional array integrated component | |
JP2015164148A (en) | Integrated type semiconductor optical element, and method of manufacturing the same | |
CN107623250B (en) | Short-cavity long-surface emitting laser and manufacturing method thereof | |
CN1909309B (en) | Integrated method of electroabsorption modulated laser and mode spot converter | |
CN112186082B (en) | A dual-wavelength monolithic integrated diode and method of making the same | |
CN100349337C (en) | Method for making semiconductor laser and spot-size converter by double waveguide technology | |
Fedeli et al. | InP on SOI devices for optical communication and optical network on chip | |
CN1790846A (en) | Method for making laser-electric absorption modulator-spot-size converter single chip integration | |
JP7322646B2 (en) | WAVELENGTH TUNABLE LASER DEVICE AND MANUFACTURING METHOD THEREOF | |
JP6206498B2 (en) | Optical semiconductor device and manufacturing method thereof | |
CN113300218B (en) | Silicon-based optical communication C-waveband high-linearity surface emitting laser light source and manufacturing method thereof | |
JP4243506B2 (en) | Semiconductor laser and optical module using the same | |
JP2015015393A (en) | Semiconductor substrate and heterogeneous semiconductor substrate manufacturing method | |
JP2002217446A (en) | Optical semiconductor integrated device and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |