CN115924896A - 一种以非均相催化剂制备石墨烯量子点的方法 - Google Patents

一种以非均相催化剂制备石墨烯量子点的方法 Download PDF

Info

Publication number
CN115924896A
CN115924896A CN202211674694.8A CN202211674694A CN115924896A CN 115924896 A CN115924896 A CN 115924896A CN 202211674694 A CN202211674694 A CN 202211674694A CN 115924896 A CN115924896 A CN 115924896A
Authority
CN
China
Prior art keywords
hydrogen peroxide
quantum dots
manganese dioxide
graphene quantum
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211674694.8A
Other languages
English (en)
Inventor
崔大祥
张放为
张芳
葛美英
卢玉英
王金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Original Assignee
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai National Engineering Research Center for Nanotechnology Co Ltd filed Critical Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority to CN202211674694.8A priority Critical patent/CN115924896A/zh
Publication of CN115924896A publication Critical patent/CN115924896A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开一种以非均相催化剂制备石墨烯量子点的方法,将二氧化锰粒子分散于水中并剧烈搅拌;保持搅拌,煮沸所得分散液,停止加热并加入双氧水;立即向所得反应液中加入中性氧化石墨烯溶液并继续搅拌,保持微沸适当补加双氧水;停止加热,继续搅拌,加入盐酸和双氧水使二氧化锰全部转化为锰(II)离子;过滤所得反应液,透析所得液体获得石墨烯量子点。本发明的优点反应无需紫外光照射,装置简单。产物易于处理,不会引入新的杂质。

Description

一种以非均相催化剂制备石墨烯量子点的方法
技术领域
本发明涉及碳纳米材料领域,更具体地,涉及石墨烯量子点,尤其是指一种以非均相催化剂制备石墨烯量子点的方法。
背景技术
芬顿反应(Fenton reaction)是以铁离子为催化剂、双氧水为氧化剂的强氧化反应,常用于氧化处理有机废水。石墨烯量子点是侧向尺寸小于100 nm的石墨烯小片层。紫外光诱导的光芬顿反应可将氧化石墨烯切割为石墨烯量子点(Zhou X, Zhang Y, Wang C,et al. Photo-Fenton reaction of graphene oxide: a new strategy to preparegraphene quantum dots for DNA cleavage[J]. ACS nano, 2012, 6(8): 6592-6599.),反应进程受紫外光照射强度、时间控制,可随时停止照射,反应很快停止。但是,无需紫外光照射而通过加热引发的芬顿反应不能用于生产石墨烯量子点,因为作为产物的石墨烯量子点可和铁离子复合生成具有更高催化活性的复合物,使反应不断加速,即产生所谓的自催化现象。因此,热引发的芬顿反应一般不能停留在产生石墨烯量子点的阶段,而会继续反应生成二氧化碳和水。锰的一些氧化物也能在双氧水溶液中引发强烈的氧化反应,称作类芬顿反应(Ma Z , Wei X , Xing S , et al. Hydrothermal synthesis andcharacterization of surface-modified δ-MnO2 with high Fenton-like catalyticactivity[J]. Catalysis Communications, 2015, 67:68-71.),石墨烯量子点也能加速此类非均相类芬顿反应(Wu X , Zhang Y , Han T , et al. Composite of graphenequantum dots and Fe3O4 nanoparticles: peroxidase activity and application inphenolic compound removal[J]. Rsc Advances, 2013, 4(7):3299-3305.),但当石墨烯量子点含量增多时,也可屏蔽金属氧化物表面的活性位点使反应减速,这就为反应提供了天然的终止机理,而不必等待某个反应物耗尽。
发明内容
针对以热引发的芬顿反应难以控制的问题,本发明目的在于提供一种以非均相催化剂制备石墨烯量子点的方法。
本发明通过以下方案实现:一种以非均相催化剂制备石墨烯量子点的方法,包括如下步骤:
(1)将二氧化锰粒子分散于水中并剧烈搅拌。
(2)保持搅拌,煮沸步骤(1)中所得分散液,停止加热并加入双氧水。
(3)立即向步骤(2)所得反应液中加入中性氧化石墨烯溶液并继续搅拌。适当补加双氧水。
(4)继续搅拌,加入盐酸和双氧水使二氧化锰全部转化为锰(II)离子。
(5)过滤步骤(4)所得反应液,透析所得液体获得石墨烯量子点。
优选的,步骤(1)中二氧化锰粒子d50 = 50 nm。
优选的,步骤(3)中加入氧化石墨烯的质量为步骤(1)中加入二氧化锰的5倍。
本发明的优点:
(1)反应无需紫外光照射,装置简单。
(2)产物易于处理,不会引入新的杂质。
本发明利用了反应生成的石墨烯量子点控制反应进程,在反应初始阶段,生成的石墨烯量子点与二氧化锰粒子复合可加速反应,当生成的石墨烯量子点进一步增多时,其覆盖二氧化锰粒子表面的活性位点,又使反应减速并最终停止。在产物处理中,加入盐酸酸化使二氧化锰氧化性增强并顺利还原为二价锰离子,此时双氧水作为还原剂转化为氧气。由于以改进的Hummers方法制备氧化石墨烯,在制备过程中不可避免地会引入锰(II)离子,所以本方法的另一个优点就是不会引入新的杂质离子。
具体实施方式
下面结合具体实施例,进一步阐述本发明。下述实施例中所使用的实验方法如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。
实施例1.
.一种以非均相催化剂制备石墨烯量子点,按如下步骤制备:
(1)将1 mg二氧化锰催化剂(d50 = 50 nm)分散于50 mL中并剧烈搅拌;
(2)剧烈搅拌下加热至步骤(1)中所得分散液沸腾,停止加热,以塑料滴管向溶液内部加入0.2 mL市售双氧水(30 %),煮沸,停止加热并加入双氧水;
(3)将5 mg氧化石墨烯分散于10 mL水中,加入氢氧化钠溶液将其中和至中性;立即将所得中性氧化石墨烯分散液加入近沸的步骤(2)所得二氧化锰分散液中,保持搅拌并加热使溶液保持微沸,每间隔10 min以滴管向溶液中心补加0.2 mL市售浓度30 %双氧水,共加入1.0 mL双阳水;后停止加热;
(4)停止加热,继续搅拌使反应回到室温,加入1 mL市售浓度36 %的浓盐酸和继续搅拌并补加0.1 mL浓度30 %双氧水,使二氧化锰全部转化为锰(II)离子;
(5)过滤除去未反应的固体,将溶液透析至中性即得石墨烯量子点溶液。
上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (4)

1.一种以非均相催化剂制备石墨烯量子点的方法,其特征在于,包括如下步骤:
(1)将二氧化锰粒子分散于水中并剧烈搅拌;
(2)保持搅拌,煮沸步骤(1)中所得分散液,停止加热并加入双氧水;
(3)立即向步骤(2)所得反应液中加入中性氧化石墨烯溶液并继续搅拌,保持微沸,适当补加双氧水;
(4)停止加热,继续搅拌,加入盐酸和双氧水使二氧化锰全部转化为锰(II)离子;
(5)过滤步骤(4)所得反应液,透析所得液体获得石墨烯量子点。
2.根据权利要求1所述的一种以非均相催化剂制备石墨烯量子点的方法,其特征在于,步骤(2)所述二氧化锰粒子d50 = 50 nm。
3.根据权利要求1所述的一种以非均相催化剂制备石墨烯量子点的方法,其特征在于,步骤(3)中加入氧化石墨烯的质量是步骤(1)中加入二氧化锰质量的5倍。
4.根据权利要求1至3任一项所述的一种以非均相催化剂制备石墨烯量子点的方法,其特征在于,按如下步骤制备:
(1)将1 mg二氧化锰催化剂(d50 = 50 nm)分散于50 mL中并剧烈搅拌;
(2)剧烈搅拌下加热至步骤(1)中所得分散液沸腾,停止加热,以塑料滴管向溶液内部加入0.2 mL市售双氧水(30 %),煮沸,停止加热并加入双氧水;
(3)将5 mg氧化石墨烯分散于10 mL水中,加入氢氧化钠溶液将其中和至中性;立即将所得中性氧化石墨烯分散液加入近沸的步骤(2)所得二氧化锰分散液中,保持搅拌并加热使溶液保持微沸,每间隔10 min以滴管向溶液中心补加0.2 mL市售浓度30 %双氧水,共加入1.0 mL双阳水;后停止加热;
(4)停止加热,继续搅拌使反应回到室温,加入1 mL市售浓度36 %的浓盐酸和继续搅拌并补加0.1 mL浓度30 %双氧水,使二氧化锰全部转化为锰(II)离子;
(5)过滤除去未反应的固体,将溶液透析至中性即得石墨烯量子点溶液。
CN202211674694.8A 2022-12-26 2022-12-26 一种以非均相催化剂制备石墨烯量子点的方法 Pending CN115924896A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211674694.8A CN115924896A (zh) 2022-12-26 2022-12-26 一种以非均相催化剂制备石墨烯量子点的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211674694.8A CN115924896A (zh) 2022-12-26 2022-12-26 一种以非均相催化剂制备石墨烯量子点的方法

Publications (1)

Publication Number Publication Date
CN115924896A true CN115924896A (zh) 2023-04-07

Family

ID=86555519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211674694.8A Pending CN115924896A (zh) 2022-12-26 2022-12-26 一种以非均相催化剂制备石墨烯量子点的方法

Country Status (1)

Country Link
CN (1) CN115924896A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104556004A (zh) * 2014-12-26 2015-04-29 西北大学 一种可控荧光石墨烯量子点的制备方法
CN105460919A (zh) * 2014-08-29 2016-04-06 中国科学院过程工程研究所 一种基于臭氧氧化制备石墨烯量子点的方法
US9505623B1 (en) * 2014-06-24 2016-11-29 University Of South Florida One-step synthesis of graphene quantum dots
CN106554008A (zh) * 2015-09-18 2017-04-05 上海新池能源科技有限公司 一种催化剂辅助制备石墨烯量子点的方法
US20170152385A1 (en) * 2015-11-27 2017-06-01 Institute Of Process Engineering, Chinese Academy Of Sciences Method for preparation of carbon quantum dots and application
US10493170B1 (en) * 2014-06-24 2019-12-03 University Of South Florida Targeted graphene quantum dot-based theranostics
AU2021106312A4 (en) * 2021-08-21 2021-11-04 Qingdao University Of Science And Technology Preparation method and application of graphene quantum dots with uniform size
CN114455577A (zh) * 2022-02-23 2022-05-10 南京工业大学 一种高效环保羧基功能化石墨烯量子点及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9505623B1 (en) * 2014-06-24 2016-11-29 University Of South Florida One-step synthesis of graphene quantum dots
US10493170B1 (en) * 2014-06-24 2019-12-03 University Of South Florida Targeted graphene quantum dot-based theranostics
CN105460919A (zh) * 2014-08-29 2016-04-06 中国科学院过程工程研究所 一种基于臭氧氧化制备石墨烯量子点的方法
CN104556004A (zh) * 2014-12-26 2015-04-29 西北大学 一种可控荧光石墨烯量子点的制备方法
CN106554008A (zh) * 2015-09-18 2017-04-05 上海新池能源科技有限公司 一种催化剂辅助制备石墨烯量子点的方法
US20170152385A1 (en) * 2015-11-27 2017-06-01 Institute Of Process Engineering, Chinese Academy Of Sciences Method for preparation of carbon quantum dots and application
AU2021106312A4 (en) * 2021-08-21 2021-11-04 Qingdao University Of Science And Technology Preparation method and application of graphene quantum dots with uniform size
CN114455577A (zh) * 2022-02-23 2022-05-10 南京工业大学 一种高效环保羧基功能化石墨烯量子点及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邓冬艳;郑成斌;: "纳米Fe_3O_4光-Fenton反应制备石墨烯量子点实验研究", 实验技术与管理, no. 02, 20 February 2017 (2017-02-20), pages 58 - 61 *

Similar Documents

Publication Publication Date Title
US4459370A (en) Process for the preparation of an iron(III) oxide catalyst or absorbent
Zhang et al. Degradation of ibuprofen in the carbon dots/Fe3O4@ carbon sphere pomegranate-like composites activated persulfate system
JP5038389B2 (ja) 遷移金属酸化物ナノ粒子の製造方法
Ammar et al. Synthesis, characterization and environmental remediation applications of polyoxometalates-based magnetic zinc oxide nanocomposites (Fe3O4@ ZnO/PMOs)
Yang et al. Degradation of orange II by Fe@ Fe2O3 core shell nanomaterials assisted by NaHSO3
Li et al. Lewis acids promoted organic pollutants degradation in aqueous solution with peroxymonosulfate and MnO2: New insights into the activation mechanism
CN103551146B (zh) 一种贵金属-二氧化钛纳米复合粒子的制备方法
Xiang et al. Synergistic photocatalysis-fenton reaction of flower-shaped CeO2/Fe3O4 magnetic catalyst for decolorization of high concentration congo red dye
Seo et al. A yolk–shell structured Pd@ void@ ZrO2 catalyst for direct synthesis of hydrogen peroxide from hydrogen and oxygen
CN108816235A (zh) 一种可磁回收的多孔Ni@GCC复合材料及其制备方法和应用
Lv et al. Highly dispersed copper oxide-loaded hollow Fe-MFI zeolite for enhanced tetracycline degradation
Ma et al. Electrolytic core–shell Co@ C for diethyl phthalate degradation
Pandey et al. Mesoporous silica beads encapsulated with functionalized palladium nanocrystallites: Novel catalyst for selective hydrogen evolution
CN115924896A (zh) 一种以非均相催化剂制备石墨烯量子点的方法
CN108452816A (zh) 一种小粒径金属磷化物纳米粒子/还原型石墨烯复合材料及其制备方法
Yang et al. Controlled deposition of ultra-small Ag particles on TiO 2 nanorods: Oxide/metal hetero-nanostructures with improved catalytic activity
Movahedian et al. Enhanced PMS/O 2 activation by self-crosslinked amine-gluteraldehyde/chitosan-Cu biocomposites for efficient degradation of HEPES as biological pollutants and selective allylic oxidation of cyclohexene
CN111450818B (zh) 五氧化二铌@还原氧化石墨烯催化剂及其制备方法和应用
Jiao et al. Effect of calcination temperature on catalytic performance of CeCu oxide in removal of quinoline by wet hydrogen peroxide oxidation from water
Zhang et al. Acidic bimetallic LaCo-MOF materials showing synergistic catalytic effect on the air epoxidation of cyclooctene
CN104556150B (zh) 一种由Fenton试剂合成金属氰化物的方法
Ulasevich et al. Oscillating of physicochemical and biological properties of metal particles on their sonochemical treatment
CN111060501A (zh) 一种纳米过氧化铈催化剂及利用其催化tmb显色的方法
CN108325529B (zh) 一种光催化水氧化催化剂及其制备方法
CN1792771A (zh) 纳米氧化物粉体材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination