CN108816235A - 一种可磁回收的多孔Ni@GCC复合材料及其制备方法和应用 - Google Patents

一种可磁回收的多孔Ni@GCC复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN108816235A
CN108816235A CN201810724776.6A CN201810724776A CN108816235A CN 108816235 A CN108816235 A CN 108816235A CN 201810724776 A CN201810724776 A CN 201810724776A CN 108816235 A CN108816235 A CN 108816235A
Authority
CN
China
Prior art keywords
gcc
composite material
norfloxacin
porous
degradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810724776.6A
Other languages
English (en)
Other versions
CN108816235B (zh
Inventor
刘雪岩
徐丹
王琼
张蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Hongkun Electrical Equipment Co.,Ltd.
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN201810724776.6A priority Critical patent/CN108816235B/zh
Publication of CN108816235A publication Critical patent/CN108816235A/zh
Application granted granted Critical
Publication of CN108816235B publication Critical patent/CN108816235B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/302Treatment of water, waste water, or sewage by irradiation with microwaves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种可磁回收的多孔Ni@GCC复合材料及其制备方法和应用。采用的技术方案是:采用水热方法合成Ni‑MOF前驱体,并衍生得到杨梅状Ni@GCC复合功能材料。本发明以Ni@GCC复合材料为催化剂,协同微波降解诺氟沙星。制备的Ni@GCC具有良好的磁性,可通过外部磁铁实现快速的分离回收,循环使用五次后,诺氟沙星降解率仍能达到96%以上,材料的高重复利用性及循环稳定性使其在实际应用中有非常好的前景。

Description

一种可磁回收的多孔Ni@GCC复合材料及其制备方法和应用
技术领域
本发明属于催化剂领域,具体的涉及一种能高效降解有机污染物的可磁回收的多孔Ni@GCC复合材料及其制备方法和应用。
背景技术
抗生素自问世以来,备受人们的关注,使用比例也相当大。其中,诺氟沙星是一种典型的喹诺酮类抗生素,因其具有广谱性抗菌、临床效果好等优点,广泛应用于医疗、畜牧养殖和水产业等领域。据统计,诺氟沙星仅2001年的产量约为3500吨,2002年增加为3600吨。人畜摄入抗生素后,在体内不能被完全代谢,其中一部分被吸收和利用,仍有大约75%以原药或代谢物的形式,经人体循环后随尿液和粪便排出体外。鉴于诺氟沙星被无节制地使用,近年来,在水环境中被频繁检出。并且,诺氟沙星半衰期较长,在自然界中能够稳定存在,短时间内无法被降解,因此,残留在环境中的诺氟沙星会对生命机体产生毒害作用,甚至诱导生物产生抗药性,造成潜在危害。因此,抗生素作为新型污染物受到人们日益关注,环境水体中残留抗生素的去除研究具有十分重要的意义。
微波驱动的催化降解技术,因其具有催化速率快(几分钟内)、矿化度高、可处理生物难降解有机污染物等特点,成为有机废水处理的新兴技术。选择合适吸波材料对降解效率的提高十分重要。目前,常用的吸波材料有活性炭,金属氧化物,聚合物等。过渡金属纳米粒子是非常优越的吸波材料,然而很少有将其作为微波催化剂降解有机污染的研究报道。尽管其具有超高的吸波能力,但其具有易于团聚、在空气中不稳定而被氧化失活等缺点,限制了其实际应用。
发明内容
本发明的目的是提供一种碳包覆的过渡金属纳米粒子作为微波催化剂。以MOFs衍生的构建方式,原位得到石墨化的碳层,保护过渡粒子不被氧化;并且可继承MOFs前驱体可变的形貌及多孔的特性,实现高度分散的碳包覆过渡金属纳米粒子。
本发明合成的可磁回收的多孔Ni@GCC复合材料作为催化剂,协同微波降解抗生素诺氟沙星,充分展示了Ni@GCC材料优异的催化性能,以及微波协同降解方法的高效性。
本发明采用的技术方案是:一种可磁回收的多孔Ni@GCC复合材料,所述的可磁回收的多孔Ni@GCC复合材料为球形,BET比表面积为110~130m2·g-1,孔径大小为12~15nm,饱和磁化量为33.71~37.8emu·g-1
一种可磁回收的多孔Ni@GCC复合材料的制备方法,包括如下步骤:将硝酸镍、均苯三甲酸和聚乙烯吡咯烷酮溶解于混合溶剂中,然后转移到反应釜中,在140~160℃下反应9~11h,自然冷却至室温,乙醇洗涤,干燥,得Ni-MOF前驱体粉末;将所得Ni-MOF前驱体粉末置于管式炉中,在氮气保护下700℃煅烧3~4h,得到可磁回收的多孔Ni@GCC复合材料。
优选的,所述的混合溶剂为,按体积比,乙醇:水:DMF=1:1:1。
可磁回收的多孔Ni@GCC复合材料在降解有机污染物中的应用。优选的,所述的有机污染物是喹诺酮类抗生素。更优选的,所述的喹诺酮类抗生素是诺氟沙星。
可磁回收的多孔Ni@GCC复合材料在降解有机污染物中的应用。方法如下:于含有诺氟沙星的溶液中,加入上述的可磁回收的多孔Ni@GCC复合材料,微波协同诱导催化降解。
优选的,方法如下:调节诺氟沙星的初始浓度为5mg·L-1~20mg·L-1,加入上述的可磁回收的多孔Ni@GCC复合材料,在微波功率100~700W下催化降解3~7min;每50mL初始浓度为5mg·L-1~20mg·L-1的诺氟沙星的溶液中,加入20~80mg上述的可磁回收的多孔Ni@GCC复合材料。
更优选的,方法如下:调节诺氟沙星的初始浓度为10mg·L-1,加入60mg上述的可磁回收的多孔Ni@GCC复合材料,在微波功率700W下催化降解3~7min。
本发明的有益效果是:本发明合成的可磁回收的多孔Ni@GCC复合材料作为催化剂,协同微波降解抗生素诺氟沙星,充分展示了Ni@GCC材料优异的催化性能,以及微波协同降解方法的高效性,对诺氟沙星的降解率可达97%以上,材料的高重复利用性及循环稳定性使其在实际应用中有非常好的前景。
附图说明
图1是Ni@GCC的XRD图谱。
图2是Ni@GCC的扫描电镜图。
图3是Ni@GCC的N2吸附解析曲线。
图4是Ni@GCC的孔径分布。
图5是Ni@GCC的磁滞回线图。
图6是循环前后Ni@GCC的FTIR图。
图7是循环前后Ni@GCC的XRD图。
图8是微波诱导Ni@GCC催化降解诺氟沙星机理图。
具体实施方式
实施例1
(一)可磁回收的多孔Ni@GCC复合材料的制备方法
采用金属有机框架(MOFs)材料衍生方式构建吸波材料Ni@GCC。
将0.864g硝酸镍Ni(NO3)2·6H2O,0.3g均苯三甲酸(H3BTC)和3g聚乙烯吡咯烷酮(PVP)溶解于60mL混合溶剂中(乙醇:水:DMF的体积比为1:1:1),持续搅拌30min至完全溶解。随后,将上述溶液转移到100mL反应釜中,在150℃下反应10h。待反应结束,自然冷却至室温,产物用乙醇洗三次,并在60℃下干燥12h,得到Ni-MOF前驱体粉末。最后,将所得Ni-MOF前驱体粉末置于管式炉中进行热解,在氮气保护下,700℃煅烧3h,得到Ni@GCC复合材料。
(二)Ni@GCC的表征
由图1可知,成功的合成出了Ni-MOF前驱体,并衍生得到Ni@GCC,其衍射峰44.88°,52.16°和76.63°分别与金属Ni的(111),(200)和(220)晶面相对应。25°左右与石墨碳的(220)面相吻合,石墨碳均匀分散于复合材料中。没有其他峰,说明本发明成功合成出Ni@GCC,且纯度很高。
图2为Ni@GCC的扫描电镜图,可以直观的展示出材料的微观形貌,由图2(a)可以清楚的看出,Ni@GCC具有球形结构,表面有很多突起,形似杨梅状,尺寸大约在3um。图2(b)是放大后表面的刺状结构,它均匀的生长在球表面。这样的形貌有助于微波的吸收,有利于催化降解。
图3是Ni@GCC的N2吸附解析曲线。催化剂的比表面积影响着目标物与活性位点的接触,通过扫描电镜照片可得知Ni@GCC具有较大的比表面积。通过N2吸附-解析曲线可以进一步的验证,由图3可知Ni@GCC的BET表面积为110m2·g-1,Ni@GCC的孔径分布图见图4,孔径大小为12nm。较大的比表面积有利于微波催化降解。
在室温下外加磁场范围-20.0kOe≤H≤20.0kOe条件下,测得Ni@GCC的磁滞回线如图5所示。由图5可见,Ni@GCC的饱和磁化量为33.71emu·g-1。Ni@GCC具有良好的磁性,这一特性尤为重要,使催化剂可以十分便利的从目标物中分离出来,有利于它的分离回收处理,简化了操作过程,这在实际应用中有很大优势,具有重要的现实意义。
实施例2可磁回收的多孔Ni@GCC复合材料降解诺氟沙星
降解实验在可控温的微波仪中进行,其上装有冷凝回流装置。
方法如下:移取50mL初始浓度为5mg·L-1~20mg·L-1的诺氟沙星溶液于250mL的三口圆底烧瓶中,加入20~80mg Ni@GC,然后置于微波仪中,在微波功率100~700W下催化降解1~7min。待反应结束后,迅速利用磁性分离取出上层清液,采用紫外光谱仪测量其紫外吸收曲线,并记录最大吸收波长处所对应的吸光度值A,计算对应的降解效率。
(一)Ni@GCC微波诱导的催化活性
为了证明微波与Ni@GCC协同催化降解作用的优越性能,分别考察了微波和Ni@GCC单独作用下,对诺氟沙星的去除效果,结果如表1。
表1不同去除方法效果对比
由表1可见,仅直接用微波辐射诺氟沙星,7min后基本不会降解;用Ni@GCC对诺氟沙星单独吸附30min达到平衡后,去除率仅为16.27%;而在MW/Ni@GCC协同作用的情况下,短短的7min内诺氟沙星的降解率即达到97.4%。表明,MW/Ni@GCC是降解诺氟沙星的有效方法,并且其协同作用效果相当显著。
(二)微波辐射时间的影响
为了考察MW/Ni@GCC协同催化降解诺氟沙星的作用效果随微波辐射时间的变化,进行了如下实验。向50mL浓度为10mg·L-1的诺氟沙星溶液中加入质量为60mg的Ni@GCC,设置微波功率700W。
表2不同微波辐射时间对诺氟沙星降解效率的影响
由表2可见,诺氟沙星在微波辐射下,30s降解率便达到60.5%,并随着微波辐射时间的增加而增大,当微波7min时其降解率可达97.4%,基本实现完全降解。
(三)Ni@GCC用量的影响
催化剂的用量直接影响着诺氟沙星的降解效率,所以对此进行了考察。实验中控制以下参数不变:诺氟沙星溶液浓度为10mg·L-1,微波功率700W,照射7min。向50mL溶液中分别加入质量为20mg,40mg,60mg和80mg的Ni@GCC,结果如表3。
表3Ni@GCC用量对诺氟沙星降解效果的影响
由表3可见,随着催化剂用量的增加,降解效率也随之增大。这是由于催化剂量的增加,会产生更多的催化活性粒子,有利于催化降解的进行。但用量由60mg增加到80mg后,降解率并没有显著的提高,因此为了节约资源,考虑成本因素,选择60mg作为Ni@GCC的最佳用量来MW/Ni@GCC协同降解诺氟沙星。
(四)诺氟沙星初始浓度的影响
初始浓度在5mg·L-1至20mg·L-1范围内的诺氟沙星,经过MW/Ni@GCC协同作用后降解率的变化展示在表4中。
表4诺氟沙星初始浓度对降解效果的影响
由表4可见,随着诺氟沙星初始浓度的增加,降解率逐渐降低。这是由于在催化剂用量及其他条相同的情况下,作用的活性位点是一定的,因此对于不同浓度的目标物,作用效果有所不同。综合考虑降解能力和效果,选择诺氟沙星溶液的初始浓度为10mg·L-1
(五)微波功率的影响
微波协同降解过程的全部能量都是由微波辐射提供的,因此,不同微波功率提供的能量差异对于协同降解过程是至关重要的影响因素,考察微波功率与降解效率的关系如表5所示。向50mL浓度为10mg·L-1的诺氟沙星溶液中加入质量为60mg的Ni@GCC。如表5所示,微波功率为100W,300W,500W和700W,降解7min。
表5微波功率对诺氟沙星降解效果的影响
由表5可见,微波功率为100W,300W,500W和700W时,诺氟沙星的降解效率分别为83.38%,91.5%,93.8%和97.4%。这是因为更高的微波功率能够提供更大的能量,使Ni@GCC产生更多的活性粒子。优选微波功率为700W。
(六)干扰离子的影响
实际废水样品的成分复杂,许多无机离子可能会对催化降解反应带来干扰。因此,本实验考察了NO3 -,CH3COO-,SO4 2-,CO3 2-,PO4 3-等常见的干扰离子存在下的降解效率。结果如表6。
表6干扰离子对诺氟沙星降解效果的影响
由表6可见,无机离子对于MW/Ni@GCC协同催化降解诺氟沙星的反应无明显干扰,证明该催化剂应用范围广泛,可直接投入到实际有机污染废水中,这大大简化了应用中的操作过程,提高工作效率。
(七)Ni@GCC的重复利用和循环稳定性
在实际应用中,出于环保节能以及成本等因素,理想的催化剂应该是方便回收并且拥有很好的可重复利用性能,因此,对于Ni@GCC的循环利用和稳定性进行了研究。使用后的Ni@GCC,通过磁性分离,能够高效简洁快速的进行回收,仅仅需要再次通过N2保护下700℃处理后便可直接用于下一次实验。
表7Ni@GCC的循环利用
如表7所示,经五次重复使用后,诺氟沙星降解效率丝毫没有降低,与新制的催化剂具有同样出色的催化性能,仍然可达96%以上,证明了该催化剂可循环利用的特性。Ni@GCC易于回收,可重复使用,催化降解效率仍然可靠,大大控制了成本,在实际生产应用中突显优势。
为了进一步证明其稳定性,将五次循环后的Ni@GCC回收,用FTIR和XRD测定回收的Ni@GCC。由图6可知,循环前后Ni@GCC的FTIR谱图没有明显变化,表明其结构没有明显变化。图7表明,使用前后Ni@GCC在44.88°,52.16°和76.63°的Ni特征峰没有明显变化,没有NiO的特征峰的出现,再一次证明了其结构稳定性。
(八)降解动力学研究
降解过程符合一级动力学方程,速率常数k=0.415min-1。通过自由基捕获实验,推断出Ni@GCC微波协同催化降解产生的活性物质主要是空穴,超氧自由基和羟基自由基,并通过局域表面等离子体共振理论进行进一步阐释。
为了更好的研究催化降解反应,探究了MW/Ni@GCC协同催化降解诺氟沙星的反应动力学。将实验数据根据Langmuir-Hinshelwood模型进行拟合,公式如下,并以-ln(C/C0)对t做图,结果表明该降解过程符合一级动力学方程,速率常数k=0.415min-1
根据自由基捕获理论来探究MW/Ni@GCC协同催化降解的机理,从微观角度解析反应过程,故考察了典型活性粒子(空穴h+,超氧自由基·O2 -,羟基自由基·OH)的作用机制。实验中加入三乙醇胺(TEOA,0.1wt%)作为h+捕获剂,通过泵入空气作为·O2 -捕获剂,碳酸氢钠(NaHCO3,0.1wt%)作为·OH捕获剂。经检测,TEOA十分明显的抑制了诺氟沙星的降解,降解率由原来的90.0%(选择降解时间为3min作为参照)减少为27.3%,这说明空穴在反应过程中是作用最大的活性粒子;NaHCO3使降解率减低至79.5%,虽然不及空穴作用明显,但也足以证明羟基自由基也是反映中的活性粒子;当向溶液中泵入空气后,增加了反应中氧气的接触量,提供了更多的超氧自由基,因此降解率增大到96.6%,同时也证明了超氧自由基是催化降解的活性粒子;另外,加入硝酸银(AgNO3,10mM)作为电子(e-)捕获剂,也对降解效果有抑制作用,这可能是因为电子数量的减少导致超氧自由基的减少,从而使降解效率降低,印证了超氧自由基为催化降解的活性粒子。综上所述,h+为MW/Ni@GCC协同催化降解的主要活性粒子,另外还有·O2 -和·OH。
综合以上的研究结果,可以用图8来阐释Ni@GCC降解诺氟沙星的反应机理。首先由石墨碳产生热点效应,这会产生较高的温度从而大大提高催化作用。另外,局域表面等离子体共振是金属纳米结构特有的性质,并且Ni是典型的等离子体激元。当微波到达界面时,可沿着入射方向透过金属粒子一定深度,并在内部传播一定距离,有助于电子与空穴的分离,从而增加了金属纳米结构催化剂的能力。在此基础上,在MW/Ni@GCC的协同效应作用下,更加有助于电子与空穴的分离,从而使催化剂具有极其优越的催化性能。Ni纳米粒子分布于碳笼中,LSPR产生的热电子会迅速向附近的石墨碳传递,并立刻与电子受体结合形成·O2 -,从而进一步抑制电子与空穴的再次复合。与此同时,生成的·O2 -和保留的h+会与有机污染物反应,从而实现催化降解的整个过程。综上所述,局域表面等离子体共振理论可以阐释Ni@GCC催化降解诺氟沙星的机理。

Claims (9)

1.一种可磁回收的多孔Ni@GCC复合材料,其特征在于,所述的可磁回收的多孔Ni@GCC复合材料为球形,BET比表面积为110~130m2·g-1,孔径大小为12~15nm,饱和磁化量为33.71~37.8emu·g-1
2.一种可磁回收的多孔Ni@GCC复合材料的制备方法,其特征在于,包括如下步骤:将硝酸镍、均苯三甲酸和聚乙烯吡咯烷酮溶解于混合溶剂中,然后转移到反应釜中,在140~160℃下反应9~11h,自然冷却至室温,乙醇洗涤,干燥,得Ni-MOF前驱体粉末;将所得Ni-MOF前驱体粉末置于管式炉中,在氮气保护下700℃煅烧3~4h,得到可磁回收的多孔Ni@GCC复合材料。
3.根据权利要求2所述的一种可磁回收的多孔Ni@GCC复合材料的制备方法,其特征在于,所述的混合溶剂为,按体积比,乙醇:水:DMF=1:1:1。
4.权利要求1所述的一种可磁回收的多孔Ni@GCC复合材料在降解有机污染物中的应用。
5.根据权利要求4所述的应用,其特征在于,所述的有机污染物是喹诺酮类抗生素。
6.根据权利要求5所述的应用,其特征在于,所述的喹诺酮类抗生素是诺氟沙星。
7.根据权利要求6所述的应用,其特征在于,方法如下:于含有诺氟沙星的溶液中,加入权利要求1所述的可磁回收的多孔Ni@GCC复合材料,微波协同诱导催化降解。
8.根据权利要求7所述的应用,其特征在于,方法如下:调节诺氟沙星的初始浓度为5mg·L-1~20mg·L-1,加入权利要求1所述的可磁回收的多孔Ni@GCC复合材料,在微波功率100~700W下催化降解3~7min;每50mL初始浓度为5mg·L-1~20mg·L-1的诺氟沙星的溶液中,加入20~80mg权利要求1所述的可磁回收的多孔Ni@GCC复合材料。
9.根据权利要求8所述的应用,其特征在于,方法如下:调节诺氟沙星的初始浓度为10mg·L-1,加入60mg权利要求1所述的可磁回收的多孔Ni@GCC复合材料,在微波功率700W下催化降解3~7min。
CN201810724776.6A 2018-07-04 2018-07-04 一种可磁回收的多孔Ni@GCC复合材料及其制备方法和应用 Active CN108816235B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810724776.6A CN108816235B (zh) 2018-07-04 2018-07-04 一种可磁回收的多孔Ni@GCC复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810724776.6A CN108816235B (zh) 2018-07-04 2018-07-04 一种可磁回收的多孔Ni@GCC复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108816235A true CN108816235A (zh) 2018-11-16
CN108816235B CN108816235B (zh) 2021-06-18

Family

ID=64135381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810724776.6A Active CN108816235B (zh) 2018-07-04 2018-07-04 一种可磁回收的多孔Ni@GCC复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108816235B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109879270A (zh) * 2019-04-24 2019-06-14 哈尔滨工业大学 一种轻质超宽频碳化杨梅吸波材料的制备方法
CN110181070A (zh) * 2019-06-04 2019-08-30 陕西科技大学 一种空心球状的Ni/C复合材料及其制备方法和应用
CN110379638A (zh) * 2019-08-26 2019-10-25 合肥工业大学 一种通过新型配体合成中空球状Ni-CoMOF材料的方法与应用
CN111151303A (zh) * 2020-01-07 2020-05-15 东北师范大学 新型MIL-53(Fe)基催化剂去除水中抗生素应用
CN112961650A (zh) * 2021-02-06 2021-06-15 安徽理工大学 一种三金属有机框架衍生铁镍合金/多孔碳超薄吸波剂及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109879270A (zh) * 2019-04-24 2019-06-14 哈尔滨工业大学 一种轻质超宽频碳化杨梅吸波材料的制备方法
CN109879270B (zh) * 2019-04-24 2022-02-08 哈尔滨工业大学 一种轻质超宽频碳化杨梅吸波材料的制备方法
CN110181070A (zh) * 2019-06-04 2019-08-30 陕西科技大学 一种空心球状的Ni/C复合材料及其制备方法和应用
CN110379638A (zh) * 2019-08-26 2019-10-25 合肥工业大学 一种通过新型配体合成中空球状Ni-CoMOF材料的方法与应用
CN110379638B (zh) * 2019-08-26 2021-02-05 合肥工业大学 一种通过新型配体合成中空球状Ni-CoMOF材料的方法与应用
CN111151303A (zh) * 2020-01-07 2020-05-15 东北师范大学 新型MIL-53(Fe)基催化剂去除水中抗生素应用
CN112961650A (zh) * 2021-02-06 2021-06-15 安徽理工大学 一种三金属有机框架衍生铁镍合金/多孔碳超薄吸波剂及其制备方法
CN112961650B (zh) * 2021-02-06 2023-06-30 安徽理工大学 一种三金属有机框架衍生铁镍合金/多孔碳超薄吸波剂及其制备方法

Also Published As

Publication number Publication date
CN108816235B (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
CN108816235A (zh) 一种可磁回收的多孔Ni@GCC复合材料及其制备方法和应用
Hashemzadeh et al. Degradation of ciprofloxacin using hematite/MOF nanocomposite as a heterogeneous Fenton-like catalyst: A comparison of composite and core− shell structures
Xie et al. Degradation of tetracycline hydrochloride through efficient peroxymonosulfate activation by B, N co-doped porous carbon materials derived from metal-organic frameworks: Nonradical pathway mechanism
Pi et al. Cobalt ferrite supported on carbon nitride matrix prepared using waste battery materials as a peroxymonosulfate activator for the degradation of levofloxacin hydrochloride
Ahmadpour et al. A potential natural solar light active photocatalyst using magnetic ZnFe2O4@ TiO2/Cu nanocomposite as a high performance and recyclable platform for degradation of naproxen from aqueous solution
Nasiri et al. New magnetic nanobiocomposite CoFe 2 O 4@ methycellulose: facile synthesis, characterization, and photocatalytic degradation of metronidazole
Mohtasham et al. Nano-architecture of MOF (ZIF-67)-based Co3O4 NPs@ N-doped porous carbon polyhedral nanocomposites for oxidative degradation of antibiotic sulfamethoxazole from wastewater
Xu et al. Petal-like CuCo2O4 spinel nanocatalyst with rich oxygen vacancies for efficient PMS activation to rapidly degrade pefloxacin
Sheikhmohammadi et al. Ultrasound-assisted decomposition of metronidazole by synthesized TiO2/Fe3O4 nanocatalyst: Influencing factors and mechanisms
Wang et al. Mesoporous carbon framework supported Cu-Fe oxides as efficient peroxymonosulfate catalyst for sustained water remediation
Xiang et al. Nanoscale zero-valent iron/cobalt@ mesoporous hydrated silica core–shell particles as a highly active heterogeneous Fenton catalyst for the degradation of tetrabromobisphenol A
Liu et al. Highly dispersed copper single-atom catalysts activated peroxymonosulfate for oxytetracycline removal from water: Mechanism and degradation pathway
Wang et al. Ferrocene modified g-C3N4 as a heterogeneous catalyst for photo-assisted activation of persulfate for the degradation of tetracycline
CN102786097A (zh) 碳包覆四氧化三铁纳米颗粒的水热制备方法
Li et al. Efficient photo-Fenton reaction for tetracycline and antibiotic resistant bacteria removal using hollow Fe-doped In2O3 nanotubes: From theoretical research to practical application
Cai et al. Meso-microporous carbon nanofibers with in-situ embedded Co nanoparticles for catalytic oxidization of azo dyes
CN104258860A (zh) 表面改性纳米四氧化三铁芬顿催化剂及其制备方法
Tang et al. Fe3O4‐MWCNT magnetic nanocomposites as efficient fenton‐like catalysts for degradation of sulfamethazine in aqueous solution
Liu et al. Metal-organic framework modified pine needle-derived N, O-doped magnetic porous carbon embedded with Au nanoparticles for adsorption and catalytic degradation of tetracycline
Zhang et al. Activation of persulfate by core–shell structured Fe3O4@ C/CDs-Ag nanocomposite for the efficient degradation of penicillin
CN102660220A (zh) 一种石墨烯负载四氧化三铁纳米复合材料的制备方法
Bao et al. Mo2C/C catalyst as efficient peroxymonosulfate activator for carbamazepine degradation
Cong et al. A dandelion-like NiCo2O4 microsphere with superior catalytic activity as the mediator of persulfate activation for high-efficiency degradation of emerging contaminants
Singh et al. Traversing the advantageous role of samarium doped spinel nanoferrites for photocatalytic removal of organic pollutants
Zhang et al. Efficient degradation of ibuprofen by Co/Fe@ CNFs catalyst in the presence of peroxymonosulfate and persulfate: Characterization, performance, and mechanism comparison

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211130

Address after: 110000 b922, No. 518, Chuangxin Road, Hunnan District, Shenyang City, Liaoning Province

Patentee after: Shenyang Hongkun Electrical Equipment Co.,Ltd.

Address before: 110000 58 Shenbei New Area Road South, Shenyang, Liaoning.

Patentee before: LIAONING University

TR01 Transfer of patent right