CN115966886A - Very-low-frequency multilayer magnetoelectric mechanical antenna and preparation method thereof - Google Patents

Very-low-frequency multilayer magnetoelectric mechanical antenna and preparation method thereof Download PDF

Info

Publication number
CN115966886A
CN115966886A CN202211557554.2A CN202211557554A CN115966886A CN 115966886 A CN115966886 A CN 115966886A CN 202211557554 A CN202211557554 A CN 202211557554A CN 115966886 A CN115966886 A CN 115966886A
Authority
CN
China
Prior art keywords
piezoelectric layer
multilayer
piezoelectric
antenna
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211557554.2A
Other languages
Chinese (zh)
Inventor
储昭强
宋凯欣
闵书刚
南天翔
焦杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202211557554.2A priority Critical patent/CN115966886A/en
Publication of CN115966886A publication Critical patent/CN115966886A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Aerials (AREA)

Abstract

The invention provides a very-low-frequency multilayer magnetoelectric mechanical antenna and a preparation method thereof, belonging to the technical field of low-frequency antennas. The electromagnetic antenna solves the prominent problems of small power capacity, weak radiation capability and short communication distance of the conventional magnetoelectric mechanical antenna. The multilayer magnetic memory comprises a plurality of laminated magnetic layers and a plurality of piezoelectric layers, wherein the plurality of laminated magnetic layers and the plurality of piezoelectric layers are alternately stacked to form electrical parallel connection and mechanical parallel connection. Compared with the traditional magnetic material structure, the multilayer magnetoelectric mechanical antenna has the advantages that the volume is increased, and the saturation magnetic moment of a system is enhanced; meanwhile, the system load is increased by the multiple piezomagnetic layers, the mechanical quality factor of the magnetoelectric mechanical antenna can be effectively reduced, and the nonlinear behavior of the oscillator under a strong field is inhibited. Under the same driving condition, the power capacity and the radiation field strength of the oscillator can be increased, the radiation field strength reaches 87fT in 100m free space, and the modulation rate reaches 500Hz at most.

Description

一种甚低频多层磁电机械天线及其制备方法A very low frequency multi-layer magneto-electric mechanical antenna and its preparation method

技术领域technical field

本发明属于低频天线技术领域,特别是涉及一种甚低频多层磁电机械天线及其制备方法。The invention belongs to the technical field of low-frequency antennas, in particular to a very low-frequency multilayer magnetoelectric mechanical antenna and a preparation method thereof.

背景技术Background technique

如何解决极端环境下的通信问题,比如跨地面通信,水下通信以及人体植入器件对外通信是目前急需解决的一个关键问题。目前常见的射频天线通过高频电流产生的电磁波对外传递信息,但其尺寸必须与所辐射的电磁波波长相比拟,无法同时满足小型化和高效率的需求。How to solve communication problems in extreme environments, such as cross-ground communication, underwater communication and external communication of human implanted devices is a key problem that needs to be solved urgently. The current common radio frequency antenna transmits information through electromagnetic waves generated by high-frequency currents, but its size must be comparable to the wavelength of the radiated electromagnetic waves, which cannot meet the needs of miniaturization and high efficiency at the same time.

为解决以上问题,美国DARPA(美国国防高级研究计划局)在2017年斥资2300万美元启动了机械天线的研究项目(A MEchanically Based Antenna,编号:HR001117S0007),旨在改进和发展低频,低功耗、小型化的磁场发射天线。与传统的天线形式相比,机械天线通过驱动电偶极子或磁偶极子在空间建立时变的电磁场。由于机械天线将机械能直接转换为电磁场能量,规避了高频振荡电流辐射的方式,也就无须受到传统天线电尺寸的物理限制,信息(调制)带宽可以独立于物理(损耗)带宽。在机械天线中,采用磁电耦合效应为工作原理的磁电机械天线是发展跨介质通信技术的关键方案之一。In order to solve the above problems, DARPA (Defense Advanced Research Projects Agency) of the United States launched a mechanical antenna research project (A MEchanically Based Antenna, No.: HR001117S0007) in 2017, aiming to improve and develop low-frequency, low-power consumption. , Miniaturized magnetic field transmitting antenna. Compared with traditional antenna forms, mechanical antennas create time-varying electromagnetic fields in space by driving electric dipoles or magnetic dipoles. Since the mechanical antenna directly converts mechanical energy into electromagnetic field energy, avoiding the way of high-frequency oscillating current radiation, it does not need to be limited by the physical size of traditional antennas, and the information (modulation) bandwidth can be independent of the physical (loss) bandwidth. Among the mechanical antennas, the magnetoelectric mechanical antenna using the magnetoelectric coupling effect as the working principle is one of the key solutions for the development of cross-media communication technology.

为了获得辐射能力较强的磁电机械天线,国内外学者做出了很多研究工作。2017年美国东北大学南天翔、孙年祥等人首次在实验上报道了基于磁电多铁异质结FeGaB/AlN的NEMS机械天线,解决了传统天线小型化的设计难题。最近美国东北大学孙年详教授课题组进一步利用2-1型磁电复合材料,搭建了甚低频磁场通信系统,在400mW的功耗下,实现了120m的发信距离和100Hz的调制带宽。In order to obtain magnetoelectric mechanical antennas with strong radiation capabilities, domestic and foreign scholars have done a lot of research work. In 2017, Nan Tianxiang, Sun Nianxiang and others from Northeastern University in the United States first experimentally reported the NEMS mechanical antenna based on the magnetoelectric multiferroic heterojunction FeGaB/AlN, which solved the design problem of traditional antenna miniaturization. Recently, the research group of Professor Nianxiang Sun from Northeastern University further used 2-1 type magnetoelectric composite materials to build a very low frequency magnetic field communication system. Under the power consumption of 400mW, the transmission distance of 120m and the modulation bandwidth of 100Hz were realized.

但目前常见的1-1型、2-1型等结构的磁电机械天线的辐射能力和功率容量都较低,同时机械品质因数(Q值)也较高。对于天线辐射而言,这意味着大部分的能量都被贮藏在天线内部或表面,而没有被有效地辐射到外部的自由空间,导致辐射效率较低,通信距离短。此外,Q值和天线带宽呈反比关系,高Q值意味着天线自身带宽较窄,导致通信速率相对较低。传统的工作于multi-push-pull模式的2-1型磁电天线虽然具有较强的谐振磁电耦合特性,但由于其压磁层体积相对较小,系统总的饱和磁矩不强。1-1型磁电天线虽然在一阶振动模态下有高的谐振耦合性能,但其Q值较高,容易出现非线性行为,难以支撑高电场驱动。以上两种磁电机械天线结构均无法满足发射高强度电磁场信号的应用需求。However, the current common 1-1 type, 2-1 type and other magneto-electric mechanical antennas have low radiation capability and power capacity, and at the same time, the mechanical quality factor (Q value) is also high. For antenna radiation, this means that most of the energy is stored inside or on the surface of the antenna, but is not effectively radiated to the free space outside, resulting in low radiation efficiency and short communication distance. In addition, the Q value is inversely proportional to the antenna bandwidth, and a high Q value means that the bandwidth of the antenna itself is narrow, resulting in a relatively low communication rate. Although the traditional 2-1 magnetoelectric antenna working in the multi-push-pull mode has strong resonant magnetoelectric coupling characteristics, the total saturation magnetic moment of the system is not strong due to the relatively small volume of the piezoelectric layer. Although the 1-1 type magnetoelectric antenna has high resonant coupling performance in the first-order vibration mode, its Q value is high, it is prone to nonlinear behavior, and it is difficult to support high electric field driving. Both of the above two magneto-electric mechanical antenna structures cannot meet the application requirements of transmitting high-intensity electromagnetic field signals.

发明内容Contents of the invention

有鉴于此,本发明旨在提出一种甚低频多层磁电机械天线及其制备方法,以解决现有的磁电机械天线普遍存在功率容量小、辐射能力弱、通信距离短的突出问题,可应用于跨介质通信与传感等场景。In view of this, the present invention aims to propose a very low frequency multi-layer magneto-electric mechanical antenna and its preparation method to solve the outstanding problems of low power capacity, weak radiation ability and short communication distance commonly existing in existing magneto-electric mechanical antennas. It can be applied to scenarios such as cross-media communication and sensing.

为实现上述目的,本发明采用以下技术方案:一种甚低频多层磁电机械天线,包括多层压磁层与多层压电层。多层压磁层与多层压电层相互交替堆叠,构成电学并联。In order to achieve the above object, the present invention adopts the following technical solutions: a very low frequency multilayer magnetoelectric mechanical antenna, including multilayer piezoelectric layers and multilayer piezoelectric layers. The multilayer piezoelectric layers and the multilayer piezoelectric layers are alternately stacked to form an electrical parallel connection.

更进一步的,所述压磁层由软磁块材或者由软磁带材多层复合而成,其中软磁材料是Metglas、Fe-Ga合金、Terfernol-D合金、Fe-Ni合金、FeCo、FeCoB、FeGaB、NiZn铁氧体以及Ni金属中的一种,通过环氧树脂连接。Furthermore, the piezoelectric magnetic layer is composed of a soft magnetic block or a multilayer composite of a soft magnetic tape, wherein the soft magnetic material is Metglas, Fe-Ga alloy, Terfernol-D alloy, Fe-Ni alloy, FeCo, FeCoB , FeGaB, NiZn ferrite and one of Ni metal, connected by epoxy resin.

更进一步的,所述压电层的压电材料包括压电陶瓷和压电单晶,压电材料为LiNbO3、BaTiO3、Pb(Zr,Ti)O3、Pb(Mg,Nb)O3-PbTiO3、Pb(Zn,Nb)O3-PbTiO3或BiScO3-PbTiO3中的一种。Furthermore, the piezoelectric material of the piezoelectric layer includes piezoelectric ceramics and piezoelectric single crystals, and the piezoelectric materials are LiNbO 3 , BaTiO 3 , Pb(Zr,Ti)O 3 , Pb(Mg,Nb)O 3 - one of PbTiO 3 , Pb(Zn,Nb)O 3 -PbTiO 3 or BiScO 3 -PbTiO 3 .

更进一步的,所述压电层与压磁层之间通过环氧树脂连接。Furthermore, the piezoelectric layer and the piezoelectric layer are connected by epoxy resin.

更进一步的,每层压电层沿厚度方向极化,并采取电学并联,此时天线工作于d31模式。Furthermore, each piezoelectric layer is polarized along the thickness direction, and is electrically connected in parallel, and the antenna works in the d31 mode at this time.

更进一步的,压电层也可以采用宏观压电纤维复合材料(Marco FiberComposite,MFC),采用纵向极化方式,与上下两片压电层电极构成三明治结构,三层结构通过环氧树脂复合,此时天线工作于d33模式。Furthermore, the piezoelectric layer can also be made of macroscopic piezoelectric fiber composite material (Marco Fiber Composite, MFC), adopting the longitudinal polarization method, forming a sandwich structure with the upper and lower piezoelectric layer electrodes, and the three-layer structure is compounded by epoxy resin. At this time, the antenna works in d33 mode.

一种纵振模态的多层磁电机械天线的制备方法,具体包括以下步骤:A method for preparing a multilayer magneto-electric mechanical antenna in a longitudinal vibration mode, specifically comprising the following steps:

(1)、天线结构设计与仿真验证;(1) Antenna structure design and simulation verification;

(2)、材料加工、封装盒准备;(2), material processing, packing box preparation;

(3)、压电层的制备;(3), preparation of piezoelectric layer;

(4)、压磁层的制备;(4), preparation of the piezoelectric layer;

(5)、将压电层和压磁层粘接复合;(5), bonding and compounding the piezoelectric layer and the piezoelectric layer;

(6)、将压电层电极粘贴在对应的压磁层上,得到最终的多层机械天线原型。(6) Paste the piezoelectric layer electrodes on the corresponding piezoelectric layer to obtain the final prototype of the multilayer mechanical antenna.

与现有技术相比,本发明所述的一种纵振模态的多层磁电机械天线及其制备方法的创新点以及有益效果是:Compared with the prior art, the innovations and beneficial effects of the multilayer magneto-electric mechanical antenna with longitudinal vibration mode and its preparation method according to the present invention are:

本发明所述的一种多层磁电机械天线,相较于传统结构磁性材料的体积增加,增强了系统饱和磁矩;同时多层压磁层增加了系统负载,能够有效降低磁电机械天线的机械品质因数,抑制振子强场下的非线性行为。在相同驱动条件下,可以增加振子的功率容量和辐射场强,在100m自由空间辐射场强达到87fT,调制速率最高达到500Hz。The multilayer magnetoelectric mechanical antenna described in the present invention increases the saturation magnetic moment of the system compared with the increase in the volume of the traditional magnetic material; meanwhile, the multilayer laminated magnetic layer increases the system load, which can effectively reduce the magnetoelectric mechanical antenna. The mechanical quality factor of the vibrator suppresses the nonlinear behavior of the vibrator under a strong field. Under the same driving conditions, the power capacity and radiation field strength of the vibrator can be increased, and the radiation field strength can reach 87fT in a 100m free space, and the modulation rate can reach up to 500Hz.

附图说明Description of drawings

构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The drawings constituting a part of the present invention are used to provide a further understanding of the present invention, and the schematic embodiments and descriptions of the present invention are used to explain the present invention, and do not constitute an improper limitation of the present invention. In the attached picture:

图1为本发明所述的多层磁电机械天线的尺寸示意图;Fig. 1 is the size schematic diagram of the multilayer magnetoelectric mechanical antenna of the present invention;

图2为本发明所述的多层磁电机械天线具体实施例一的结构示意图;Fig. 2 is a structural schematic diagram of a specific embodiment 1 of a multilayer magneto-electric mechanical antenna according to the present invention;

图3为本发明中具体实施例一的COMSOL的仿真结果图,包括一阶纵振模态及其特征频率;Fig. 3 is the simulation result figure of the COMSOL of specific embodiment one among the present invention, comprises first-order longitudinal vibration mode and characteristic frequency thereof;

图4为本发明所述的多层磁电机械天线具体实施例一中辐射性能与距离的关系结果图;Fig. 4 is a graph showing the relationship between radiation performance and distance in Embodiment 1 of the multilayer magnetoelectric mechanical antenna according to the present invention;

图5为本发明所述的多层磁电机械天线具体实施例一中谐振频率与驱动场强的关系;Fig. 5 is the relationship between the resonant frequency and the driving field strength in Embodiment 1 of the multi-layer magneto-electric mechanical antenna according to the present invention;

图6为本发明所述的多层磁电机械天线具体实施例二的结构示意图;Fig. 6 is a schematic structural diagram of a second embodiment of the multilayer magneto-electric mechanical antenna according to the present invention;

图7为本发明所述的多层磁电机械天线具体实施例三的结构示意图;FIG. 7 is a schematic structural diagram of a third embodiment of the multilayer magneto-electric mechanical antenna according to the present invention;

图中:1-压电层电极,2-压电层,3-压磁层。In the figure: 1-piezoelectric layer electrode, 2-piezoelectric layer, 3-piezomagnetic layer.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地阐述。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. It should be noted that, in the case of no conflict, the embodiments and the features in the embodiments of the present invention can be combined with each other, and the described embodiments are only some of the embodiments of the present invention, but not all of the embodiments.

参见图1-7说明本实施方式。一种纵振模态的多层磁电机械天线,包括四个压磁层3和三个压电层2。所述压磁层3与压电层2通过环氧树脂互交替堆叠,压电层之间,构成电学并联,机械并联。This embodiment will be described with reference to FIGS. 1-7. A multilayer magnetoelectric mechanical antenna in longitudinal vibration mode, including four piezoelectric layers 3 and three piezoelectric layers 2. The piezoelectric layers 3 and the piezoelectric layers 2 are alternately stacked with epoxy resin, and the piezoelectric layers are electrically and mechanically connected in parallel.

每层压磁层3长100mm、宽2mm、厚0.25mm;每层压电层2长70mm、宽1.5mm、厚0.48mm;每片压电层电极1厚0.05mm,所述压电层电极1采用铜材料。根据具体的实施例,软磁层3的形状和尺寸也可相应改变Each laminated magnetic layer 3 is 100 mm long, 2 mm wide, and 0.25 mm thick; each piezoelectric layer 2 is 70 mm long, 1.5 mm wide, and 0.48 mm thick; each piezoelectric layer electrode 1 is 0.05 mm thick, and the piezoelectric layer electrode 1 using copper material. According to specific embodiments, the shape and size of the soft magnetic layer 3 can also be changed accordingly

所述压磁层3由软磁块材或者由软磁带材多层复合而成,其中软磁材料是Metglas、Fe-Ga合金、Terfernol-D合金、Fe-Ni合金、FeCo、FeCoB、FeGaB、NiZn铁氧体以及Ni金属中的一种,通过环氧树脂连接。The pressure magnetic layer 3 is made of a soft magnetic block material or a multilayer composite of a soft magnetic tape material, wherein the soft magnetic material is Metglas, Fe-Ga alloy, Terfernol-D alloy, Fe-Ni alloy, FeCo, FeCoB, FeGaB, One of NiZn ferrite and Ni metal, connected by epoxy resin.

所述压电层2的压电材料包括压电陶瓷和压电单晶,压电材料为LiNbO3、BaTiO3、Pb(Zr,Ti)O3、Pb(Mg,Nb)O3-PbTiO3、Pb(Zn,Nb)O3-PbTiO3或BiScO3-PbTiO3中的一种。根据具体的实施例,软磁层3的形状和尺寸也可相应改变。The piezoelectric material of the piezoelectric layer 2 includes piezoelectric ceramics and piezoelectric single crystal, and the piezoelectric material is LiNbO 3 , BaTiO 3 , Pb(Zr,Ti)O 3 , Pb(Mg,Nb)O 3 -PbTiO 3 , Pb(Zn,Nb)O 3 -PbTiO 3 or BiScO 3 -PbTiO 3 . According to specific embodiments, the shape and size of the soft magnetic layer 3 can also be changed accordingly.

所述压电层2与压磁层3之间通过环氧树脂连接,并在对应压磁层3上粘贴好压电层电极1构成电学并联,最终装配完成后的天线整体为多层层状结构。The piezoelectric layer 2 and the piezoelectric layer 3 are connected by epoxy resin, and the piezoelectric layer electrode 1 is pasted on the corresponding piezoelectric layer 3 to form an electrical parallel connection. After the final assembly, the antenna as a whole is multi-layered structure.

实施案例1:Implementation case 1:

参考图2,本发明提出的一种纵振模态的多层磁电机械天线,包括压电层电极1、压电层2、压磁层3。三个压电层2完全相同,每片压电层2都沿厚度方向极化,采取电学并联,此时天线工作于d31模态。Referring to FIG. 2 , a multilayer magnetoelectric mechanical antenna in longitudinal vibration mode proposed by the present invention includes a piezoelectric layer electrode 1 , a piezoelectric layer 2 , and a piezoelectric layer 3 . The three piezoelectric layers 2 are identical, each piezoelectric layer 2 is polarized along the thickness direction, and is electrically connected in parallel. At this time, the antenna works in the d31 mode.

多层磁电机械天线的主要部件由中心向两端依次为压电层2和压磁层3,各部件沿厚度方向向依次由环氧树脂粘接堆叠。The main components of the multilayer magnetomechanical antenna are the piezoelectric layer 2 and the piezoelectric layer 3 from the center to both ends, and each component is bonded and stacked by epoxy resin in sequence along the thickness direction.

参考图2,本实施方式中,各组件的具体几何尺寸可选择如下:其中压磁层3长100mm、宽2mm、厚0.25mm,每个压电层2长70mm、宽1.5mm、厚0.48mm,压电层电极1厚0.05mm。Referring to Fig. 2, in the present embodiment, the specific geometric dimensions of each component can be selected as follows: wherein the piezoelectric layer 3 is 100mm long, 2mm wide, and 0.25mm thick, and each piezoelectric layer 2 is 70mm long, 1.5mm wide, and 0.48mm thick , The thickness of the piezoelectric layer electrode 1 is 0.05mm.

本实施方式中,多层磁电机械天线在工作于d31模式,通过三个压电层2中的电极引出端提供交变电场,三个压电层2将会同时发生纵向的伸缩振动进而产生体声波传递至压磁层3,磁滞伸缩材料中的磁畴将会发生移动或翻转,进而向外辐射电磁场。当交变电场的频率接近多层磁电机械天线一阶纵振频率时,天线将会产生机械共振。同时天线工作过程中需要提供一定强度的直流偏置磁场,方向为沿天线轴向,大小由压磁层3的材料所确定。In this embodiment, the multilayer magnetoelectric mechanical antenna is working in the d31 mode, and the alternating electric field is provided through the electrode leads in the three piezoelectric layers 2, and the three piezoelectric layers 2 will simultaneously undergo longitudinal stretching vibrations to generate When the bulk acoustic wave is transmitted to the piezoelectric layer 3 , the magnetic domains in the hysteretic material will move or flip, and then radiate the electromagnetic field outward. When the frequency of the alternating electric field is close to the first-order longitudinal vibration frequency of the multilayer magnetomechanical antenna, the antenna will produce mechanical resonance. At the same time, a DC bias magnetic field of certain strength needs to be provided during the working process of the antenna, the direction is along the antenna axis, and the magnitude is determined by the material of the piezoelectric layer 3 .

图3为本实施方式的COMSOL仿真结果,COMSOL模型经过必要简化,但是不影响模型求解的可信性。图3为多层磁电机械天线的一阶纵振模态及其特征频率。Fig. 3 is the COMSOL simulation result of this embodiment, the COMSOL model has been simplified, but it does not affect the credibility of the model solution. Figure 3 shows the first-order longitudinal vibration mode and its eigenfrequency of the multilayer magnetomechanical antenna.

图4为本实施方式的下的辐射-距离关系图,接收器采用一个未调谐的线圈。FIG. 4 is a radiation-distance relation diagram of the present embodiment, and the receiver adopts an untuned coil.

图5为本实施方式的下的多层磁电机械天线在驱动电压增加时谐振频率变化情况,并以接收线圈感应电压达到峰值时的频率为谐振频率。FIG. 5 shows the variation of the resonant frequency of the multilayer magneto-electric mechanical antenna in this embodiment when the driving voltage increases, and the frequency when the induced voltage of the receiving coil reaches a peak value is taken as the resonant frequency.

优选地,所述压电材料为PZT陶瓷。Preferably, the piezoelectric material is PZT ceramics.

优选地,所述软磁材料为Metglas。Preferably, the soft magnetic material is Metglas.

工作原理:working principle:

通过压电层电极1对压电层2施加交流电场进行驱动,压电层2产生机械应变、通过界面耦合传递至压磁层3。基于磁畴状态的应力调制,从而产生交变电磁场。The piezoelectric layer 2 is driven by applying an AC electric field through the piezoelectric layer electrode 1 , and the piezoelectric layer 2 generates mechanical strain, which is transmitted to the piezoelectric layer 3 through interface coupling. Based on the stress modulation of the magnetic domain state, an alternating electromagnetic field is generated.

根据多层机械天线的结构特点,本发明所述的多层机械天线的具体制备过程可概括如下:According to the structural characteristics of the multilayer mechanical antenna, the specific preparation process of the multilayer mechanical antenna of the present invention can be summarized as follows:

1、天线结构设计与仿真验证;1. Antenna structure design and simulation verification;

2、材料加工、封装盒准备;2. Material processing and packaging box preparation;

3、压电层2的制备;3. Preparation of the piezoelectric layer 2;

4、压磁层3的制备;4. Preparation of the piezoelectric layer 3;

5、将压电层2和压磁层3粘接复合;5. Bonding and compounding the piezoelectric layer 2 and the piezoelectric layer 3;

6、将压电层电极1粘贴在对应的压磁层3上,得到最终的多层机械天线原型。6. Paste the piezoelectric layer electrode 1 on the corresponding piezoelectric layer 3 to obtain the final prototype of the multilayer mechanical antenna.

步骤三中,压电层2的制备,具体操作为:In step 3, the preparation of the piezoelectric layer 2, the specific operation is as follows:

(1)、取4片压电陶瓷,超声清洗后置于真空干燥箱中烘干备用;(1), take 4 pieces of piezoelectric ceramics, after ultrasonic cleaning, place them in a vacuum drying oven to dry for later use;

(2)、将压电陶瓷的上下表面以1400V的电压进行驱动,完成极化过程,标注极化方向,备用。(2) The upper and lower surfaces of the piezoelectric ceramics are driven with a voltage of 1400V to complete the polarization process, and the polarization direction is marked for later use.

步骤四中,压磁层3的制备,具体操作为:In step 4, the preparation of the piezoelectric layer 3 is performed as follows:

(1)、将软磁材料Metglas以100mm*10mm的尺寸进行切割并用95%乙醇进行清洗再烘干,烘干后取出;(1) Cut the soft magnetic material Metglas to a size of 100mm*10mm, wash it with 95% ethanol and then dry it, and take it out after drying;

(2)、在软磁材料表面旋涂环氧树脂(West System105/206),完成多层软磁材料的复合;(2) Spin-coat epoxy resin (West System105/206) on the surface of soft magnetic materials to complete the compounding of multi-layer soft magnetic materials;

(3)、将多层软磁材料,放入冷等静压机中室温固化24小时取出;(3), put the multi-layer soft magnetic material into a cold isostatic press and solidify it at room temperature for 24 hours and take it out;

步骤五中,将压电层2和压磁层3粘接复合,具体操作为:In step five, the piezoelectric layer 2 and the piezoelectric layer 3 are bonded and compounded, and the specific operation is as follows:

(1)、取加工完成的压电层2和压磁层3清洗,将粘接面用酒精擦拭后置于真空干燥箱中烘干备用;(1), take the processed piezoelectric layer 2 and piezoelectric layer 3 to clean, wipe the bonding surface with alcohol and place it in a vacuum drying oven to dry for subsequent use;

(2)、在干燥玻璃板上将压电层2和压磁层3上的黏结面均匀涂敷环氧树脂,依次叠放在一起,最后使用胶带固定并在轴向通过重力施加压力,室温固化24小时。(2) On a dry glass plate, apply epoxy resin evenly on the adhesive surface of the piezoelectric layer 2 and the piezoelectric layer 3, stack them together in turn, and finally use tape to fix them and apply pressure in the axial direction through gravity, room temperature Cured for 24 hours.

实施案例2:Implementation case 2:

参考图6,本发明提出的一种纵振模态的多层磁电机械天线,包括压电层电极1、压电层2、压磁层3。本实施方式中,多层磁电机械天线工作于d33模式,压电层电极1采用叉指电极,压电层2采用复合叉指电极的压电纤维的压电纤维复合材料,以获得更高的机电耦合系数。Referring to FIG. 6 , a multilayer magnetoelectric mechanical antenna in longitudinal vibration mode proposed by the present invention includes a piezoelectric layer electrode 1 , a piezoelectric layer 2 , and a piezoelectric layer 3 . In this embodiment, the multilayer magnetoelectric mechanical antenna works in the d33 mode, the piezoelectric layer electrode 1 adopts an interdigital electrode, and the piezoelectric layer 2 adopts a piezoelectric fiber composite material of a piezoelectric fiber composite interdigital electrode to obtain a higher The electromechanical coupling coefficient of .

此时压电层2采用压电纤维复合材料并进行纵向极化,与上下两片压电层电极1构成三明治结构,三层结构通过环氧树脂复合,此时天线工作于d33模态。根据具体的实施例,压电层2的形状尺寸也可相应改变。由于只有压电层2与实施案例1中不同,其余结构的制备方式均与上述中的实施案例1中方法相同。At this time, the piezoelectric layer 2 is made of piezoelectric fiber composite material and is longitudinally polarized. It forms a sandwich structure with the upper and lower piezoelectric layer electrodes 1. The three-layer structure is composited with epoxy resin. At this time, the antenna works in the d33 mode. According to specific embodiments, the shape and size of the piezoelectric layer 2 can also be changed accordingly. Since only the piezoelectric layer 2 is different from Embodiment 1, the preparation methods of other structures are the same as those in Embodiment 1 above.

由压电纤维复合材料构成的压电层2的制备具体操作为:The specific operation for the preparation of the piezoelectric layer 2 made of piezoelectric fiber composite material is as follows:

(1)、制作构成压电层电极1的叉指电极,厚度40μm;(1), making the interdigital electrodes constituting the piezoelectric layer electrodes 1, with a thickness of 40 μm;

(2)、超声清洗压电纤维,烘干后取出;(2) Ultrasonic cleaning of piezoelectric fibers, drying and taking out;

(3)、在叉指电极表面旋涂环氧树脂,顺序放置压电纤维,完成压电材料和叉指电极的复合;(3) Epoxy resin is spin-coated on the surface of the interdigital electrodes, and the piezoelectric fibers are placed in sequence to complete the composite of the piezoelectric material and the interdigital electrodes;

(4)、将复合叉指电极的压电纤维利用真空压缩技术室温固化24小时取出,形成压电宏观纤维复合材料;(4) Take out the piezoelectric fiber of the composite interdigitated electrode and solidify it at room temperature for 24 hours by vacuum compression technology to form a piezoelectric macroscopic fiber composite material;

(5)、将压电纤维复合材料置于硅油中,将直流电压升至1400V后保持15分钟,完成极化后;(5) Place the piezoelectric fiber composite material in silicone oil, raise the DC voltage to 1400V and keep it for 15 minutes, after the polarization is completed;

(6)、在压电纤维复合材料和上下软磁材料层表面旋涂环氧树脂(WestSystem105/206),将两部分黏合,固化完成后取出。(6) Spin-coat epoxy resin (WestSystem105/206) on the surface of the piezoelectric fiber composite material and the upper and lower soft magnetic material layers, bond the two parts, and take them out after curing.

实施案例3:Implementation case 3:

参考图7,本发明提出的一种纵振模态的多层磁电机械天线,包括压电层电极1、压电层2、压磁层3。本实施方式中的磁电机械天线采用2片软磁材料作为压磁层3,3片压电陶瓷作为压电层交替叠放,工作于d31模式。和实施案例1相比,主要的区别是压电/压磁层的层数不同。Referring to FIG. 7 , a multilayer magnetoelectric mechanical antenna in longitudinal vibration mode proposed by the present invention includes a piezoelectric layer electrode 1 , a piezoelectric layer 2 , and a piezoelectric layer 3 . The magnetoelectric mechanical antenna in this embodiment uses two pieces of soft magnetic material as the piezoelectric layer 3 and three pieces of piezoelectric ceramics as the piezoelectric layer to be stacked alternately, and works in the d31 mode. Compared with Example 1, the main difference is that the number of piezoelectric/piezomagnetic layers is different.

以上公开的本发明实施例只是用于帮助阐述本发明。实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。The embodiments of the present invention disclosed above are only used to help explain the present invention. The examples do not exhaust all details nor limit the invention to the specific embodiments described. Many modifications and variations can be made based on the contents of this specification. This description selects and specifically describes these embodiments in order to better explain the principle and practical application of the present invention, so that those skilled in the art can well understand and utilize the present invention.

Claims (8)

1.一种纵振模态的多层磁电机械天线,其特征在于:包括多层压磁层(3)、多层压电层(2)和多片压电层电极(1),多层压磁层(3)与多层压电层(2)相互交替堆叠,每层压电层(3)的上下覆有压电层电极(1),构成电学并联。1. a multilayer magnetoelectric mechanical antenna of longitudinal vibration mode, is characterized in that: comprise multilayer piezoelectric layer (3), multilayer piezoelectric layer (2) and multilayer piezoelectric layer electrode (1), multilayer The laminated magnetic layers (3) and the multilayer piezoelectric layers (2) are stacked alternately, and each layer of piezoelectric layers (3) is covered with piezoelectric layer electrodes (1) to form an electrical parallel connection. 2.根据权利要求1所述的纵振模态的多层磁电机械天线,其特征在于:每层压磁层(3)长100mm、宽2mm、厚0.25mm,每层压电层(2)长70mm、宽1.5mm、厚0.48mm,每片压电层电极(1)厚0.05mm,所述压电层电极(1)采用铜材料。2. the multilayer magneto-electric mechanical antenna of longitudinal vibration mode according to claim 1 is characterized in that: every laminated magnetic layer (3) is long 100mm, wide 2mm, thick 0.25mm, and every layer piezoelectric layer (2 ) is 70mm long, 1.5mm wide, and 0.48mm thick, and each piezoelectric layer electrode (1) is 0.05mm thick, and the piezoelectric layer electrode (1) is made of copper. 3.根据权利要求1所述的纵振模态的多层磁电机械天线,其特征在于:所述压磁层(3)由软磁块材或者由软磁带材多层复合而成,其中软磁材料是Metglas、Fe-Ga合金、Terfernol-D合金、Fe-Ni合金、FeCo、FeCoB、FeGaB、NiZn铁氧体以及Ni金属中的一种,通过环氧树脂连接。3. The multilayer magneto-electric mechanical antenna of longitudinal vibration mode according to claim 1, characterized in that: said piezoelectric layer (3) is made of soft magnetic blocks or multilayer composites of soft magnetic tapes, wherein The soft magnetic material is one of Metglas, Fe-Ga alloy, Terfernol-D alloy, Fe-Ni alloy, FeCo, FeCoB, FeGaB, NiZn ferrite and Ni metal, connected by epoxy resin. 4.根据权利要求1所述的纵振模态的多层磁电机械天线,其特征在于:所述压电层(2)的压电材料包括压电陶瓷和压电单晶,压电材料为LiNbO3、BaTiO3、Pb(Zr,Ti)O3、Pb(Mg,Nb)O3-PbTiO3、Pb(Zn,Nb)O3-PbTiO3或BiScO3-PbTiO3中的一种。4. the multilayer magneto-electric mechanical antenna of longitudinal vibration mode according to claim 1, is characterized in that: the piezoelectric material of described piezoelectric layer (2) comprises piezoelectric ceramics and piezoelectric single crystal, piezoelectric material It is one of LiNbO 3 , BaTiO 3 , Pb(Zr,Ti)O 3 , Pb(Mg,Nb)O 3 -PbTiO 3 , Pb(Zn,Nb)O 3 -PbTiO 3 or BiScO 3 -PbTiO 3 . 5.根据权利要求1所述的纵振模态的多层磁电机械天线,其特征在于:所述压电层(2)与压磁层(3)之间通过环氧树脂连接。5. The multilayer magnetoelectric mechanical antenna in longitudinal vibration mode according to claim 1, characterized in that: the piezoelectric layer (2) and the piezoelectric layer (3) are connected by epoxy resin. 6.根据权利要求1所述的纵振模态的多层磁电机械天线,其特征在于:每层压电层(2)沿厚度方向极化,并采取电学并联,此时天线工作于d31模式。6. The multilayer magneto-electric mechanical antenna of longitudinal vibration mode according to claim 1, characterized in that: each layer of piezoelectric layer (2) is polarized along the thickness direction, and takes electrical parallel connection, and now the antenna works at d31 model. 7.根据权利要求6所述的纵振模态的多层磁电机械天线,其特征在于:压电层(2)也可以采用压电宏观纤维复合材料,采用纵向极化方式,此时天线工作于d33模式。7. The multilayer magneto-electric mechanical antenna of longitudinal vibration mode according to claim 6, is characterized in that: piezoelectric layer (2) also can adopt piezoelectric macro fiber composite material, adopts longitudinal polarization mode, now antenna Works in d33 mode. 8.一种权利要求1所述的纵振模态的多层磁电机械天线的制备方法,其特征在于:具体包括以下步骤:8. A method for preparing the multilayer magneto-electric mechanical antenna of the longitudinal vibration mode according to claim 1, characterized in that: specifically comprising the following steps: (1)、天线结构设计与仿真验证;(1) Antenna structure design and simulation verification; (2)、材料加工、封装盒准备;(2), material processing, packing box preparation; (3)、压电层(2)的制备;(3), the preparation of piezoelectric layer (2); (4)、压磁层(3)的制备;(4), preparation of the piezoelectric layer (3); (5)、将压电层(2)和压磁层(3)粘接复合;(5), bonding and compounding the piezoelectric layer (2) and the piezoelectric layer (3); (6)、将压电层电极(1)粘贴在对应的压磁层(3)上,得到最终的多层机械天线原型。(6) Pasting the piezoelectric layer electrode (1) on the corresponding piezoelectric layer (3) to obtain the final prototype of the multilayer mechanical antenna.
CN202211557554.2A 2022-12-06 2022-12-06 Very-low-frequency multilayer magnetoelectric mechanical antenna and preparation method thereof Pending CN115966886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211557554.2A CN115966886A (en) 2022-12-06 2022-12-06 Very-low-frequency multilayer magnetoelectric mechanical antenna and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211557554.2A CN115966886A (en) 2022-12-06 2022-12-06 Very-low-frequency multilayer magnetoelectric mechanical antenna and preparation method thereof

Publications (1)

Publication Number Publication Date
CN115966886A true CN115966886A (en) 2023-04-14

Family

ID=87353410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211557554.2A Pending CN115966886A (en) 2022-12-06 2022-12-06 Very-low-frequency multilayer magnetoelectric mechanical antenna and preparation method thereof

Country Status (1)

Country Link
CN (1) CN115966886A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116487866A (en) * 2023-05-06 2023-07-25 电子科技大学 A magneto-electric mechanical antenna for ultra-low frequency communication system and its preparation method
CN117712670A (en) * 2023-12-11 2024-03-15 中国人民解放军海军工程大学 A series-parallel stacked array of magnetoelectric antennas and a method for establishing its equivalent circuit model

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130252030A1 (en) * 2012-03-22 2013-09-26 Korea Institute Of Machinery And Materials Magnetoelectric composites
CN104835907A (en) * 2014-01-28 2015-08-12 韩国机械与材料研究院 Single-crystal piezoelectric fiber composite and magnetoelectric laminate composite including the same
KR20210007857A (en) * 2019-07-09 2021-01-20 금오공과대학교 산학협력단 Piezoelectric composite, method of manufacturing the same, and magnetoelectric laminate structure having the same
CN112542674A (en) * 2020-12-17 2021-03-23 大连交通大学 Magnetic-electromechanical coupling type miniaturized very low frequency mechanical antenna
CN112615151A (en) * 2020-12-17 2021-04-06 武汉理工大学 Low-frequency mechanical antenna based on piezoelectric-piezomagnetic composite material and manufacturing method thereof
CN112952382A (en) * 2021-01-29 2021-06-11 清华大学 Modulation method and system of magnetoelectric mechanical antenna and computer equipment
CN113224509A (en) * 2021-04-12 2021-08-06 华南理工大学 Acoustic wave resonance electrically small antenna and preparation method thereof
CN113938216A (en) * 2021-10-20 2022-01-14 西安交通大学 A kind of underwater communication system and manufacturing method based on very low frequency magnetoelectric antenna
CN113964493A (en) * 2021-09-24 2022-01-21 苏州博海创业微系统有限公司 Low-frequency mechanical antenna based on hybrid model source
CN115332772A (en) * 2022-09-05 2022-11-11 南京理工大学 Tunable very-low-frequency magnetoelectric antenna and preparation method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130252030A1 (en) * 2012-03-22 2013-09-26 Korea Institute Of Machinery And Materials Magnetoelectric composites
CN104835907A (en) * 2014-01-28 2015-08-12 韩国机械与材料研究院 Single-crystal piezoelectric fiber composite and magnetoelectric laminate composite including the same
US20150236242A1 (en) * 2014-01-28 2015-08-20 Korea Institute of Machinery and Minerals Single-crystal piezoelectric fiber composite and magnetoelectric laminate composite including the same
KR20210007857A (en) * 2019-07-09 2021-01-20 금오공과대학교 산학협력단 Piezoelectric composite, method of manufacturing the same, and magnetoelectric laminate structure having the same
CN112542674A (en) * 2020-12-17 2021-03-23 大连交通大学 Magnetic-electromechanical coupling type miniaturized very low frequency mechanical antenna
CN112615151A (en) * 2020-12-17 2021-04-06 武汉理工大学 Low-frequency mechanical antenna based on piezoelectric-piezomagnetic composite material and manufacturing method thereof
CN112952382A (en) * 2021-01-29 2021-06-11 清华大学 Modulation method and system of magnetoelectric mechanical antenna and computer equipment
CN113224509A (en) * 2021-04-12 2021-08-06 华南理工大学 Acoustic wave resonance electrically small antenna and preparation method thereof
CN113964493A (en) * 2021-09-24 2022-01-21 苏州博海创业微系统有限公司 Low-frequency mechanical antenna based on hybrid model source
CN113938216A (en) * 2021-10-20 2022-01-14 西安交通大学 A kind of underwater communication system and manufacturing method based on very low frequency magnetoelectric antenna
CN115332772A (en) * 2022-09-05 2022-11-11 南京理工大学 Tunable very-low-frequency magnetoelectric antenna and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
彭春瑞: "《体声波磁电天线的研究与设计》", 《硕士电子期刊出版信息》, 15 January 2022 (2022-01-15) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116487866A (en) * 2023-05-06 2023-07-25 电子科技大学 A magneto-electric mechanical antenna for ultra-low frequency communication system and its preparation method
CN116487866B (en) * 2023-05-06 2024-04-26 电子科技大学 A magneto-electromechanical antenna for ultra-low frequency communication system and its preparation method
CN117712670A (en) * 2023-12-11 2024-03-15 中国人民解放军海军工程大学 A series-parallel stacked array of magnetoelectric antennas and a method for establishing its equivalent circuit model

Similar Documents

Publication Publication Date Title
CN112615151B (en) A low-frequency mechanical antenna based on piezoelectric-piezomagnetic composite material and its manufacturing method
CN115966886A (en) Very-low-frequency multilayer magnetoelectric mechanical antenna and preparation method thereof
Li et al. An upconversion management circuit for low-frequency vibrating energy harvesting
CN103929149B (en) Flexible piezoelectric film bulk acoustic wave resonator and manufacturing method thereof
JP2022080885A (en) Magnetic electric antenna array
CN105047811B (en) Piezoelectric material layer based on different-thickness stacks PZT (piezoelectric transducer)
CN111403915B (en) A double-clamped longitudinal vibration mode magnetoelectric antenna and its preparation method
CN115332772A (en) Tunable very-low-frequency magnetoelectric antenna and preparation method thereof
CN103296923B (en) Exempt from magnet bistable state PZT (piezoelectric transducer)
CN115642388A (en) A Very Low Frequency Magnetoelectric Antenna Based on Rosen Structure
CN108550692A (en) A kind of adjustable magneto-electric coupled composite material and preparation method of resonance mode
TW201810744A (en) Electricity generator comprising a magnetoelectric converter and method for manufacturing same
CN112542674A (en) Magnetic-electromechanical coupling type miniaturized very low frequency mechanical antenna
CN217719955U (en) Laminated structure of magnetoelectric antenna
CN101545957A (en) Gate-structure magnetoelectric magnetic filed sensor and manufacturing method thereof
CN112290201A (en) Low-frequency magnetoelectric composite mechanical antenna with novel structure
CN101350570A (en) Coilless magnetic control device
KR102454903B1 (en) Piezoelectric composite, method of manufacturing the same, and magnetoelectric laminate structure having the same
CN117410695A (en) Magnetoelectric antenna based on magnetoelectric composite material
CN116154466A (en) Low-frequency mechanical magnetoelectric antenna based on cantilever structure
CN114899591A (en) A multi-period bulk acoustic wave magnetoelectric antenna
Feng et al. Design and Analysis of an Ultra-compact Magnetoelectric Antenna
JP2910392B2 (en) Manufacturing method of thickness vibration pressure ceramic transformer
CN110277971A (en) A kind of temperature adjustment type thin film bulk acoustic wave resonator
CN116646713A (en) A shear mode mechanical antenna structure and manufacturing method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination