CN115968361A - 在微波场中在线上沉积涂层的方法 - Google Patents

在微波场中在线上沉积涂层的方法 Download PDF

Info

Publication number
CN115968361A
CN115968361A CN202180051656.4A CN202180051656A CN115968361A CN 115968361 A CN115968361 A CN 115968361A CN 202180051656 A CN202180051656 A CN 202180051656A CN 115968361 A CN115968361 A CN 115968361A
Authority
CN
China
Prior art keywords
precursor
reactor
coating
wire
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180051656.4A
Other languages
English (en)
Inventor
A·德勒侯泽
P·费内托
S·L·雅克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Bordeaux
Safran Ceramics SA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Bordeaux
Safran Ceramics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Bordeaux, Safran Ceramics SA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of CN115968361A publication Critical patent/CN115968361A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/6286Carbides
    • C04B35/62863Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62871Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种处理碳线或陶瓷线(150)的方法,所述方法包括:至少在反应器(220)的反应区(115)中,通过在微波场中在气相存在下对线的区段(156)进行加热,从而在线上形成涂层,其特征在于,气相包括稀释气体(200a;200b)和处于蒸气状态的涂料前体的混合物,并且其中,至少通过将所述稀释气体引入所述反应器中,并在所述反应区之前使引入的稀释气体与涂料前体(140)在反应器中混合来形成气相。

Description

在微波场中在线上沉积涂层的方法
技术领域
本发明涉及在蒸气状态的涂料前体存在下通过用微波场进行耦合在碳或碳化硅线(yarn)上沉积涂层的方法的一般领域。
背景技术
陶瓷基质复合材料(CMC)因其适合构成结构元件的良好机械性能和在高温下保持这些性能而闻名,是常规金属部件的可行替代品。与金属等同物相比,其质量减轻,这使其成为解决航空领域发动机提高效率和减少污染排放问题的首选部件。
CMC材料部件包括一般为梭织织物形式的纤维增强体,其通过陶瓷基质致密化。纤维增强体可以包含以线形式在一起成组的长纤丝,其取向可以适于在其使用期间部件上的主要应力方向。意图形成纤维增强体的预制件必须使用合适的织机由线梭织成部件尺寸(例如,通过二维或三维梭织)。为了生产机械性能得以改进的CMC材料部件,众所周知,在预制件致密化之前在纤维预制件中使用线,其涂覆有中间相。
已知通过化学气相渗透(“CVI”)在已经梭织的纤维预制件的线上沉积中间相涂层。除了该技术的高成本和低动力学之外,在线上形成的中间相通常是不均匀的,并且可以在预制件表面和芯部之间以及位于线表面和芯部处的纤丝之间局部观察到中间相厚度梯度。预制件内的沉积不均匀性可能会降低致密部件的最终机械性能。
为了克服这一问题,在文献FR 3 075 829中已经提出在微波场中由前体沉积涂层。该技术给出了令人满意的结果,但所获得涂层的均匀性以及化学计量的控制仍然有待改进。
发明内容
本发明涉及一种处理碳线或陶瓷线的方法,所述方法包括:至少在反应器的反应区中,通过在微波场中在气相存在下对线的区段进行加热,从而在线上形成涂层,其特征在于,气相包括稀释气体和处于蒸气状态的涂料前体的混合物,并且至少通过将所述稀释气体引入所述反应器中,并在所述反应区之前使引入的稀释气体与涂料前体在反应器中混合来形成气相。
此处的“线区段”或“线的区段”对应于线的一定长度,换句话说,该区段沿着线的长度或最长尺寸延伸。线可以包括多根纤丝,线区段可以包含多根纤丝。
线的区段在反应区中通过经由微波直接耦合来进行加热,这允许其表面达到足以由蒸气状态的涂料前体形成涂层的温度。线区段作为整体进行加热,这允许以有限的能量在线区段上均匀且快速地形成涂层,因为线区段通过微波场直接进行加热。此外,本发明提出在反应区之前在反应器中供应稀释气体,该稀释气体与前体混合。稀释气体的使用允许稀释试剂速率并控制沉积动力学,从而获得更均匀的沉积。如下文将详细描述的,稀释气体在引入时可以与处于液态或已处于蒸气状态的涂料前体混合。
在示例性实施方式中,稀释气体与来自反应区前的涂料前体的过量碳反应和/或与来自形成于反应区中的涂层的过量碳反应。
因此,稀释气体可以相对于前体和/或涂料是反应性的,以消耗过量的碳,所述过量的碳会导致相对于涂层所需化学计量的偏差。该反应可以是氧化反应,或者优选是还原反应。例如,反应性稀释气体可以包括氢气(H2)或氨(NH3)。在该情况下,进行还原反应以消耗过量碳。例如,在碳化硅涂层的情况下,相对于氨,可以更优选使用氢气,因为其允许避免形成于线上的涂层发生寄生氮化的任何风险。在其它情况下,相对于氢气,可以更优选使用氨,这是例如在氮化硼涂层的情况下,因为氨提供额外的氮来调节所形成涂层的化学计量。或者,可以通过使用包括氢气、氮氧化物(例如N2O)或碳氧化物(例如CO或CO2)的反应性稀释气体来对前体和/或涂层的过量碳进行氧化。该氧化可以在形成氧化物涂层的情况下实施。
或者,稀释气体相对于涂料前体和/或相对于形成于反应区中的涂层是惰性的。例如,惰性稀释气体可以包括氮气(N2)或氩气(Ar)。
注意,如果稀释气体包括至少一种反应性气体和至少一种惰性气体的混合物,此种技术方案并未超出本发明的范围。
在示例性实施方式中,形成气相包括:在反应器中通过与邻近存在于微波场中的区段的线的热部分接触,使液体涂料前体蒸发。
邻近涂层的线的部分通过由微波场中存在的线区段的传导和辐射进行加热。因此,可以在液体前体处分配特定的加热装置。这使得该方法更简单,且更节能。
具体来说,稀释气体可以在引入反应器时与液体涂料前体混合。
该特性是有利的,因为其促进液体涂料前体蒸发及其在反应区中的夹带,并允许调节反应区中前体的流速。
替代地或进行组合,稀释气体在引入反应器时与蒸气状态的涂料前体混合。
然而,本发明不限于在反应器中进行液态涂料前体的蒸发。实际上,在一个示例性实施方式中,形成气相包括:将蒸气状态的涂料前体引入反应器中,并使稀释气体与由此引入的蒸气状态的涂料前体混合。
在一个示例性实施方式中,气相中稀释气体的体积分数大于或等于气相中蒸气状态的涂料前体的体积分数,例如前者大于或等于后者的两倍。
该特性有利地允许进一步改进线上所获得涂层的均匀性。
气相中蒸气状态的涂料前体的体积分数可以为15%至75%,优选25%至50%,并且气相中稀释气体的体积分数可以为25%至85%,优选50%至75%。
线在处理期间可以在反应器中移动。因此,在对线区段进行加热期间,区段可以在第一位置,并且该方法还可以包括移动线以使得区段位于第二位置,区段在该第二位置处离开微波场。换言之,该方法可迁移包括在微波场和反应器中移动线的步骤。该有利设置允许更容易地在线的整个长度上形成涂层。在该情况下,线的卷动可以连续地进行,也就是说,在沉积期间不间断地进行,或者逐步进行,即,线在沉积期间停止,然后移动,从而在第一区段上沉积之后使第二区段位于反应区中。
在示例性实施方式中,涂料前体是碳化硅(SiC)前体。
因此,可以在线上沉积碳化硅,该涂层尤其允许保护线免于氧化和/或在形成复合材料部件的后续步骤期间保护线。
或者,涂料前体是氮化硼(BN)前体。
氮化硼是中间相材料,也就是说,其具有使复合材料去脆的功能,有利于在基质中传播后到达中间相的任何裂纹偏转,防止或延迟由于该裂纹导致的线断裂。
再或者,涂料前体是氮化硅(Si3N4)前体。
通常,形成于线上的涂层可以是陶瓷涂层,例如,碳化物或氮化物,例如,碳化硼、氮化硼或氮化硅。
在一个示例性实施方式中,线在反应器中移动,并且,覆盖有涂层的线的区段被输送到与反应区分离的附加处理区,在该附加处理区中,线的区段经受热处理。
附加处理区中施加的温度可以高于或等于反应区中的温度。附加处理区中施加的温度可以高于或等于1100℃,例如,1200℃。例如,该温度可以为1100℃至1700℃,例如,1200℃至1500℃。
具体来说,热处理可以导致覆盖线的涂层脱氢。例如,当所形成的涂层由碳化硅制成时,如果所选择的前体导致了具有过量氢的涂层,则可能是该情况。具体来说,热处理可以导致覆盖线的涂层结晶或稳定化,例如当所形成的涂层是氮化硼时就是这种情况。涂层的稳定化是指使得涂层对空气的敏感程度较低。
本发明还涉及一种制造复合材料部件的方法,所述方法包括:
-由通过如上所述方法进行处理的线来形成部件的纤维预制件,以及
-在所获得的纤维预制件的孔隙中形成基质。
基质可以至少部分是陶瓷的,例如,主要是陶瓷体积。
附图简要说明
[图1]图1示意性显示了用于实施本发明方法的第一示例的装置。
[图2]图2示意性显示了用于实施本发明方法的第二示例的装置。
[图3]图3示意性显示了用于实施本发明方法的第三示例的装置。
[图4]图4示意性显示了用于实施本发明方法的第四示例的装置。
[图5]图5是在本发明范围内可获得的经涂覆线的截面的照片。
[图6]图6是在本发明范围内可获得的另一经涂覆线的截面的照片。
具体实施方式
图1显示了用于实施本发明方法的一个示例的装置100。在该示例中,涂料前体140以液态存在于反应器120中,并且稀释气体200a、200b直接注入液体前体140中。
装置100包括微波发生器110、反应器120和允许线150在反应器120中移动的卷动装置(未显示)。经处理的线150由碳或陶瓷制成,例如,由碳化硅制成。对线150的材料进行选择,从而在反应区115中用微波场与之偶联,以引起其加热。在一个示例性实施方式中,线150可以由以原子百分比计氧含量低于或等于1%的碳化硅制成。例如,可以使用由日本NGS公司销售的Hi-Nicalon类S型线。应注意,经处理的线150可以已经用另一材料涂覆或尚未用另一材料涂覆。
此处的微波发生器110包括限定谐振腔112的谐振器111,谐振器111连接到波发生器(未示出)。运行时,微波场穿过谐振腔112。微波场可以通过由本领域技术人员可容易确定的其功率(或振幅)和其频率来表征,以获得适合用于由给定涂料前体形成涂层的线表面温度。微波场的主频率可以为2.35GHz至2.55GHz。例如,使用主频率2.45GHz的微波发生器允许对由约500根碳化硅纤丝制成的线进行加热。然后加热仅在线上以非常局部化的方式进行:然后,在冷壁反应器中,加热达到直接耦合的标准。
反应器120可以由对微波透明的材料制成,例如,由石英制成。反应器120可以具有管的形状,例如,具有U形的管的形状。反应器120可以具有基底部分(此处是水平部分)121、第一分支(此处是第一垂直部分)122和第二分支(此处是第二垂直部分)123,垂直部分122和123各自连接至水平部分121。第一垂直部分122可以连接到水平部分121的第一端,并且在水平部分121与第一端相反的第二端处连接到第二垂直部分123。此处,反应器120的第二垂直部分123至少部分存在于谐振器111的谐振腔112中,也就是说,其横穿谐振器111。存在于谐振腔112中的反应器120的部分形成了反应区115。线150可以放置在反应区115中的微波场的波腹处。仅反应器120的分支或垂直部分123存在于微波场中。反应器的形状允许引入液体前体140。液位可以通过在两个垂直部分122和123之一中添加前体来调节,例如在第一垂直部分122中使用连接到反应器120的滴液漏斗143,如所示的非限制性示例中。液体的量可以手动调节或由前体处的传感器和自动前体供应装置进行控制。在后一情况下,可以使用连接至加压罐上游的液体流量计,液位的调节能够通过部分122中液位的光学传感器来完成,所述传感器控制流量计的调节阀。此外,反应器可以设置有排气阀126,从而在沉积结束时排出前体140。前体140的弯液面145位于谐振腔112下方或反应区115下方。特别是,在所示的示例中,反应区115中不存在液体前体140。与存在于微波场中的线区段156相邻的线部分156a通过热传导进行加热。与液体前体140接触的部分156a允许其在弯液面145处蒸发。蒸发的前体140由此向反应区115扩散,以在线上进行沉积。可以进行泵送以迫使前体140向着反应区115自然传播。涂层通过化学蒸气渗透由反应区中的气相形成,涂层覆盖形成线150的纤丝的表面并沉积在纤丝间空间中。从弯液面145到反应区115的距离d可以大于或等于1cm,例如,大于或等于5cm,例如为1cm至15cm,例如5cm至15cm。该距离可以取决于施加在反应区中线上的温度,如下文详述。
反应器120还设有两个扶正器125,所述两个扶正器125分别位于反应器120的水平部分121和两个垂直部分122和123之间的两个接合处。扶正器125可以是设置有凹槽(在图中不可见)的辊的形状,所述凹槽具有使线150在反应器120中保持居中的功能。扶正器125位于反应区120内侧。第二垂直部分123和水平部分121各自包括至少一个附加扶正器124a和124b。所有的所述附加扶正器124a和124b或者部分的所述附加扶正器124a和124b可以使反应器120的截面局部变窄。还可以在第一垂直部分122中添加附加的扶正器(未示出)。
该装置设有卷动装置,该卷动装置可以包括:第一心轴(未示出),线150可以从该第一心轴展开,第一心轴可以是线150在涂覆前的存储心轴;以及第二心轴(未显示),一旦进行涂覆,线150就可以缠绕在该第二心轴上。线可以是连续的,在第一心轴和第二心轴之间连续延伸穿过反应器120。线150在该方法期间可以在反应器120中移动。线150的待处理区段因此可以在反应器120中从第一心轴循环到第二心轴。用于使线150在反应器120中居中的元件125和124a-b降低了线150接触反应器120壁的风险。卷动装置可以通过未示出的控制装置进行控制,从而连续或逐步对装置100中的线150进行卷动。线150的卷动可以根据方法参数进行控制,特别是根据沉积动力学进行控制,从而对所沉积涂层的厚度进行精细控制。
在图1的示例中,线150在反应器120中循环并部分浸入液体前体140中。线的移动可以是连续(不间断)或逐步的。经处理的线的区段156最初在第一垂直部分122中循环而未浸入液体前体140中,然后该区段浸入第一垂直部分122的液体前体140中,然后保持浸入水平部分121和第二垂直部分123一部分中的液体前体140中。线150的区段随后离开液体前体140,沿路线送至反应区115,在反应区中在微波场中在其表面上由气相形成涂层。以下描述了本示例中气相的形成。
此处,液体前体140通过沿线从反应区115中加热的区段156到弯液面145的热传导而蒸发。反应器120设置有用于引入稀释气体200a、200b的至少一个通道154a、154b。反应器120设置有用于引入稀释气体200a、200b的多个通道154a、154b。当存在多个通道154a和154b时,引入各通道的稀释气体200a和200b可以是相同或不同的,例如稀释气体200b可以是反应性的,而稀释气体200c可以是惰性的。在图1的示例中,通道154a、154b出现在液体前体140的弯液面145下方。通道154a、154b可以通过第二垂直部分1233实施并出现在其中。通道154a、154b可以位于反应区115下方。稀释气体200a、200b在引入反应器时与液体前体140直接混合,如图1的示例所示。此处,稀释气体200a、200b在引入反应器120时与液体前体140接触。可以将稀释气体200a、200b引入第二垂直部分123中。稀释气体200a、200b和前体140的混合可以在第二垂直部分123中进行。稀释气体200a、200b和前体140的混合可以在线150的移动区中进行。稀释气体200a、200b和前体140的混合可以在反应区115下方进行。在该示例中,稀释气体200a、200b在反应器120中存在的液体前体140中鼓泡。稀释气体200a、200b和前体140之间的混合在气相到达反应区115中之前进行。无论所考虑的示例如何,前体和稀释气体之间的混合区与反应区之间的距离可以小于或等于15cm,例如,为1cm至15cm。在所示示例的这种情况下,稀释气体200a、200b首先与液体前体140混合,然后使液体前体蒸发,以获得包含稀释气体和蒸气状态涂料前体的混合物的气相,该气相然后传播向反应区115,并引入该区115,从而在经过处理的线上形成涂层。稀释气体与蒸气状态的涂料前体分离。如上所述,反应区115尤其没有液体涂料前体,在所示的示例中,涂料前体仅以蒸气形式存在于其中。应注意,反应器在液体前体140处没有加热体系。然而,该体系可以包括用于调节液体前体140温度的装置(未示出),从而将液体前体保持在中等温度(如果根据所使用的前体需要),例如低于或等于20℃。
稀释气体200a、200b可以是相对于前体140是反应性或惰性的。因此,稀释气体200a、200b可以与涂料前体的碳反应,从而在将蒸气状态的涂料前体引入反应区115之前消耗与沉积所需的化学计量相比过量的碳。可以在将气相引入反应区115之前在气相中发生反应,稀释气体200a、200b与蒸气状态的前体涂料的过量碳反应。替代地或者组合地,如上所述,稀释气体200a、200b可以与形成于反应区115中的涂层的过量碳反应。反应性稀释气体200a、200b可以是氢气或氨。惰性稀释气体200a、200b可以是氮气或氩气。
例如,液体涂料前体140可以是碳化硅前体。在该情况下,前体140可以包含一个或多个硅原子、一个或多个碳原子和任选的氢。具体来说,前体140可以包含至少一个Si—C键、以及任选的至少一个Si—H键和/或至少一个Si—Si键。作为可用的碳化硅前体140的示例,可以提及1,3,5-三硅杂环己烷(TSCH)、六甲基二硅烷(HMDS)或三乙基硅烷。在使用HMDS的情况下,为了在线150上获得纯SiC,有利的是选择能够消耗前体的过量碳的稀释气体。
例如,在沉积碳化硅的情况下,反应区115中线150的温度可以为800℃至1300℃,例如950℃至1200℃。
或者,涂料前体140可以是氮化硼前体。在该情况下,前体140可以包含一个或多个硼原子、一个或多个氮原子和氢原子,以及任选的一个或多个碳原子。前体140可以是氨基硼烷。前体140可以包含至少一个B-N键、以任选地至少一个N-C键和/或至少一个B-C键。作为可用的氮化硼前体140的示例,可以提及任选与氨NH3混合的三(二甲基氨基)硼烷(TDMAB)或三乙基氨基硼烷(TEAB)。TDMAB的使用可以有利地伴随使用与碳反应的稀释气体,以消耗过量的碳。
例如,在沉积氮化硼的情况下,反应区115中线150的温度可以为900℃至1500℃,例如1200℃至1400℃。
再或者,也可以例如通过使用六甲基二硅氮烷作为涂料前体140来形成氮化硅涂层。反应器120在弯液面145和反应区115之间的部分可以置于负压下,以促进前体向反应区115蒸发。然而,该部分中的压力可以保持大于或等于弯液面145处温度下的前体蒸气压力,以避免前体过快蒸发。该部分中的压力通常可以为1毫巴(mbar)至3巴(bar)。根据所使用前体来选择所施加的压力属于本领域技术人员的一般知识。例如,对于TDMAB,反应器中的压力在30℃时可大于或等于3毫巴,或在100℃时可以大于或等于160毫巴。例如,对于TEAB,反应器中的压力在75℃时可大于或等于3毫巴,或在96℃时可以大于或等于16毫巴。例如,对于三乙基硅烷,反应器中的压力在50℃时可大于或等于125毫巴。
引入反应器120的稀释气体的流速可以大于或等于蒸发或引入反应区115的前体140的流速,例如前者大于或等于后者的两倍。这允许获得稀释气体体积分数大于或等于蒸气状态下前体体积分数的气相。
应注意,反应器120还包括反应区115下游的附加气体入口157a、157c和出口159a、159c通道。因此,区段156依次进入反应区115,然后进入这些通道157a、157c和159a、159c。缓冲气体(例如氮气或氩气)可以通过通道157a、157b和157c以及159a、159b和159c引入,以避免在卷动装置的心轴处发生寄生沉积的任何风险。气体出口159a-159c允许排出所引入的缓冲气体以及任何残留的气相前体。如图所示,两个垂直部分122和123中的每一个可以包括至少一对入口通道157a-c和出口通道159a-c对。所示反应器120的示例包括:位于反应区115和扶正器124a之间的第一缓冲气体入口157a和出口159a对、位于反应区115上游的垂直部分122上的第二缓冲气体入口通道157b和出口通道159b对,以及位于扶正器124a下游的第三缓冲气体入口管道157c和出口管道159c对。具体来说,应注意,反应区115下游的扶正器124a处的通道截面减小。这有利地允许进一步减少残余蒸气状态前体的泄漏,并改善线的居中。当然,通道截面的减小不一定通过添加特定部件124a来确保,并且可以简单地通过局部改变形成反应器的管的直径来获得。在未示出的变体中,该体系不具有通道截面减小。
现在将描述的图2中的装置101的示例使用与图1中的装置100相同的结构,但其具体通过添加额外热处理区210来补充。与图1装置100相同的部分具有相同的附图标记,并且为了简洁起见不再赘述。
因此,图2的反应器220装备有额外处理区210,该处理区与反应区115不同并且在反应区115的下游。因此,经处理的线区段156依次通过反应区115、然后通过附加处理区210,在附加处理区中进行热处理。因此,该区210可以设置有加热装置,其也可以使用微波加热,但是本领域技术人员将认识到,其他加热装置也是可能的。区210中进行热处理期间所施加的温度可以高于或等于反应区115中的温度。区210中的温度可以高于或等于1100℃,例如,高于或等于1200℃。该温度可以包括1100℃至1700℃,例如,1200℃至1500℃。
如上所述,区210中进行热处理导致反应区115中所形成的涂层脱氢、结晶或稳定化。例如,通过在线上施加1200℃至1500℃的温度,可以在区210中进行氮化硼涂层的结晶或稳定化。或者,通过对线150施加1100℃至1500℃的温度,可以对碳化硅涂层进行热处理以脱氢。
反应器220在区210的任一侧上还设有用于缓冲气体的入口157d和出口159d,以使该区惰性化并避免寄生沉积。或者,反应性气体可以通过入口157d引入,以允许反应区115中形成的涂层脱氢。
图2显示了沿着线150的移动方向与反应区115不同并偏移的附加处理区210。然而,当反应区115被加热到足以在线上进行沉积以及改变该沉积的热处理(例如在区210中进行的脱氢、结晶或稳定化)的温度时,并未偏离本发明的范围。在后一情况下,考虑到反应区115中所施加的高温,可以有利地在反应区115和前体弯液面145之间提供足够的距离d,从而在前体蒸发不会受沿线的热传导干扰的情况下进行所需附加处理。例如,该距离可以大于或等于5cm,例如包括5cm至15cm。
刚刚结合图1和图2描述的方法涉及将稀释气体直接引入液体前体140。现在将描述的图3涉及装置102,其中稀释气体直接与蒸气状态的前体混合。为了简洁,省略了与上文所述相同的部分。
图3所示的反应器320包括出现在弯液面145和反应区115之间的至少一个稀释气体引入通道254a、254b。稀释气体不再在液体前体140中鼓泡,而是在反应器320中液体前体蒸发之后在反应区115上游以蒸气状态与前体混合。此处,稀释气体被引入液体前体弯液面140上方。在该混合后获得的气相随后传播到反应区115以形成涂层。在未示出的变体中,可以组合将稀释气体引入液体前体中和将稀释气体引入蒸气状态的前体中。而且,如图2所示,可以在反应区115的下游添加额外处理区210。
图4的变体涉及前体以蒸气状态直接引入反应器的情况。在图4的装置103的示例中,稀释气体200a、200b注入反应器420中并与蒸气状态240的前体流直接混合。反应器420中的压力可以为1毫巴(mbar)至3巴(bar)。
引入反应器420的稀释气体200a、200b的流速可以大于或等于引入反应区420的蒸气状态的前体240的流速,例如大于或等于该引入反应器420的前体的流速的两倍。这允许获得稀释气体体积分数大于或等于蒸气相中前体体积分数的气相。
附图显示了处理单一线150的装置100-103,但本发明也适用于在反应器中同时处理多根线。此外,线的处理可以包括线在反应器中的多次通过,从而每次在前一次通过期间所形成涂层上沉积额外涂层。由此沉积的涂层可以是单一材料(monmaterial)或多种材料(multimaterial)。在所示示例中,反应区中不存在液体前体,然而,本发明的范围不会偏离在除引入该区的气相之外,液体前体存在于反应区中时的范围。
该方法可以通过由以上述方式涂覆的多根线来制造复合材料部件继续进行。
因此,该部件的制造可包括由多根经涂覆纤维制造旨在形成纤维增强件的纤维预制件。纤维增强件可以通过经涂覆线的梭织、例如通过三维梭织获得。例如,可以使用双螺纹梭织图案(interlock weave pattern)。
然后可以用模具填充纤维预制件的孔隙,以获得复合材料部件。基质可以是至少部分陶瓷基质。以本身已知的方式,该基质可以通过化学蒸气渗透或熔融渗透(“MI”)技术形成。基质可以包括碳化硅。
所获得的部件可以是例如航天发动机或工业涡轮机的燃气涡轮机的部件。所获得的部件可以是涡轮机部件。所获得的部件可以是涡轮机叶片,例如,涡轮叶片。或者,所获得的部件可以是涡轮环区段。
实施例
实施例1:碳化硅的沉积
使用图1所示的装置100进行测试。所使用的前体是HMDS,反应区115的温度在1070℃保持3分钟。使用氮气作为稀释气体200a、200b。气相中稀释气体和前体的体积分数各自为50%。反应区中动力学为500μm/分钟的情况下,SiC沉积是有效的。在进行的测试中,线是静态的。图5是所得的经涂覆线的横截面图。
实施例2:氮化硼的沉积
使用图1所示的装置100进行测试。所使用的前体是TDMAB,反应区115的温度在1270℃保持12分钟。使用氮气作为稀释气体200a、200b。气相中稀释气体和前体的体积分数各自为50%。反应区中动力学为1.7μm/分钟的情况下,BN沉积是有效的。在进行的测试中,线是静态的。然后由获得的经涂覆线来形成复合材料部件。图6是所得的经涂覆线的横截面图。
术语“…至…”应理解为包括端值。

Claims (15)

1.一种处理碳线或陶瓷线(150)的方法,所述方法包括:至少在反应器(120;220;320;420)的反应区(115)中,通过在微波场中在气相存在下对线的区段(156)进行加热,从而在线上形成涂层,
其特征在于,所述气相包括稀释气体(200a;200b)和处于蒸气状态的涂料前体的混合物,并且其中,至少通过将所述稀释气体引入所述反应器中,并在所述反应区之前使引入的稀释气体与涂料前体(140;240)在反应器中混合来形成气相。
2.如权利要求1所述的方法,其中,稀释气体(200a;200b)与来自反应区(115)前的涂料前体(140;240)的过量碳反应和/或与来自形成于反应区中的涂层的过量碳反应。
3.如权利要求2所述的方法,其中,反应性稀释气体(200a;200b)包括氢气或氨。
4.如权利要求1所述的方法,其中,稀释气体(200a;200b)相对于涂料前体(140;240)和/或相对于形成于反应区(115)中的涂层是惰性的。
5.如权利要求1至4中任一项所述的方法,其中,形成气相包括:在反应器(120)中通过与邻近存在于微波场中的区段(156)的线的热部分(156a)接触,使液体涂料前体(140)蒸发。
6.如权利要求5所述的方法,其中,稀释气体(200a;200b)在引入反应器(120)时与液体涂料前体(140)混合。
7.如权利要求5或6所述的方法,其中,稀释气体(200a;200b)在引入反应器(120)时与蒸气状态的涂料前体混合。
8.如权利要求1至4中任一项所述的方法,其中,形成气相包括:将蒸气状态的涂料前体(240)引入反应器(420)中,并使稀释气体(200a;200b)与由此引入的蒸气状态的涂料前体混合。
9.如权利要求1至8中任一项所述的方法,其中,气相中稀释气体的体积分数大于气相中蒸气状态的涂料前体的体积分数。
10.如权利要求1至9中任一项所述的方法,其中,涂料前体(140;240)是碳化硅前体、氮化硼前体或氮化硅前体。
11.如权利要求1至10中任一项所述的方法,其中,线(150)在反应器(220)中移动,并且,覆盖有涂层的线的区段(156)被输送到与反应区(115)分离的附加处理区(210),在该附加处理区中,线的区段(156)经受热处理。
12.如权利要求11所述的方法,其中,热处理导致覆盖线(150)的涂层脱氢。
13.如权利要求11所述的方法,其中,热处理导致覆盖线(150)的涂层结晶或稳定化。
14.一种制造复合材料部件的方法,所述方法包括:
-由通过如权利要求1至13中任一项所述的方法处理的线(150)来形成部件的纤维预制件,以及
-在所获得的纤维预制件的孔隙中形成基质。
15.如权利要求14所述的方法,其中,所述基质至少部分是陶瓷。
CN202180051656.4A 2020-08-21 2021-08-11 在微波场中在线上沉积涂层的方法 Pending CN115968361A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR2008605A FR3113496A1 (fr) 2020-08-21 2020-08-21 Procédé de dépôt d’un revêtement sur un fil sous champ micro-ondes
FRFR2008605 2020-08-21
PCT/FR2021/051460 WO2022038324A1 (fr) 2020-08-21 2021-08-11 Procede de depot d'un revetement sur un fil sous champ micro-ondes

Publications (1)

Publication Number Publication Date
CN115968361A true CN115968361A (zh) 2023-04-14

Family

ID=73793335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180051656.4A Pending CN115968361A (zh) 2020-08-21 2021-08-11 在微波场中在线上沉积涂层的方法

Country Status (5)

Country Link
US (1) US11858859B2 (zh)
EP (1) EP4200265A1 (zh)
CN (1) CN115968361A (zh)
FR (1) FR3113496A1 (zh)
WO (1) WO2022038324A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3136463A1 (fr) * 2022-06-09 2023-12-15 Safran Ceramics Procédé de traitement d’au moins une fibre en céramique ou en carbone

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335170A (ja) * 1998-05-25 1999-12-07 Natl Res Inst For Metals 高強度炭化ケイ素複合材料及び製造方法
US20110171399A1 (en) * 2010-01-08 2011-07-14 General Electric Company Process and apparatus for continuous coating of fibrous materials
CN105296960A (zh) * 2015-10-28 2016-02-03 上海大学 均匀化氮化硼涂层的制备方法
FR3057864A1 (fr) * 2016-10-25 2018-04-27 Safran Ceram Procede d'infiltration ou de depot chimique en phase vapeur mettant en oeuvre le precurseur ci2bnh2 pour former du nitrure de bore
CN108291297A (zh) * 2015-11-19 2018-07-17 赛峰航空陶瓷技术公司 用蒸气沉积法涂布一根或多根纱线的装置
CN109415803A (zh) * 2016-06-29 2019-03-01 赛峰航空陶瓷技术公司 一种化学气相渗透或沉积的方法
CN111511704A (zh) * 2017-12-26 2020-08-07 赛峰集团陶瓷 在连续纤维上沉积涂层的方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335170A (ja) * 1998-05-25 1999-12-07 Natl Res Inst For Metals 高強度炭化ケイ素複合材料及び製造方法
US20110171399A1 (en) * 2010-01-08 2011-07-14 General Electric Company Process and apparatus for continuous coating of fibrous materials
CN105296960A (zh) * 2015-10-28 2016-02-03 上海大学 均匀化氮化硼涂层的制备方法
CN108291297A (zh) * 2015-11-19 2018-07-17 赛峰航空陶瓷技术公司 用蒸气沉积法涂布一根或多根纱线的装置
CN109415803A (zh) * 2016-06-29 2019-03-01 赛峰航空陶瓷技术公司 一种化学气相渗透或沉积的方法
FR3057864A1 (fr) * 2016-10-25 2018-04-27 Safran Ceram Procede d'infiltration ou de depot chimique en phase vapeur mettant en oeuvre le precurseur ci2bnh2 pour former du nitrure de bore
CN111511704A (zh) * 2017-12-26 2020-08-07 赛峰集团陶瓷 在连续纤维上沉积涂层的方法和装置

Also Published As

Publication number Publication date
EP4200265A1 (fr) 2023-06-28
FR3113496A1 (fr) 2022-02-25
WO2022038324A1 (fr) 2022-02-24
US11858859B2 (en) 2024-01-02
US20230242453A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
EP0483009B1 (fr) Procédé d'élaboration d'un matériau composite réfractaire protégé contre la corrosion
US20160229758A1 (en) Continuous chemical vapor deposition/infiltration coater
US20070099527A1 (en) Method and reactor to coat fiber tows and article
US11932942B2 (en) Method and device for depositing a coating on a continuous fibre
US7381445B2 (en) Method of coating a ceramic matrix composite fiber
CN108291297B (zh) 用蒸气沉积法涂布一根或多根纱线的装置
US11591270B2 (en) Doped silicon carbide ceramic matrix composite
CN115968361A (zh) 在微波场中在线上沉积涂层的方法
CN115151679A (zh) 气相渗透固结法
Lazzeri CVI processing of ceramic matrix composites
US5472650A (en) Method of making chemical vapor infiltrated composites
FR3067026A1 (fr) Composite a matrice ceramique resistant a la corrosion et procede de fabrication
Naslain et al. Processing of ceramic matrix composites by pulsed-CVI and related techniques
CN111172519A (zh) 一种碳化硅纤维表面连续制备复合界面层的设备及方法
US5571561A (en) Coated filaments
US5429870A (en) Boron carbide coated refractory fibers
US20220307191A1 (en) Method and device for depositing a coating on an endless fiber
Kmetz et al. Silicon carbide/silicon and silicon carbide/silicon carbide composites produced by chemical vapor infiltration
US11760695B2 (en) Removing colorization on silicon carbide ceramic matrix composites
CN108350573B (zh) 一种通过气相沉积方法涂覆一根或多根线材的装置
CN118176173A (zh) 用氮化硼中间相涂覆至少一根纤维的方法
JP2019199637A (ja) 炭素被覆の連続形成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination