CN115803813A - 存取多电平存储器单元 - Google Patents

存取多电平存储器单元 Download PDF

Info

Publication number
CN115803813A
CN115803813A CN202180048845.6A CN202180048845A CN115803813A CN 115803813 A CN115803813 A CN 115803813A CN 202180048845 A CN202180048845 A CN 202180048845A CN 115803813 A CN115803813 A CN 115803813A
Authority
CN
China
Prior art keywords
applying
read voltage
voltage
read
identifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180048845.6A
Other languages
English (en)
Inventor
K·萨尔帕特瓦里
X-A·特兰
J·陈
J·A·杜兰德
N·N·加杰拉
李延纯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of CN115803813A publication Critical patent/CN115803813A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5678Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using amorphous/crystalline phase transition storage elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/3454Arrangements for verifying correct programming or for detecting overprogrammed cells
    • G11C16/3459Circuits or methods to verify correct programming of nonvolatile memory cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/102External programming circuits, e.g. EPROM programmers; In-circuit programming or reprogramming; EPROM emulators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3404Convergence or correction of memory cell threshold voltages; Repair or recovery of overerased or overprogrammed cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/005Read using potential difference applied between cell electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/0052Read process characterized by the shape, e.g. form, length, amplitude of the read pulse
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/76Array using an access device for each cell which being not a transistor and not a diode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)

Abstract

本发明描述用于存取多电平存储器单元的方法、系统及装置。存储器装置可执行包含预读取部分及读取部分的读取操作以存取所述多电平存储器单元。在所述预读取部分期间,所述存储器装置可将多个电压施加到多个存储器单元以识别存储第一逻辑状态的存储器单元的可能分布。在所述读取部分期间,所述存储器装置可基于执行所述预读取部分将第一读取电压施加到存储器单元。所述存储器装置可在基于所述第一读取电压的所述读取部分期间将第二读取电压施加到所述存储器单元。所述存储器装置可基于施加所述第一读取电压及所述第二读取电压而确定由所述存储器单元存储的所述逻辑状态。

Description

存取多电平存储器单元
交叉参考
本专利申请案主张萨尔帕特瓦里(Sarpatwari)等人在2020年7月10日申请的标题为“存取多电平存储器单元(ACCESSING A MULTI-LEVEL MEMORY CELL)”的第16/926,556号美国专利申请案的优先权,所述美国专利申请案被转让给其受让人且以全文引用方式明确并入本文中。
背景技术
下文大体上涉及一或多个存储器系统且更明确来说涉及存取多电平存储器单元。
存储器装置广泛用于在各种电子装置中存储信息,所述电子装置例如计算机、无线通信装置、相机、数字显示器及类似者。通过将存储器装置内的存储器单元编程为各种状态而存储信息。举例来说,二进制存储器单元可经编程为两个支持状态中的一者,其通常由逻辑1或逻辑0表示。在一些实例中,单个存储器单元可支持更多个状态,可存储所述状态中的任一者。为存取所存储的信息,装置的组件可读取或感测存储器装置中的至少一个存储状态。为存储信息,装置的组件可将状态写入或编程于存储器装置中。
存在各种类型的存储器装置,包含磁性硬盘、随机存取存储器(RAM)、只读存储器(ROM)、动态RAM(DRAM)、同步动态RAM(SDRAM)、铁电RAM(FeRAM)、磁性RAM(MRAM)、电阻式RAM(RRAM)、快闪存储器、相变存储器(PCM)等等。存储器装置可为易失性或非易失性。非易失性存储器(例如,FeRAM)可甚至在不存在外部电源的情况下维持其存储逻辑状态达延长时段。易失性存储器装置(例如,DRAM)可在与外部电源断开连接时丢失其存储状态。FeRAM可能够实现类似于易失性存储器的密度,但可归因于使用铁电电容器作为存储装置而具有非易失性性质。
改进存储器装置通常可包含增加存储器单元密度、增加读取/写入速度、增加可靠性、增加数据保留、减少功率消耗、或减少制造成本以及其它指标。可期望将多个信息位存储于存储器单元中以在不增加物理存储器单元密度的情况下增加数据存储密度。
附图说明
图1说明根据如本文中公开的实例的支持存取多电平存储器单元的实例存储器装置。
图2说明根据如本文中公开的实例的支持存取多电平存储器单元的存储器阵列的实例。
图3A说明展示根据如本文中公开的实例的支持存取多电平存储器单元的自选择存储器单元中的阈值电压的分布的图式的实例。
图3B说明根据如本文中公开的实例的支持存取多电平存储器单元的时序图的实例。
图4A说明展示根据如本文中公开的实例的支持存取多电平存储器单元的自选择存储器单元中的阈值电压的分布的图式的实例。
图4B说明根据如本文中公开的实例的支持存取多电平存储器单元的时序图的实例。
图5展示根据如本文中公开的实例的支持存取多电平存储器单元的存储器装置的框图。
图6到8展示说明根据如本文中公开的实例的支持存取多电平存储器单元的一或若干方法的流程图。
具体实施方式
包含硫属化物材料的自选择存储器单元可为经配置以存储三个或更多个独有状态的多电平单元的实例。因而,单个多电平自选择存储器单元可经配置以存储多于一个数据位。在一些情况下,可通过在字线与数字线之间施加偏压而选择自选择存储器单元。存储于自选择存储器单元中的逻辑状态可基于施加到自选择存储器单元的编程脉冲的极性及用于检测由自选择存储器单元存储的状态的读取脉冲的极性。对于一些多电平自选择存储器单元,为将一或多个中间存储器状态编程到自选择存储器单元,可使用包含两个脉冲的编程脉冲序列。在一些情况下,可使用具有相同或不同极性或相同或不同量值的一或多个脉冲。
描述用于存取存储三个或更多个状态的多电平自选择存储器单元的装置、系统及技术。用于多电平自选择存储器单元的读取操作可包含两个或更多个部分,包含预读取部分及读取部分。在预读取部分期间,可将多个不同电压施加到存储器装置的多个分区。存储器装置可识别与存储第一逻辑状态的存储器单元相关联的可能分布。根据所述分布,存储器装置可选择第一读取电压以基于执行预读取部分而区分存储第一逻辑状态与第二逻辑状态。存储器装置还可选择第二读取电压以基于第一读取电压而区分存储第二逻辑状态与第三逻辑状态。存储器装置可基于施加第一读取电压及第二读取电压而确定逻辑状态。
通过在预读取部分期间施加多个电压且在读取部分期间施加第一及第二读取电压而存取多电平存储器单元可通过基于存储器装置中的当前条件选择读取电压而改进读取操作的读取裕度。在一些实例中,这些技术可通过基于在预读取部分期间施加的电压选择第一读取电压而节省电流及功率。在此类情况下,每存储器单元存储三个或更多个逻辑状态的多电平读取可增加每存储器单元存取的位数量,借此改进自选择存储器单元的性能。
最初在如参考图1到2描述的存储器阵列的上下文中描述本公开的特征。在展示阈值电压的分布的上下文图式及时序图中描述本公开的特征,如参考图3到4描述。通过与存取多电平存储器单元有关的设备图式及流程图进一步说明且参考设备图式及流程图描述本公开的这些及其它特征,如参考图5到8描述。
图1说明根据如本文中公开的实例的支持存取多电平存储器单元的实例存储器装置100。存储器装置100还可被称为电子存储器设备。展示存储器装置100的组件及特征以说明功能相互关系,可不说明其在存储器装置100内的实际物理位置。存储器装置100包含一个三维(3D)存储器阵列。存储器阵列包含可编程以存储不同状态的存储器单元105。在一些实例中,每一存储器单元105可编程以存储表示为逻辑0及逻辑1的两个状态。在一些实例中,存储器单元105可经配置以存储多于两个逻辑状态。在一些实例中,存储器单元105可包含自选择存储器单元。尽管用数值指示符标记包含于图1中的一些元件,但未标记其它对应元件,但其相同或将被理解为类似,以努力增加所描绘特征的可见性及清晰度。
3D存储器阵列可包含形成于彼此顶部上中的两个或更多个二维(2D)存储器阵列。相较于2D阵列,此可增加可放置或产生在单个裸片或衬底上的存储器单元的数量,此又可减少生产成本或增加存储器装置的性能或两者。基于图1中描绘的实例,存储器阵列包含存储器单元105的两个电平且因此可视为3D存储器阵列;然而,电平数量不限于两个。每一电平可经对准或定位使得存储器单元105可跨每一电平彼此对准(完全地、重叠或近似地),从而形成存储器单元堆叠145。在一些情况下,存储器单元堆叠145可包含铺置于彼此顶部上同时两者共享一存取线的多个自选择存储器单元,如下文所解释。在一些情况下,自选择存储器单元可为经配置以使用多电平存储技术来存储多于一个数据位的多电平自选择存储器单元。
在一些实例中,存储器单元105的每一行连接到存取线110,且存储器单元105的每一列连接到位线115。存取线110及位线115可基本上彼此垂直且可产生存储器单元阵列。存储器单元堆叠145中的两个存储器单元105可共享一共同导电线(例如位线115)。即,位线115可与上存储器单元105的底部电极及下存储器单元105的顶部电极电子通信。其它配置可为可行的,举例来说,第三材料可与下部材料共享存取线110。一般来说,一个存储器单元105可定位于两条导电线(例如存取线110及位线115)的相交点处。此相交点可被称为存储器单元的地址。目标存储器单元105可为定位于通电存取线110与位线115的相交点处的存储器单元105;即,存取线110及位线115可经通电以便读取或写入在其相交点处的存储器单元105。与相同存取线110或位线115电子通信(例如,连接到相同存取线110或位线115)的其它存储器单元105可被称为非目标存储器单元105。
如上文论述,电极可耦合到存储器单元105及存取线110或位线115。术语电极可指电导体,且在一些情况下,可用作到存储器单元105的电触点。电极可包含在存储器装置100的元件或组件之间提供导电路径的迹线、导线、导电线、导电材料或类似者。在一些实例中,存储器单元105可包含定位于第一电极与第二电极之间的硫属化物材料。第一电极的侧可耦合到存取线110且第一电极的另一侧耦合到硫属化物材料。另外,第二电极的一侧可耦合到位线115且第二电极的另一侧耦合到硫化物材料。第一电极与第二电极可为相同材料(例如,碳)或不同材料。
可通过激活或选择存取线110及数字线115而对存储器单元105执行操作(例如读取及写入)。在一些实例中,存取线110还可被称为字线110,且位线115还可被称为数字线115。在不失理解或操作的情况下,对字线及位线或其类似物的引用可互换。激活或选择字线110或数字线115可包含将电压施加到相应线。字线110及位线115可由导电材料制成,例如金属(例如,铜(Cu)、铝(Al)、金(Au)、钨(W)、钛(Ti))、金属合金、碳、导电掺杂半导体、或其它导电材料、合金、化合物或类似者。
可通过行解码器120及列解码器130控制存取存储器单元105。举例来说,行解码器120可从存储器控制器140接收行地址且基于所述接收到的行地址激活适当字线110。类似地,列解码器130可从存储器控制器140接收列地址且激活适当数字线115。因此,通过激活字线110及数字线115,可存取在其相交点处的存储器单元105。
在存取之后,可由感测组件125读取或感测存储器单元105以确定存储器单元105的经存储状态。举例来说,可将电压施加到存储器单元105(使用对应字线110及位线115)且所得电流的存在可取决于存储器单元105的所施加电压及阈值电压。在一些情况下,可施加多于一个电压。此外,如果所施加电压并未导致电流流动,那么可施加其它电压直到由感测组件125检测电流。通过评估导致电流流动的电压,可确定存储器单元105的经存储逻辑状态。在一些情况下,电压可在量值上斜升直到检测电流流动。在其它情况下,可循序地施加经确定电压直到检测电流。同样地,可将电流施加到存储器单元105且产生所述电流的电压的量值可取决于存储器单元105的电阻或阈值电压。
感测组件125可包含各种晶体管或放大器以便检测及放大信号的差异(此可被称为锁存)。接着,可通过列解码器130输出存储器单元105的经检测逻辑状态作为输入/输出135。在一些情况下,感测组件125可为列解码器130或行解码器120的部分。或者,感测组件125可连接到列解码器130或行解码器120或与列解码器130或行解码器120电子通信。感测组件可在不失其功能目的的情况下与列解码器或行解码器相关联。
可通过类似地激活相关字线110及数字线115而设置或写入存储器单元105且可将至少三个逻辑值存储于存储器单元105中。在一些情况下,可将多于三个逻辑值存储于存储器单元105中。列解码器130或行解码器120可接受待写入到存储器单元105的数据(举例来说,输入/输出135)。在包含硫属化物材料的自选择存储器单元的情况下,可通过在预读取部分期间施加多个预读取电压且接着在读取部分期间施加第一读取电压及第二读取电压而写入存储器单元105以存储数据。第一读取电压及第二读取电压的量值及极性可变化。下文参考图3A、3B、4A及4B更详细地论述此过程。
存储器控制器140可通过各种组件(举例来说,行解码器120、列解码器130及感测组件125)控制存储器单元105的操作(例如,读取、写入、重写、刷新、放电)。在一些情况下,行解码器120、列解码器130及感测组件125中的一或多者可与存储器控制器140共置。存储器控制器140可产生行及列地址信号以便激活所要字线110及数字线115。存储器控制器140还可产生及控制在存储器装置100的操作期间所使用的各种电压或电流。
存储器控制器140可经配置以存取多电平存储器单元。举例来说,存储器控制器140可经配置以执行预读取部分及读取部分以存取多电平存储器单元。在预读取部分期间,存储器控制器140可将多个不同电压施加到存储器装置的多个分区(例如,每一分区包含一定量的存储器单元)。存储器控制器140可识别与存储第一逻辑状态的存储器单元相关联的分布。
基于经识别分布,存储器控制器140可选择第一读取电压以区分存储第一逻辑状态与第二逻辑状态且施加第一读取电压作为读取部分的部分。接着,存储器控制器140可选择第二读取电压以区分存储第二逻辑状态与第三逻辑状态,且施加第二读取电压作为读取部分的部分。所选择的第二读取电压可基于所选择的第一读取电压。存储器装置可基于施加第一读取电压及第二读取电压而确定逻辑状态(例如,第一、第二或第三逻辑状态)。经由预读取部分及读取部分存取多电平存储器单元可节省电流且改进多电平存储器单元的性能。
图2说明根据如本文中公开的实例的支持存取多电平存储器单元的存储器阵列200的实例。存储器阵列200可为参考图1描述的存储器阵列的部分的实例。存储器阵列200可包含定位于衬底204上方的第一存储器单元阵列或层面205及位于第一阵列或层面205顶部上的第二存储器单元阵列或层面210。存储器阵列200还可包含字线110-a及字线110-b、及位线115-a,其可为如参考图1描述的字线110及位线115的实例。第一层面205及第二层面210的存储器单元各自可具有一或多个自选择存储器单元。尽管用数值指示符标记包含于图2中的一些元件,但未标记其它对应元件,但其相同或将被理解为类似,以努力增加所描绘特征的可见性及清晰度。
第一层面205的自选择存储器单元可包含第一电极215-a、硫属化物材料220-a及第二电极225-a。另外,第二层面210的自选择存储器单元可包含第一电极215-b、硫属化物材料220-b、及第二电极225-b。在一些实例中,第一层面205及第二层面210的自选择存储器单元可具有共同导电线,使得每一层面205及210的对应自选择存储器单元可共享如参考图1描述的位线115或字线110。举例来说,第二层面210的第一电极215-b及第一层面205的第二电极225-a可耦合到位线115-a,使得位线115-a由垂直相邻自选择存储器单元共享。
存储器阵列200的架构可被称为交叉点架构,其中在字线与位线之间的拓扑交叉点处形成存储器单元,如图2中说明。相较于其它存储器架构,此交叉点架构可以较低生产成本提供相对较高密度数据存储。举例来说,交叉点架构相较于其它架构可具有缩小的面积及因此增加的存储器单元密度的存储器单元。举例来说,DRAM可使用晶体管(其是三端子装置)作为用于每一存储器单元的选择组件且相较于交叉点架构可具有更大存储器单元面积。
在一些架构中,多个字线可形成于平行于衬底的平行平面或阶层上。多个字线可经配置以包含多个孔以允许多个位线正交于字线的平面形成,使得多个位线中的每一者穿透一组垂直对准孔(例如,位线相对于字线及水平衬底的平面垂直安置)。包含存储元件的存储器单元(例如,包含硫属化物材料的自选择存储器单元)可形成于字线及位线的交叉点(例如,所述一组垂直对准孔中的字线与位线之间的空间)处。以与上文参考图1描述类似的方式,可通过选择相应存取线(例如,位线及字线)且施加电压或电流脉冲而操作(例如,读取及/或编程)存储器单元(例如,包含硫属化物材料的自选择存储器单元)。
虽然图2的实例展示两个存储器层面,但其它配置是可行的。在一些实例中,自选择存储器单元的单个存储器层面(其可被称为一个二维存储器)可建构于衬底204上方。在一些实例中,存储器单元的三个或四个存储器层面可以类似于一个三维交叉点架构中的方式配置。在一些实例中,存储器层面中的一或多者可包含包括硫属化物材料220的自选择存储器单元。硫属化物材料220可(举例来说)包含硫属化物玻璃,例如(举例来说)硒(Se)、碲(Te)、砷(As)、锑(Sb)、碳(C)、锗(Ge)及硅(Si)的合金。在一些实例中,主要具有硒(Se)、砷(As)及锗(Ge)的硫属化物材料可被称为SAG合金。在一些实例中,SAG合金可包含硅(Si)且此硫属化物材料可被称为SiSAG合金。在一些实例中,硫属化物玻璃可包含各自呈原子或分子形式的额外元素,例如氢(H)、氧(O)、氮(N)、氯(Cl)或氟(F)。
在一些实例中,可通过使用位线115及字线110将预读取电压及一或多个读取电压施加到自选择存储器单元而存取包含硫属化物材料220的自选择存储器单元。在一个实例中,与自选择存储器单元相关联的控制器可将多个电压(例如,预读取电压)施加到多个自选择存储器单元。基于从施加多个电压识别的分布,可确定第一读取电压且将其施加到自选择存储器单元。可基于经确定第一读取电压而确定第二读取电压,且将其施加到自选择存储器单元。在此类情况下,与自选择存储器单元相关联的控制器可基于施加第一读取电压及第二读取电压而确定由存储器单元存储的逻辑状态。
图3A说明展示根据如本文中公开的实例的支持存取多电平存储器单元的自选择存储器单元的阈值电压的分布的图式300的实例。多电平自选择存储器单元可经配置以使用多电平存储技术来存储表示多个数据位的逻辑状态。电压分布描绘可读取的逻辑状态。阈值电压分布可表示用于存取多电平存储器单元的多电平单元编程方案。
在图3A的实例中,分布305可表示设置状态(例如,第一逻辑状态),分布310可表示中间状态(例如,第二逻辑状态),且分布315可表示复位状态(例如,第三逻辑状态)。在一些情况下,分布305、310及315可展现对应于每一逻辑状态的电压分布的中间电压值(例如正态分位数)。在一些实例中,两个分布可具有重叠部分,因此在所述两个分布之间可能不具有明显分离。在一些实例中,每一分布可能不围绕其中值对称。在一些实例中,每一分布可展现不同范围的电压值。在一些情况下,可以具有与设置状态(例如,分布305)或复位状态(例如,分布315)相同的极性的电压编程中间状态(例如,分布310)。在一些情况下,图式300可包含表示更多个逻辑状态的分布。举例来说,图式300可包含表示第四逻辑状态、第五逻辑状态或更多逻辑状态的分布。
图3B说明根据如本文中公开的实例的支持存取多电平存储器单元的时序图360的实例。时序图360可包含预读取部分320及读取部分325。时序图360可标绘相对于时间(x轴)施加到存储器单元的一或多个脉冲(y轴)的电压的量值。
时序图360的预读取部分320可包含多个电压330。多个电压330可为预读取电压的实例。在预读取部分320期间,可将多个电压330施加到若干组不同存储器单元。举例来说,存储器装置可将多个电压330施加到多个存储器单元作为读取操作的预读取部分320的部分。可使用读取操作的预读取部分来确定由存储器单元存储的至少一个逻辑状态的分布。与由存储器单元存储的第一逻辑状态相关联的电压阈值可随时间基于改变存储器装置中的条件而漂移。使用在预读取部分期间确定的分布,可选择可减少或减轻在读取操作期间出错的可能性的读取电压。
多个电压330可包含至少一第一电压335-a、第二电压335-b及第三电压335-c。多个电压330可为与第一读取电压340相同的极性。在一些情况下,多个电压330中的每一者的量值可不同于第一读取电压340的量值345。举例来说,第一电压335-a、第二电压335-b及第三电压335-c中的每一者的量值可小于第一读取电压340的量值345。
在一些情况下,预读取部分320可包含将不同电压(例如,多个电压330)施加到存储器阵列的一或多个分区。存储器阵列可包含多个分区,其中每一分区可包含多个存储器单元(例如,两个或更多个存储器单元)。作为预读取部分320的部分,存储器装置可将第一电压335-a施加到多个存储器单元的第一分区且识别其中发生突返事件的所述第一分区的存储器单元的第一数量。接着,存储器装置可将第二电压335-b施加到多个存储器单元的第二分区且识别其中发生突返事件的所述第二分区的存储器单元的第二数量。存储器装置可将第三电压335-c施加到多个存储器单元的第三分区且识别其中发生突返事件的所述第三分区的存储器单元的第三数量。基于存储器单元的第一数量、第二数量及第三数量,存储器装置可识别第一读取电压340的量值345或极性或所述两者,如下文进一步详细描述。
在一些实例中,存储器装置可将任何数量的多个电压330施加到任何数量的存储器单元或分区。举例来说,存储器装置可将不同电压330施加到多个存储器单元的不同分区且识别其中发生突返事件的存储器单元的数量。在此类情况下,存储器装置可基于存储器单元的数量而识别第一读取电压340的量值345或极性或所述两者。在一些情况下,存储器装置可将任何数量的多个电压330施加到存储器装置的子存储体或位。
在一些实例中,可将多个电压330施加到分区的码字。可将码字划分成码字集区,使得可在不同电压330下读取每一码字集区。基于将多个电压330施加到码字,存储器装置可接着识别存储器单元中的逻辑状态中的一者的可能分布。举例来说,存储器装置可组合预读取数据(例如,与施加第一电压335-a、第二电压335-b及第三电压335-c相关联的数据)以确定分布的形状。在此类情况下,存储器装置可汇总与将第一电压335-a施加到第一分区、将第二电压335-b施加到第二分区及将第三电压335-c施加到第三分区相关联的数据。预读取数据的汇总可通过减少读取延时且基于预读取数据选择第一读取电压而改进存储器装置的效率。在一些情况下,存储器装置可通过识别与存储第一逻辑状态的存储器单元相关联的阈值电压的一或多个可能分布(例如,分布305)而确定分布的形状。
可基于在不同电压330(例如,第一电压335-a、第二电压335-b及第三电源335-c)下读取存储器单元且确定与每一分布(例如,分布305、310及315)相关联的电压漂移而确定分布的形状。存储器装置可将不同分区斜升到不同电压330且确定多个电压330(例如,第一电压335-a、第二电压335-b及第三电源335-c)中的每一者下的位阈值化量。增加量的位阈值化可增加分布的经确定形状的准确度。在一些情况下,确定位阈值化量可高于可识别发生突返事件的阈值。
在一些情况下,与经历高电压漂移的分布相比,经历低电压漂移或未经历电压漂移的分布可被置于较低优先级。举例来说,分布305可能几乎未经历电压漂移而分布310与分布305相比可能经历较高电压漂移。基于电压漂移,可在经历小电压漂移或未经历电压漂移的分布与经历高电压漂移的分布之间选择第一读取电压340。存储器装置可对分布进行排序且选择最高优先级作为第一读取电压340的起点。
时序图360可包含预读取部分320之后的读取部分325。读取部分325可包含第一读取电压340及第二读取电压350。使用与可能分布及分布的形状相关联的所述信息,存储器装置可针对操作的读取部分325选择第一读取电压340。在一些实例中,存储器装置可通过预读取设置状态(例如,分布305)而对码字中的设置位的数量进行计数。可基于汇总预读取数据、识别阈值电压的一或多个可能分布或所述两者而确定第一读取电压340。在一些实例中,可基于与预读取部分320相关联的数据而确定第一读取电压340的量值345或极性或所述两者。
存储器装置可将第一读取电压340施加到多个存储器单元的存储器单元以识别由存储器单元存储的逻辑状态作为读取操作的读取部分325的部分。在一些情况下,存储器装置可基于施加多个电压330而识别第一读取电压340的量值345。存储器装置还可确定第一读取电压340的极性。举例来说,存储器装置可确定第一读取电压340的极性是正极性。
在一些情况下,第一读取电压340可在与分布305相关联的电压和与分布310相关联的电压之间。在此类情况下,存储器装置可确定第一读取电压340在第一类型的状态(例如,分布305)的电压与第二类型的状态(例如,分布310)的电压之间。第一类型的状态可能够通过在发生突返事件之后被干扰的存储器单元存储。第二类型的状态可能够通过在发生突返事件之后增强的存储器单元存储。在一些实例中,存储器装置可基于施加第一读取电压340而读取与分布305相关联的逻辑状态。
可在施加第一读取电压340之后诱发读取干扰。在此类情况下,可对存储器单元执行写回操作以减少对存储器单元的中间状态(例如,分布310)的读取干扰。存储器装置可检测与分布310相关联的中间状态且基于施加第一读取电压340而确定是否发生第一突返事件。接着,存储器装置可在确定由存储器单元存储的逻辑状态是中间状态且确定发生第一突返事件之后对存储器单元执行重新编程操作。在一些实例中,存储器装置可确定与分布315相关联的逻辑状态未能经历突返事件,借此避免对分布315的读取干扰。
在一些实例中,存储器装置可识别来自施加第一读取电压340的电压漂移。在此类情况下,存储器装置可选择第二读取电压350以施加到存储器单元。举例来说,存储器装置可基于第一读取电压340与第二读取电压350之间的偏移(例如,预配置或预定偏移)而选择第二读取电压350。在此类情况下,存储器装置可识别第一读取电压340的量值345与第二读取电压350的量值355之间的偏移。可使用此偏移,这是因为在一些情况下,第一逻辑状态的电压阈值的分布的变化可类似于其它逻辑状态的其它电压阈值的分布的变化。
在一些情况下,存储器装置可确定分布305的电压漂移量可与分布310的电压漂移量相同。在此类情况下,存储器装置可基于恒定偏移(例如,电压漂移量)而选择第二读取电压350。分布315的电压漂移可大于分布310及305的电压漂移。在此类情况下,分布315的感测窗可增加。存储器装置可基于确定第一读取电压的量值315、确定偏移或所述两者而确定第二读取电压350的量值355。举例来说,第二读取电压350的量值355可大于第一读取电压340的量值345。
在施加第一读取电压340之后,存储器装置可将第二读取电压350施加到多个存储器单元的存储器单元作为读取操作的读取部分325的部分。第二读取电压350可在与分布310相关联的电压和与分布315相关联的电压之间。在此类情况下,存储器装置可确定第二读取电压350在第二类型的状态(例如,分布310)的电压与第三类型的状态(例如,分布315)的电压之间。第二类型可能够通过在发生突返事件之后增强的存储器单元存储。第三类型可能够通过在发生突返事件之后被干扰的存储器单元存储。
在一些情况下,存储器装置可确定第二读取电压350的极性。举例来说,存储器装置可确定第二读取电压350的极性是正极性。在此类情况下,第二读取电压350的极性与第一读取电压340的极性相同。在一些情况下,施加第二读取电压350可基于确定第二读取电压350,识别第二读取电压350的极性,识别第二读取电压350的量值355,或其组合。在一些实例中,施加第二读取电压350可基于确定未能发生第一突返事件。
可通过施加具有相同极性的两个读取电压而提高存储器单元的性能,借此防止存储器装置在读取部分325期间改变读取电压的极性。在读取操作期间改变电压的极性可增加读取操作的持续时间或可增加由读取操作消耗的功率或所述两者。在一些情况下,在读取操作中包含识别读取部分325的第一读取电压340的预读取部分320可增加每存储器单元存取的位量,减小存储器裸片的大小,且减小存储器阵列的密度,借此减少功率消耗且增加存储器装置的读取、写入及擦除操作。
在一些实例中,描述用于存取存储多于三个状态的多电平自选择存储器单元的装置、系统及技术。如参考图3B描述,存储器装置可选择第二读取电压350以基于第一读取电压340而区分存储第二逻辑状态与第三逻辑状态。在一些情况下,存储器装置可选择第三读取电压以基于第二读取电压350而区分存储第三逻辑状态与第四逻辑状态。在其它实例中,存储器装置可选择第四读取电压以基于第三读取电压而区分存储第四逻辑状态与第五逻辑状态。在此类情况下,存储器装置可基于施加第三读取电压及第四读取电压而确定第四或第五逻辑状态。
图4A说明图式400的实例,其展示根据如本文中公开的实例的支持存取多电平存储器单元的自选择存储器单元的阈值电压的分布。图式400可为参考图3A描述的图式300的实例。在一些情况下,图式400可包含表示多于三个逻辑状态的分布。举例来说,图式400可包含表示第四逻辑状态、第五逻辑状态或更多逻辑状态的分布。
图4B说明根据如本文中公开的实例的支持存取多电平存储器单元的时序图460的实例。时序图460可包含预读取部分420及读取部分425。时序图460可标绘相对于时间(x轴)施加到存储器单元的一或多个脉冲(y轴)的电压的量值。
预读取部分420及包含第一电压435-a、第二电压435-b及第三电压435-c的多个电压430可各自分别为参考图3B描述的预读取部分320、多个电压330、第一电压335-a、第二电压335-b及第三电压335-c的实例。由存储器装置执行且与预读取部分420相关联的操作可为由存储器装置执行且与参考图3B描述的预读取部分320相关联的操作的实例。具有量值445的第一读取电压440可为具有参考图3B描述的量值345的第一读取电压340的实例。
在一些情况下,存储器装置可确定第二读取电压450的极性。举例来说,存储器装置可确定第二读取电压450的极性是负极性。在此类情况下,第二读取电压450的极性不同于第一读取电压440的极性。存储器装置可将具有第二极性的第二读取电压450施加到存储器单元作为读取操作的读取部分425的部分。
存储器装置可确定在与分布405相关联的设置状态下发生突返事件。在此类情况下,存储器装置可翻转与分布415相关联的复位状态的极性且确定在复位状态下发生突返事件。在此类情况下,可在发生突返事件之后加强设置状态及复位状态(例如,可在确定发生突返事件之后刷新存储器单元)。可选择第一读取电压440的极性以加强(例如,与分布405相关联的)设置状态,且可选择第二读取电压450的极性以加强复位状态(例如,与分布415相关联)。
与分布410相关联的中间状态可保持不受干扰,借此与参考图3B描述的写回操作量相比减少对中间状态执行的写回操作量。存储器装置可确定针对中间状态未能发生突返事件。在此类情况下,存储器装置可基于缺少突返事件且缺少刷新操作而确定与中间状态相关联的电压漂移。可选择根据时序图460的读取操作以减少读取干扰,而可选择根据时序图360的读取操作以减少电压漂移。
存储器装置可通过施加具有相反极性的两个循序读取电压而在读取部分425期间改变第二读取电压450的极性(例如,变为与第一读取电压440的极性相反)。在一些实例中,第一读取电压440与第二读取电压450之间的极性的差异可减少对中间状态(例如,分布410)执行的写回操作量。在一些情况下,可能不会基于使用相反极性的循序读取电压而对中间状态执行写回操作。在此类情况下,存储器装置可能不会干扰正极性或负极性的中间状态,借此与参考图3B描述的读取操作相比减少功率消耗且改进读取操作的效率。由于中间状态不受第一读取电压或第二读取电压干扰,因此可不使用中间状态的写回操作,借此减少读取操作的持续时间及功率消耗。
在一些实例中,描述用于存取存储多于三个状态的多电平自选择存储器单元的装置、系统及技术。如参考图4B描述,存储器装置可选择第二读取电压450以基于第一读取电压440而区分存储第二逻辑状态与第三逻辑状态。在一些情况下,存储器装置可选择第三读取电压以基于第二读取电压450而区分存储第三逻辑状态与第四逻辑状态。在其它实例中,存储器装置可选择第四读取电压以基于第三读取电压而区分存储第四逻辑状态与第五逻辑状态。在此类情况下,存储器装置可基于施加第三读取电压及第四读取电压而确定第四或第五逻辑状态。
图5展示根据如本文中公开的实例的支持存取多电平存储器单元的存储器装置505的框图500。存储器装置505可为如参考图1到4描述的存储器装置的方面的实例。存储器装置505可包含预读取组件510、第一电压组件515、第二电压组件520、逻辑状态组件525及分区组件530。这些模块中的每一者可彼此直接或间接地通信(例如,经由一或多个总线)。
预读取组件510可将一组电压施加到一组存储器单元作为读取操作的预读取部分的部分。在一些实例中,预读取组件510可将第一电压施加到所述一组存储器单元的第一分区。在一些实例中,预读取组件510可将第二电压施加到所述一组存储器单元的第二分区。
在一些实例中,预读取组件510可基于第一数量及第二数量而识别第一读取电压的量值或极性或所述两者。在一些实例中,预读取组件510可汇总与将第一电压施加到第一分区且将第二电压施加到第二分区相关联的数据,其中识别第一读取电压的第一量值是基于汇总数据。
在一些实例中,预读取组件510可基于第一数量及第二数量而识别与存储第一逻辑状态的存储器单元相关联的阈值电压的一或多个可能分布,其中识别第一读取电压的量值或极性或所述两者基于识别阈值电压的一或多个可能分布。在一些实例中,预读取组件510可将不同电压施加到所述一组存储器单元的不同分区。在一些实例中,预读取组件510可基于存储器单元的数量而识别第一读取电压的量值或极性或所述两者。
第一电压组件515可基于施加所述一组电压将第一读取电压施加到所述一组存储器单元的存储器单元以识别由存储器单元存储的逻辑状态作为读取操作的读取部分的部分。在一些实例中,第一电压组件515可基于施加所述一组电压将具有第一量值及第一极性的第一读取电压施加到所述一组存储器单元的存储器单元以识别由存储器单元存储的逻辑状态作为读取操作的读取部分的部分。在一些实例中,第一电压组件515可基于施加所述一组电压将具有第一极性的第一读取电压施加到所述一组存储器单元的存储器单元以识别由存储器单元存储的逻辑状态作为读取操作的读取部分的部分。
在一些实例中,第一电压组件515可基于施加所述一组电压而识别第一读取电压的第一量值,其中施加第一读取电压是基于识别第一读取电压的第一量值。在一些实例中,第一电压组件515可确定第一读取电压在能够通过在发生突返事件之后被干扰的存储器单元存储的第一类型的状态的电压与能够通过在发生突返事件之后增强的存储器单元存储的第二类型的状态的电压之间,其中施加第一读取电压基于所述确定。
在一些实例中,第一电压组件515可识别第一读取电压的极性,其中施加第一读取电压是基于识别第一读取电压的极性。在一些实例中,第一电压组件515可识别第一读取电压及第二读取电压的第一极性,其中施加第一读取电压及施加第二读取电压是基于识别第一极性,其中第一极性是正极性。在一些实例中,第一电压组件515可识别第一读取电压的第一极性,其中施加第一读取电压是基于识别第一读取电压的第一极性。
第二电压组件520可基于施加第一读取电压将第二读取电压施加到所述一组存储器单元的存储器单元作为读取操作的读取部分的部分。在一些实例中,第二电压组件520可基于施加第一读取电压将具有第二量值及第一极性的第二读取电压施加到存储器单元作为读取操作的读取部分的部分。在一些实例中,第二电压组件520可基于施加第一读取电压将具有第二极性的第二读取电压施加到存储器单元作为读取操作的读取部分的部分。
在一些实例中,第二电压组件520可基于识别第一读取电压的第一量值而识别第二读取电压的第二量值,其中施加第二读取电压是基于识别第二读取电压的第一量值。在一些实例中,第二电压组件520可基于识别第一读取电压的第一量值而识别第二读取电压的第二量值,其中施加第二读取电压是基于识别第二读取电压的第一量值,其中第一量值小于第二量值。在一些实例中,第二电压组件520可基于识别第一读取电压的第一量值而识别第二读取电压的第二量值,其中施加第二读取电压是基于识别第二读取电压的第一量值,其中第一量值等于第二量值。
在一些实例中,第二电压组件520可识别第一读取电压的第一量值与第二读取电压的第二量值之间的偏移,其中识别第二读取电压的第二量值基于偏移及第一量值。在一些实例中,第二电压组件520可确定第二读取电压在能够通过在发生突返事件之后增强的存储器单元存储的第二类型的状态的电压与能够通过在发生突返事件之后被干扰的存储器单元存储的第三类型的状态的电压之间,其中施加第二读取电压基于所述确定。
在一些实例中,第二电压组件520可识别第二读取电压的极性,其中施加第二读取电压是基于识别第二读取电压的极性。在一些实例中,第二电压组件520可识别第二读取电压的第二极性,其中施加第二读取电压是基于识别第二读取电压的第二极性,其中第一极性是正极性且第二极性是负极性。
逻辑状态组件525可基于施加第一读取电压且施加第二读取电压而确定由存储器单元存储的逻辑状态。在一些实例中,逻辑状态组件525可基于施加第一读取电压而确定是否发生第一突返事件,其中施加第二读取电压基于确定未能发生第一突返事件。在一些实例中,逻辑状态组件525可在基于确定发生第一突返事件而确定由存储器单元存储的逻辑状态之后对存储器单元执行重新编程操作。
分区组件530可基于施加第一电压而识别其中发生突返事件的第一分区的存储器单元的第一数量。在一些实例中,分区组件530可基于施加第二电压而识别其中发生突返事件的第二分区的存储器单元的第二数量。在一些实例中,分区组件530可基于施加不同电压而识别其中发生突返事件的存储器单元的数量。
图6展示说明根据如本文中公开的实例的支持存取多电平存储器单元的一或若干方法600的流程图。可由如本文中描述的存储器装置或其组件实施方法600的操作。举例来说,可由如参考图5描述的存储器装置执行方法600的操作。在一些实例中,存储器装置可执行指令集以控制存储器装置的功能元件以执行所描述功能。额外地或替代地,存储器装置可使用专用硬件来执行所描述功能的方面。
在605,存储器装置可将一组电压施加到一组存储器单元作为读取操作的预读取部分的部分。可根据本文中描述的方法来执行605的操作。在一些实例中,可由如参考图5描述的预读取组件执行605的操作的方面。
在610,存储器装置可基于施加所述一组电压将第一读取电压施加到所述一组存储器单元的存储器单元以识别由存储器单元存储的逻辑状态作为读取操作的读取部分的部分。可根据本文中描述的方法来执行610的操作。在一些实例中,可由如参考图5描述的第一电压组件执行610的操作的方面。
在615,存储器装置可基于施加第一读取电压将第二读取电压施加到所述一组存储器单元的存储器单元作为读取操作的读取部分的部分。可根据本文中描述的方法来执行615的操作。在一些实例中,可由如参考图5描述的第二电压组件执行615的操作的方面。
在620,存储器装置可基于施加第一读取电压且施加第二读取电压而确定由存储器单元存储的逻辑状态。可根据本文中描述的方法来执行620的操作。在一些实例中,可由如参考图5描述的逻辑状态组件执行620的操作的方面。
在一些实例中,如本文中描述的设备可执行一或若干方法,例如方法600。设备可包含用于以下各者的特征、构件或指令(例如,存储可由处理器执行的指令的非暂时性计算机可读媒体):将一组电压施加到一组存储器单元作为读取操作的预读取部分的部分;基于施加所述一组电压将第一读取电压施加到所述一组存储器单元的存储器单元以识别由所述存储器单元存储的逻辑状态作为所述读取操作的读取部分的部分;基于施加所述第一读取电压将第二读取电压施加到所述一组存储器单元的所述存储器单元作为所述读取操作的所述读取部分的部分;及基于施加所述第一读取电压且施加所述第二读取电压而确定由所述存储器单元存储的所述逻辑状态。
本文中描述的方法600及设备的一些实例可进一步包含用于基于施加所述一组电压而识别第一读取电压的第一量值的操作、特征、构件或指令,其中施加第一读取电压可基于识别第一读取电压的第一量值。
本文中描述的方法600及设备的一些实例可进一步包含用于基于识别第一读取电压的第一量值而识别第二读取电压的第二量值的操作、特征、构件或指令,其中施加第二读取电压可基于识别第二读取电压的第一量值。
本文中描述的方法600及设备的一些实例可进一步包含用于识别第一读取电压的第一量值与第二读取电压的第二量值之间的偏移的操作、特征、构件或指令,其中识别第二读取电压的第二量值可基于偏移及第一量值。
在本文中描述的方法600及设备的一些实例中,施加所述一组电压进一步可包含用于以下各者的操作、特征、构件或指令:将第一电压施加到所述一组存储器单元的第一分区;基于施加所述第一电压而识别其中发生突返事件的所述第一分区的存储器单元的第一数量;将第二电压施加到所述一组存储器单元的第二分区;基于施加所述第二电压而识别其中发生所述突返事件的所述第二分区的存储器单元的第二数量;及基于所述第一数量及所述第二数量而识别所述第一读取电压的量值或极性或所述两者。
本文中描述的方法600及设备的一些实例可进一步包含用于汇总与将第一电压施加到第一分区且将第二电压施加到第二分区相关联的数据的操作、特征、构件或指令,其中识别第一读取电压的第一量值可基于汇总数据。
本文中描述的方法600及设备的一些实例可进一步包含用于基于第一数量及第二数量而识别与存储第一逻辑状态的存储器单元相关联的阈值电压的一或多个可能分布的操作、特征、构件或指令,其中识别第一读取电压的量值或极性或所述两者可基于识别阈值电压的一或多个可能分布。
在本文中描述的方法600及设备的一些实例中,第一分区及第二分区各自包含所述一组存储器单元中的两个或更多个存储器单元。
本文中描述的方法600及设备的一些实例可进一步包含用于确定第一读取电压可在能够由可在发生突返事件之后被干扰的存储器单元存储的第一类型的状态的电压与能够由可在发生突返事件之后增强的存储器单元存储的第二类型的状态的电压之间的操作、特征、构件或指令,其中施加第一读取电压可基于所述确定。
本文中描述的方法600及设备的一些实例可进一步包含用于确定第二读取电压可在能够由可在发生突返事件之后增强的存储器单元存储的第二类型的状态的电压与能够由可在发生突返事件之后被干扰的存储器单元存储的第三类型的状态的电压之间的操作、特征、构件或指令,其中施加第二读取电压可基于所述确定。
本文中描述的方法600及设备的一些实例可进一步包含用于识别第一读取电压的极性的操作、特征、构件或指令,其中施加第一读取电压可基于识别第一读取电压的极性及识别第二读取电压的极性,其中施加第二读取电压可基于识别第二读取电压的极性。
在本文中描述的方法600及设备的一些实例中,第一读取电压的极性可与第二读取电压的极性相同。
在本文中描述的方法600及设备的一些实例中,第一读取电压的极性可与第二读取电压的极性不同。
在本文中描述的方法600及设备的一些实例中,施加所述一组电压进一步可包含用于以下各者的操作、特征、构件或指令:将不同电压施加到所述一组存储器单元的不同分区;基于施加所述不同电压而识别其中发生突返事件的存储器单元的数量;及基于存储器单元的数量而识别第一读取电压的量值或极性或所述两者。
本文中描述的方法600及设备的一些实例可进一步包含用于基于施加第一读取电压而确定是否发生第一突返事件的操作、特征、构件或指令,其中施加第二读取电压可基于确定未能发生第一突返事件。
本文中描述的方法600及设备的一些实例可进一步包含用于在基于确定发生第一突返事件而确定由存储器单元存储的逻辑状态之后对存储器单元执行重新编程操作的操作、特征、构件或指令。
图7展示说明根据如本文中公开的实例的支持存取多电平存储器单元的一或若干方法700的流程图。可由如本文中描述的存储器装置或其组件实施方法700的操作。举例来说,可由如参考图5描述的存储器装置执行方法700的操作。在一些实例中,存储器装置可执行指令集以控制存储器装置的功能元件以执行所描述功能。额外地或替代地,存储器装置可使用专用硬件来执行所描述功能的方面。
在705,存储器装置可将一组电压施加到一组存储器单元作为读取操作的预读取部分的部分。可根据本文中描述的方法来执行705的操作。在一些实例中,可由如参考图5描述的预读取组件执行705的操作的方面。
在710,存储器装置可基于施加所述一组电压将具有第一量值及第一极性的第一读取电压施加到所述一组存储器单元的存储器单元以识别由存储器单元存储的逻辑状态作为读取操作的读取部分的部分。可根据本文中描述的方法来执行710的操作。在一些实例中,可由如参考图5描述的第一电压组件执行710的操作的方面。
在715,存储器装置可基于施加第一读取电压将具有第二量值及第一极性的第二读取电压施加到存储器单元作为读取操作的读取部分的部分。可根据本文中描述的方法来执行715的操作。在一些实例中,可由如参考图5描述的第二电压组件执行715的操作的方面。
在720,存储器装置可基于施加第一读取电压且施加第二读取电压而确定由存储器单元存储的逻辑状态。可根据本文中描述的方法来执行720的操作。在一些实例中,可由如参考图5描述的逻辑状态组件执行720的操作的方面。
在一些实例中,如本文中描述的设备可执行一或若干方法,例如方法700。设备可包含用于以下各者的特征、构件或指令(例如,存储可由处理器执行的指令的非暂时性计算机可读媒体):将一组电压施加到一组存储器单元作为读取操作的预读取部分的部分;基于施加所述一组电压将具有第一量值及第一极性的第一读取电压施加到所述一组存储器单元的存储器单元以识别由所述存储器单元存储的逻辑状态作为所述读取操作的读取部分的部分;基于施加所述第一读取电压将具有第二量值及所述第一极性的第二读取电压施加到所述存储器单元作为所述读取操作的所述读取部分的部分;及基于施加所述第一读取电压且施加所述第二读取电压而确定由所述存储器单元存储的所述逻辑状态。
本文中描述的方法700及设备的一些实例可进一步包含用于基于施加所述一组电压而识别第一读取电压的第一量值的操作、特征、构件或指令,其中施加第一读取电压可基于识别第一读取电压的第一量值。
本文中描述的方法700及设备的一些实例可进一步包含用于基于识别第一读取电压的第一量值而识别第二读取电压的第二量值的操作、特征、构件或指令,其中施加第二读取电压可基于识别第二读取电压的第一量值,其中第一量值可小于第二量值。
本文中描述的方法700及设备的一些实例可进一步包含用于识别第一读取电压的第一量值与第二读取电压的第二量值之间的偏移的操作、特征、构件或指令,其中识别第二读取电压的第二量值可基于偏移及第一量值。
在本文中描述的方法700及设备的一些实例中,施加所述一组电压进一步可包含用于以下各者的操作、特征、构件或指令:将第一电压施加到所述一组存储器单元的第一分区;基于施加所述第一电压而识别其中发生突返事件的所述第一分区的存储器单元的第一数量;将第二电压施加到所述一组存储器单元的第二分区;基于施加所述第二电压而识别其中发生所述突返事件的所述第二分区的存储器单元的第二数量;及基于所述第一数量及所述第二数量而识别所述第一读取电压的量值或极性或所述两者。
本文中描述的方法700及设备的一些实例可进一步包含用于识别第一读取电压及第二读取电压的第一极性的操作、特征、构件或指令,其中施加第一读取电压且施加第二读取电压可基于识别第一极性,其中第一极性可为正极性。
图8展示说明根据如本文中公开的实例的支持存取多电平存储器单元的一或若干方法800的流程图。可由如本文中描述的存储器装置或其组件实施方法800的操作。举例来说,可由如参考图5描述的存储器装置执行方法800的操作。在一些实例中,存储器装置可执行指令集以控制存储器装置的功能元件以执行所描述功能。额外地或替代地,存储器装置可使用专用硬件来执行所描述功能的方面。
在805,存储器装置可将一组电压施加到一组存储器单元作为读取操作的预读取部分的部分。可根据本文中描述的方法来执行805的操作。在一些实例中,可由如参考图5描述的预读取组件执行805的操作的方面。
在810,存储器装置可基于施加所述一组电压将具有第一极性的第一读取电压施加到所述一组存储器单元的存储器单元以识别由存储器单元存储的逻辑状态作为读取操作的读取部分的部分。可根据本文中描述的方法来执行810的操作。在一些实例中,可由如参考图5描述的第一电压组件执行810的操作的方面。
在815,存储器装置可基于施加第一读取电压将具有第二极性的第二读取电压施加到存储器单元作为读取操作的读取部分的部分。可根据本文中描述的方法来执行815的操作。在一些实例中,可由如参考图5描述的第二电压组件执行815的操作的方面。
在820,存储器装置可基于施加第一读取电压且施加第二读取电压而确定由存储器单元存储的逻辑状态。可根据本文中描述的方法来执行820的操作。在一些实例中,可由如参考图5描述的逻辑状态组件执行820的操作的方面。
在一些实例中,如本文中描述的设备可执行一或若干方法,例如方法800。设备可包含用于以下各者的特征、构件或指令(例如,存储可由处理器执行的指令的非暂时性计算机可读媒体):将一组电压施加到一组存储器单元作为读取操作的预读取部分的部分;基于施加所述一组电压将具有第一极性的第一读取电压施加到所述一组存储器单元的存储器单元以识别由所述存储器单元存储的逻辑状态作为所述读取操作的读取部分的部分;基于施加所述第一读取电压将具有第二极性的第二读取电压施加到所述存储器单元作为所述读取操作的所述读取部分的部分;及基于施加所述第一读取电压且施加所述第二读取电压而确定由所述存储器单元存储的所述逻辑状态。
本文中描述的方法800及设备的一些实例可进一步包含用于基于施加所述一组电压而识别第一读取电压的第一量值的操作、特征、构件或指令,其中施加第一读取电压可基于识别第一读取电压的第一量值。
本文中描述的方法800及设备的一些实例可进一步包含用于基于识别第一读取电压的第一量值而识别第二读取电压的第二量值的操作、特征、构件或指令,其中施加第二读取电压可基于识别第二读取电压的第一量值,其中第一量值可等于第二量值。
本文中描述的方法800及设备的一些实例可进一步包含用于识别第一读取电压的第一量值与第二读取电压的第二量值之间的偏移的操作、特征、构件或指令,其中识别第二读取电压的第二量值可基于偏移及第一量值。
在本文中描述的方法800及设备的一些实例中,施加所述一组电压进一步可包含用于以下各者的操作、特征、构件或指令:将第一电压施加到所述一组存储器单元的第一分区;基于施加所述第一电压而识别其中发生突返事件的所述第一分区的存储器单元的第一数量;将第二电压施加到所述一组存储器单元的第二分区;基于施加所述第二电压而识别其中发生所述突返事件的所述第二分区的存储器单元的第二数量;及基于所述第一数量及所述第二数量而识别所述第一读取电压的量值或极性或所述两者。
本文中描述的方法800及设备的一些实例可进一步包含用于识别第一读取电压的第一极性的操作、特征、构件或指令,其中施加第一读取电压可基于识别第一读取电压的第一极性及识别第二读取电压的第二极性,其中施加第二读取电压可基于识别第二读取电压的第二极性,其中第一极性可为正极性且第二极性可为负极性。
应注意,本文中描述的方法是可能实施方案,且操作及步骤可经重新布置或以其它方式经修改且其它实施方案是可能的。此外,可组合来自两个或更多个方法的部分。
描述一种设备。所述设备可包含:存储器阵列,其包括一组存储器单元;及控制组件,其与所述存储器阵列耦合,所述控制组件经配置以致使所述设备:将一组电压施加到一组存储器单元作为读取操作的预读取部分的部分;基于施加所述一组电压将第一读取电压施加到所述一组存储器单元的存储器单元以识别由所述存储器单元存储的逻辑状态作为所述读取操作的读取部分的部分;基于施加所述第一读取电压将第二读取电压施加到所述一组存储器单元的所述存储器单元作为所述读取操作的所述读取部分的部分;及基于施加所述第一读取电压且施加所述第二读取电压而确定由所述存储器单元存储的所述逻辑状态。
一些实例可进一步包含基于施加所述一组电压而识别第一读取电压的第一量值,其中施加第一读取电压可基于识别第一读取电压的第一量值。
一些实例可进一步包含基于识别第一读取电压的第一量值而识别第二读取电压的第二量值,其中施加第二读取电压可基于识别第二读取电压的第一量值。
一些实例可进一步包含识别第一读取电压的第一量值与第二读取电压的第二量值之间的偏移,其中识别第二读取电压的第二量值可基于偏移及第一量值。
一些实例可进一步包含将第一电压施加到所述一组存储器单元的第一分区,基于施加所述第一电压而识别其中发生突返事件的所述第一分区的存储器单元的第一数量,将第二电压施加到所述一组存储器单元的第二分区,基于施加所述第二电压而识别其中发生所述突返事件的所述第二分区的存储器单元的第二数量,及基于所述第一数量及所述第二数量而识别所述第一读取电压的量值或极性或所述两者。
一些实例可进一步包含汇总与将第一电压施加到第一分区且将第二电压施加到第二分区相关联的数据,其中识别第一读取电压的第一量值可基于汇总数据。
一些实例可进一步包含基于第一数量及第二数量而识别与存储第一逻辑状态的存储器单元相关联的阈值电压的一或多个可能分布,其中识别第一读取电压的量值或极性或所述两者可基于识别阈值电压的一或多个可能分布。
在一些实例中,第一分区及第二分区各自包含所述一组存储器单元中的两个或更多个存储器单元。
一些实例可进一步包含确定第一读取电压可在能够由可在发生突返事件之后被干扰的存储器单元存储的第一类型的状态的电压与能够由可在发生突返事件之后增强的存储器单元存储的第二类型的状态的电压之间,其中施加第一读取电压可基于所述确定。
一些实例可进一步包含确定第二读取电压可在能够由可在发生突返事件之后增强的存储器单元存储的第二类型的状态的电压与能够由可在发生突返事件之后被干扰的存储器单元存储的第三类型的状态的电压之间,其中施加第二读取电压可基于所述确定。
一些实例可进一步包含识别第一读取电压的极性,其中施加第一读取电压可基于识别第一读取电压的极性及识别第二读取电压的极性,其中施加第二读取电压可基于识别第二读取电压的极性。
在一些实例中,第一读取电压的极性可与第二读取电压的极性相同。
在一些实例中,第一读取电压的极性可与第二读取电压的极性不同。
一些实例可进一步包含将不同电压施加到所述一组存储器单元的不同分区,基于施加所述不同电压而识别其中发生突返事件的存储器单元的数量,及基于存储器单元的数量而识别第一读取电压的量值或极性或所述两者。
一些实例可进一步包含基于施加第一读取电压而确定是否发生第一突返事件,其中施加第二读取电压可基于确定未能发生第一突返事件。
一些实例可进一步包含在基于确定发生第一突返事件而确定由存储器单元存储的逻辑状态之后对存储器单元执行重新编程操作。
描述一种设备。所述设备可包含:存储器阵列,其包括一组存储器单元;及控制组件,其与所述存储器阵列耦合,所述控制组件经配置以致使所述设备:将一组电压施加到一组存储器单元作为读取操作的预读取部分的部分;基于施加所述一组电压将具有第一量值及第一极性的第一读取电压施加到所述一组存储器单元的存储器单元以识别由所述存储器单元存储的逻辑状态作为所述读取操作的读取部分的部分;基于施加所述第一读取电压将具有第二量值及所述第一极性的第二读取电压施加到所述存储器单元作为所述读取操作的所述读取部分的部分;及基于施加所述第一读取电压且施加所述第二读取电压而确定由所述存储器单元存储的所述逻辑状态。
一些实例可进一步包含基于施加所述一组电压而识别第一读取电压的第一量值,其中施加第一读取电压可基于识别第一读取电压的第一量值。
一些实例可进一步包含基于识别第一读取电压的第一量值而识别第二读取电压的第二量值,其中施加第二读取电压可基于识别第二读取电压的第一量值,其中第一量值可小于第二量值。
一些实例可进一步包含识别第一读取电压的第一量值与第二读取电压的第二量值之间的偏移,其中识别第二读取电压的第二量值可基于偏移及第一量值。
一些实例可进一步包含将第一电压施加到所述一组存储器单元的第一分区,基于施加所述第一电压而识别其中发生突返事件的所述第一分区的存储器单元的第一数量,将第二电压施加到所述一组存储器单元的第二分区,基于施加所述第二电压而识别其中发生所述突返事件的所述第二分区的存储器单元的第二数量,及基于所述第一数量及所述第二数量而识别所述第一读取电压的量值或极性或所述两者。
一些实例可进一步包含识别第一读取电压及第二读取电压的第一极性,其中施加第一读取电压及施加第二读取电压可基于识别第一极性,其中第一极性可为正极性。
描述一种设备。所述设备可包含:存储器阵列,其包括一组存储器单元;及控制组件,其与所述存储器阵列耦合,所述控制组件经配置以致使所述设备:将一组电压施加到一组存储器单元作为读取操作的预读取部分的部分;基于施加所述一组电压将具有第一极性的第一读取电压施加到所述一组存储器单元的存储器单元以识别由所述存储器单元存储的逻辑状态作为所述读取操作的读取部分的部分;基于施加所述第一读取电压将具有第二极性的第二读取电压施加到所述存储器单元作为所述读取操作的所述读取部分的部分;及基于施加所述第一读取电压且施加所述第二读取电压而确定由所述存储器单元存储的所述逻辑状态。
一些实例可进一步包含基于施加所述一组电压而识别第一读取电压的第一量值,其中施加第一读取电压可基于识别第一读取电压的第一量值。
一些实例可进一步包含基于识别第一读取电压的第一量值而识别第二读取电压的第二量值,其中施加第二读取电压可基于识别第二读取电压的第一量值,其中第一量值可等于第二量值。
一些实例可进一步包含识别第一读取电压的第一量值与第二读取电压的第二量值之间的偏移,其中识别第二读取电压的第二量值可基于偏移及第一量值。
一些实例可进一步包含将第一电压施加到所述一组存储器单元的第一分区,基于施加所述第一电压而识别其中发生突返事件的所述第一分区的存储器单元的第一数量,将第二电压施加到所述一组存储器单元的第二分区,基于施加所述第二电压而识别其中发生所述突返事件的所述第二分区的存储器单元的第二数量,及基于所述第一数量及所述第二数量而识别所述第一读取电压的量值或极性或所述两者。
一些实例可进一步包含识别第一读取电压的第一极性,其中施加第一读取电压可基于识别第一读取电压的第一极性及识别第二读取电压的第二极性,其中施加第二读取电压可基于识别第二读取电压的第二极性,其中第一极性可为正极性且第二极性可为负极性。
可使用各种不同科技及技术中的任一者来表示本文中描述的信息及信号。举例来说,可由电压、电流、电磁波、磁场或磁性粒子、光场或光学粒子或其任何组合表示可贯穿上文描述引用的数据、指令、命令、信息、信号、位、符号及芯片。一些图式可将信号说明为单个信号;然而,所属领域的一般技术人员将理解,信号可表示信号的总线,其中总线可具有各种位宽度。
术语“电子通信”、“导电接触”、“连接”及“耦合”可指组件之间的关系,所述关系支持组件之间的信号流。如果组件之间存在可随时支持组件之间的信号流的任何导电路径,那么将组件视为彼此电子通信(或导电接触或连接或耦合)。在任何给定时间,基于包含经连接组件的装置的操作,彼此电子通信(或导电接触或连接或耦合)的组件之间的导电路径可为开路或闭路。经连接组件之间的导电路径可为组件之间的直接导电路径或经连接组件之间的导电路径可为可包含中间组件(例如开关、晶体管或其它组件)的间接导电路径。在一些实例中,可(举例来说)使用例如开关或晶体管的一或多个中间组件将经连接组件之间的信号流中断一段时间。
如本文中使用,术语“电极”可指电导体,且在一些实例中,可用作到存储器单元或存储器阵列的其它组件的电触点。电极可包含在存储器阵列的元件或组件之间提供导电路径的迹线、导线、导电线、导电材料、或类似者。
本文中论述的装置(包含存储器阵列)可形成于半导体衬底(例如硅、锗、硅锗合金、砷化镓、氮化镓等)上。在一些实例中,衬底是半导体晶片。在其它情况下,衬底可为绝缘体上覆硅(SOI)衬底(例如玻璃上硅(SOG)或蓝宝石上硅(SOS))或另一衬底上的半导体材料的外延层。可通过使用各种化学物种(包含(但不限于)磷、硼或砷)掺杂来控制衬底或衬底的子区的导电率。可通过离子植入或通过任何其它掺杂手段在衬底的初始形成或生长期间执行掺杂。
本文中论述的切换组件或晶体管可表示场效应晶体管(FET)且包括包含源极、漏极与栅极的一个三端子装置。端子可通过导电材料(例如,金属)连接到其它电子元件。源极及漏极可为导电的且可包括重度掺杂(例如,简并)半导体区。可通过轻度掺杂半导体区或沟道分离源极及漏极。如果沟道是n型(即,多数载子是电子),那么FET可被称为n型FET。如果沟道是p型(即,多数载子是空穴),那么FET可被称为p型FET。沟道可由绝缘栅极氧化物封端。可通过将电压施加到栅极而控制沟道导电率。举例来说,将正电压或负电压分别施加到n型FET或p型FET可导致沟道变成导电。当将大于或等于晶体管的阈值电压的电压施加到晶体管栅极时,可“开启”或“激活”所述晶体管。当将小于晶体管的阈值电压的电压施加到晶体管栅极时,可“关闭”或“撤销激活”所述晶体管。
本文中陈述的描述以及随附图式描述实例配置且不表示可实施或在权利要求书的范围内的全部实例。本文中使用的术语“实例”意味着“充当实例、例子或说明”且非“优选”或“优于其它实例”。实施方式包含具体细节以提供对所描述技术的理解。然而,可在不具有这些具体细节的情况下实践这些技术。在一些例子中,以框图形式展示众所周知结构及装置以避免混淆所描述实例的概念。
在附图中,类似组件或特征可具有相同参考标记。此外,可通过在参考标记后加一破折号及区分类似组件的第二标记来区分相同类型的各种组件。如果在说明书中仅使用第一参考标记,那么描述可适用于具有相同第一参考标记的类似组件中的任一者,而与第二参考标记无关。
可使用各种不同科技及技术中的任一者来表示本文中描述的信息及信号。举例来说,可由电压、电流、电磁波、磁场或磁性粒子、光场或光学粒子或其任何组合表示可贯穿上文描述引用的数据、指令、命令、信息、信号、位、符号及芯片。
可运用经设计以执行本文中描述的功能的通用处理器、DSP、ASIC、FPGA或其它可编程逻辑装置、离散门或晶体管逻辑、离散硬件组件或其任何组合来实施或执行结合本文中的公开内容描述的各种说明性块及模块。通用处理器可为微处理器,但在替代例中,处理器可为任何处理器、控制器、微控制器或状态机。处理器还可实施为计算装置的组合(例如,DSP及微处理器的组合、多个微处理器、结合DSP核心的一或多个微处理器或任何其它此配置)。
可在硬件、由处理器执行的软件、固件或其任何组合中实施本文中描述的功能。如果在由处理器执行的软件中实施,那么可将功能作为一或多个指令或程序代码存储于计算机可读媒体上或经由计算机可读媒体传输。其它实例及实施方案在本公开及所附权利要求书的范围内。举例来说,归因于软件的性质,可使用由处理器执行的软件、硬件、固件、硬接线或这些中的任一者的组合来实施上文描述的功能。实施功能的特征还可物理上定位在各种位置处,包含经分布使得在不同物理位置处实施功能的部分。此外,如本文中使用,包含在权利要求书中,如项目列表(举例来说,以例如“…的至少一者”或“…中的一或多者”的词组开始的项目列表)中使用的“或”指示包含列表,使得(举例来说)A、B或C中的至少一者的列表意味着A或B或C或AB或AC或BC或ABC(即,A及B及C)。此外,如本文中使用,词组“基于”不应被解释为对条件闭集的参考。举例来说,在不脱离本公开的范围的情况下,被描述为“基于条件A”的实例步骤可基于条件A及条件B两者。换句话说,如本文中使用,词组“基于”应以与词组“至少部分基于”相同的方式进行解释。
计算机可读媒体包含非暂时性计算机存储媒体及包含促成计算机程序从一个位置传送到另一位置的任何媒体的通信媒体两者。非暂时性存储媒体可为可由通用或专用计算机存取的任何可用媒体。通过实例而非限制,非暂时性计算机可读媒体可包括RAM、ROM、电可擦除可编程只读存储器(EEPROM)、光盘(CD)ROM或其它光盘存储器、磁盘存储器或其它磁性存储装置,或可用来以指令或数据结构的形式载送或存储所要程序代码构件且可由通用或专用计算机或通用或专用处理器存取的任何其它非暂时性媒体。此外,任何连接被适宜地称为计算机可读媒体。举例来说,如果使用同轴电缆、光纤缆线、双绞线、数字用户线(DSL)或例如红外线、无线电及微波的无线科技来从网站、服务器或其它远程源传输软件,那么同轴电缆、光纤缆线、双绞线、数字用户线(DSL)或例如红外线、无线电及微波的无线科技包含在媒体的定义中。如本文中所使用,磁盘及光盘包含CD、激光光盘、光盘、数字多功能光盘(DVD)、软盘及蓝光光盘,其中磁盘通常磁性地重现数据,而光盘运用激光光学地重现数据。上文的组合也包含在计算机可读媒体的范围内。
提供本文中的描述以使所属领域的技术人员能够进行或使用本公开。所属领域的技术人员将明白本公开的各种修改,且本文中定义的通用原理可应用于其它变化而不脱离本公开的范围。因此,本公开不限于本文中描述的实例及设计而应符合与本文中公开的原理及新颖特征一致的最宽范围。

Claims (35)

1.一种方法,其包括:
将多个电压施加到多个存储器单元作为读取操作的预读取部分的部分;
至少部分基于施加所述多个电压将第一读取电压施加到所述多个存储器单元的存储器单元以识别由所述存储器单元存储的逻辑状态作为所述读取操作的读取部分的部分;
至少部分基于施加所述第一读取电压将第二读取电压施加到所述多个存储器单元的所述存储器单元作为所述读取操作的所述读取部分的部分;及
至少部分基于施加所述第一读取电压且施加所述第二读取电压而确定由所述存储器单元存储的所述逻辑状态。
2.根据权利要求1所述的方法,其进一步包括:
至少部分基于施加所述多个电压而识别所述第一读取电压的第一量值,其中施加所述第一读取电压是至少部分基于识别所述第一读取电压的所述第一量值。
3.根据权利要求2所述的方法,其进一步包括:
至少部分基于识别所述第一读取电压的所述第一量值而识别所述第二读取电压的第二量值,其中施加所述第二读取电压是至少部分基于识别所述第二读取电压的所述第一量值。
4.根据权利要求3所述的方法,其进一步包括:
识别所述第一读取电压的所述第一量值与所述第二读取电压的所述第二量值之间的偏移,其中识别所述第二读取电压的所述第二量值是至少部分基于所述偏移及所述第一量值。
5.根据权利要求1所述的方法,其中施加所述多个电压进一步包括:
将第一电压施加到所述多个存储器单元的第一分区;
至少部分基于施加所述第一电压而识别其中发生突返事件的所述第一分区的存储器单元的第一数量;
将第二电压施加到所述多个存储器单元的第二分区;
至少部分基于施加所述第二电压而识别其中发生所述突返事件的所述第二分区的存储器单元的第二数量;及
至少部分基于所述第一数量及所述第二数量而识别所述第一读取电压的量值或极性或所述两者。
6.根据权利要求5所述的方法,其进一步包括:
汇总与将所述第一电压施加到所述第一分区且将所述第二电压施加到所述第二分区相关联的数据,其中识别所述第一读取电压的第一量值是至少部分基于汇总所述数据。
7.根据权利要求5所述的方法,其进一步包括:
至少部分基于所述第一数量及所述第二数量而识别与存储第一逻辑状态的存储器单元相关联的阈值电压的一或多个可能分布,其中识别所述第一读取电压的所述量值或所述极性或所述两者是至少部分基于识别阈值电压的所述一或多个可能分布。
8.根据权利要求5所述的方法,其中所述第一分区及所述第二分区各自包括所述多个存储器单元中的两个或更多个存储器单元。
9.根据权利要求1所述的方法,其进一步包括:
确定所述第一读取电压在能够通过在发生突返事件之后被干扰的所述存储器单元存储的第一类型的状态的电压与能够通过在发生所述突返事件之后增强的所述存储器单元存储的第二类型的状态的电压之间,其中施加所述第一读取电压是至少部分基于所述确定。
10.根据权利要求1所述的方法,其进一步包括:
确定所述第二读取电压在能够通过在发生突返事件之后增强的所述存储器单元存储的第二类型的状态的电压与能够通过在发生所述突返事件之后被干扰的所述存储器单元存储的第三类型的状态的电压之间,其中施加所述第二读取电压是至少部分基于所述确定。
11.根据权利要求1所述的方法,其进一步包括:
识别所述第一读取电压的极性,其中施加所述第一读取电压是至少部分基于识别所述第一读取电压的所述极性;及
识别所述第二读取电压的极性,其中施加所述第二读取电压是至少部分基于识别所述第二读取电压的所述极性。
12.根据权利要求11所述的方法,其中所述第一读取电压的所述极性与所述第二读取电压的所述极性相同。
13.根据权利要求11所述的方法,其中所述第一读取电压的所述极性与所述第二读取电压的所述极性不同。
14.根据权利要求1所述的方法,其中施加所述多个电压进一步包括:
将不同电压施加到所述多个存储器单元的不同分区;
至少部分基于施加所述不同电压而识别其中发生突返事件的存储器单元的数量;及
至少部分基于存储器单元的所述数量而识别所述第一读取电压的量值或极性或所述两者。
15.根据权利要求1所述的方法,其进一步包括:
至少部分基于施加所述第一读取电压而确定是否发生第一突返事件,其中施加所述第二读取电压是至少部分基于确定未能发生所述第一突返事件。
16.根据权利要求15所述的方法,其进一步包括:
在至少部分基于确定发生所述第一突返事件而确定由所述存储器单元存储的所述逻辑状态之后对所述存储器单元执行重新编程操作。
17.一种方法,其包括:
将多个电压施加到多个存储器单元作为读取操作的预读取部分的部分;
至少部分基于施加所述多个电压将具有第一量值及第一极性的第一读取电压施加到所述多个存储器单元的存储器单元以识别由所述存储器单元存储的逻辑状态作为所述读取操作的读取部分的部分;
至少部分基于施加所述第一读取电压将具有第二量值及所述第一极性的第二读取电压施加到所述存储器单元作为所述读取操作的所述读取部分的部分;及
至少部分基于施加所述第一读取电压且施加所述第二读取电压而确定由所述存储器单元存储的所述逻辑状态。
18.根据权利要求17所述的方法,其进一步包括:
至少部分基于施加所述多个电压而识别所述第一读取电压的所述第一量值,其中施加所述第一读取电压是至少部分基于识别所述第一读取电压的所述第一量值。
19.根据权利要求18所述的方法,其进一步包括:
至少部分基于识别所述第一读取电压的所述第一量值而识别所述第二读取电压的所述第二量值,其中施加所述第二读取电压是至少部分基于识别所述第二读取电压的所述第一量值,其中所述第一量值小于所述第二量值。
20.根据权利要求18所述的方法,其进一步包括:
识别所述第一读取电压的所述第一量值与所述第二读取电压的所述第二量值之间的偏移,其中识别所述第二读取电压的所述第二量值是至少部分基于所述偏移及所述第一量值。
21.根据权利要求17所述的方法,其中施加所述多个电压进一步包括:
将第一电压施加到所述多个存储器单元的第一分区;
至少部分基于施加所述第一电压而识别其中发生突返事件的所述第一分区的存储器单元的第一数量;
将第二电压施加到所述多个存储器单元的第二分区;
至少部分基于施加所述第二电压而识别其中发生所述突返事件的所述第二分区的存储器单元的第二数量;及
至少部分基于所述第一数量及所述第二数量而识别所述第一读取电压的量值或极性或所述两者。
22.根据权利要求17所述的方法,其进一步包括:
识别所述第一读取电压及所述第二读取电压的所述第一极性,其中施加所述第一读取电压及施加所述第二读取电压是至少部分基于识别所述第一极性,其中所述第一极性是正极性。
23.一种方法,其包括:
将多个电压施加到多个存储器单元作为读取操作的预读取部分的部分;
至少部分基于施加所述多个电压将具有第一极性的第一读取电压施加到所述多个存储器单元的存储器单元以识别由所述存储器单元存储的逻辑状态作为所述读取操作的读取部分的部分;
至少部分基于施加所述第一读取电压将具有第二极性的第二读取电压施加到所述存储器单元作为所述读取操作的所述读取部分的部分;及
至少部分基于施加所述第一读取电压且施加所述第二读取电压而确定由所述存储器单元存储的所述逻辑状态。
24.根据权利要求23所述的方法,其进一步包括:
至少部分基于施加所述多个电压而识别所述第一读取电压的第一量值,其中施加所述第一读取电压是至少部分基于识别所述第一读取电压的所述第一量值。
25.根据权利要求24所述的方法,其进一步包括:
至少部分基于识别所述第一读取电压的所述第一量值而识别所述第二读取电压的第二量值,其中施加所述第二读取电压是至少部分基于识别所述第二读取电压的所述第一量值,其中所述第一量值等于所述第二量值。
26.根据权利要求25所述的方法,其进一步包括:
识别所述第一读取电压的所述第一量值与所述第二读取电压的所述第二量值之间的偏移,其中识别所述第二读取电压的所述第二量值是至少部分基于所述偏移及所述第一量值。
27.根据权利要求23所述的方法,其中施加所述多个电压进一步包括:
将第一电压施加到所述多个存储器单元的第一分区;
至少部分基于施加所述第一电压而识别其中发生突返事件的所述第一分区的存储器单元的第一数量;
将第二电压施加到所述多个存储器单元的第二分区;
至少部分基于施加所述第二电压而识别其中发生所述突返事件的所述第二分区的存储器单元的第二数量;及
至少部分基于所述第一数量及所述第二数量而识别所述第一读取电压的量值或极性或所述两者。
28.根据权利要求23所述的方法,其进一步包括:
识别所述第一读取电压的所述第一极性,其中施加所述第一读取电压是至少部分基于识别所述第一读取电压的所述第一极性;及
识别所述第二读取电压的所述第二极性,其中施加所述第二读取电压是至少部分基于识别所述第二读取电压的所述第二极性,其中所述第一极性是正极性且所述第二极性是负极性。
29.一种设备,其包括:
存储器阵列,其包括多个存储器单元;及
控制组件,其与所述存储器阵列耦合,所述控制组件经配置以致使所述设备:
将多个电压施加到所述多个存储器单元作为读取操作的预读取部分的部分;
至少部分基于施加所述多个电压将第一读取电压施加到所述多个存储器单元的存储器单元以识别由所述存储器单元存储的逻辑状态作为所述读取操作的读取部分的部分;
至少部分基于施加所述第一读取电压将第二读取电压施加到所述多个存储器单元的所述存储器单元作为所述读取操作的所述读取部分的部分;及
至少部分基于施加所述第一读取电压且施加所述第二读取电压而确定由所述存储器单元存储的所述逻辑状态。
30.根据权利要求29的设备,其中所述控制组件进一步经配置以致使所述设备:
至少部分基于施加所述多个电压而识别所述第一读取电压的第一量值,其中施加所述第一读取电压是至少部分基于识别所述第一读取电压的所述第一量值。
31.根据权利要求30的设备,其中所述控制组件进一步经配置以致使所述设备:
至少部分基于识别所述第一读取电压的所述第一量值而识别所述第二读取电压的第二量值,其中施加所述第二读取电压是至少部分基于识别所述第二读取电压的所述第一量值。
32.根据权利要求29的设备,其中所述控制组件进一步经配置以致使所述设备:
将第一电压施加到所述多个存储器单元的第一分区;
至少部分基于施加所述第一电压而识别其中发生突返事件的所述第一分区的存储器单元的第一数量;
将第二电压施加到所述多个存储器单元的第二分区;
至少部分基于施加所述第二电压而识别其中发生所述突返事件的所述第二分区的存储器单元的第二数量;及
至少部分基于所述第一数量及所述第二数量而识别所述第一读取电压的量值或极性或所述两者。
33.一种非暂时性计算机可读媒体,其存储包括指令的代码,所述指令在由电子装置的处理器执行时导致所述电子装置:
将多个电压施加到多个存储器单元作为读取操作的预读取部分的部分;
至少部分基于施加所述多个电压将第一读取电压施加到所述多个存储器单元的存储器单元以识别由所述存储器单元存储的逻辑状态作为所述读取操作的读取部分的部分;
至少部分基于施加所述第一读取电压将第二读取电压施加到所述多个存储器单元的所述存储器单元作为所述读取操作的所述读取部分的部分;及
至少部分基于施加所述第一读取电压且施加所述第二读取电压而确定由所述存储器单元存储的所述逻辑状态。
34.根据权利要求33所述的非暂时性计算机可读媒体,其中所述指令在由所述电子装置的所述处理器执行时进一步导致所述电子装置:
至少部分基于施加所述多个电压而识别所述第一读取电压的第一量值,其中施加所述第一读取电压是至少部分基于识别所述第一读取电压的所述第一量值。
35.根据权利要求33所述的非暂时性计算机可读媒体,其中所述指令在由所述电子装置的所述处理器执行时进一步导致所述电子装置:
将第一电压施加到所述多个存储器单元的第一分区;
至少部分基于施加所述第一电压而识别其中发生突返事件的所述第一分区的存储器单元的第一数量;
将第二电压施加到所述多个存储器单元的第二分区;
至少部分基于施加所述第二电压而识别其中发生所述突返事件的所述第二分区的存储器单元的第二数量;及
至少部分基于所述第一数量及所述第二数量而识别所述第一读取电压的量值或极性或所述两者。
CN202180048845.6A 2020-07-10 2021-06-29 存取多电平存储器单元 Pending CN115803813A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/926,556 US11355209B2 (en) 2020-07-10 2020-07-10 Accessing a multi-level memory cell
US16/926,556 2020-07-10
PCT/US2021/039534 WO2022010691A1 (en) 2020-07-10 2021-06-29 Accessing a multi-level memory cell

Publications (1)

Publication Number Publication Date
CN115803813A true CN115803813A (zh) 2023-03-14

Family

ID=79172940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180048845.6A Pending CN115803813A (zh) 2020-07-10 2021-06-29 存取多电平存储器单元

Country Status (4)

Country Link
US (2) US11355209B2 (zh)
CN (1) CN115803813A (zh)
TW (1) TWI775484B (zh)
WO (1) WO2022010691A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11880571B2 (en) 2020-05-13 2024-01-23 Micron Technology, Inc. Counter-based methods and systems for accessing memory cells
US20220113892A1 (en) * 2020-10-12 2022-04-14 Intel Corporation Multi-level memory programming and readout
US11367484B1 (en) * 2021-01-21 2022-06-21 Micron Technology, Inc. Multi-step pre-read for write operations in memory devices
US11514983B2 (en) 2021-04-02 2022-11-29 Micron Technology, Inc. Identify the programming mode of memory cells based on cell statistics obtained during reading of the memory cells
US11664073B2 (en) 2021-04-02 2023-05-30 Micron Technology, Inc. Adaptively programming memory cells in different modes to optimize performance
US11615854B2 (en) 2021-04-02 2023-03-28 Micron Technology, Inc. Identify the programming mode of memory cells during reading of the memory cells
US11587627B2 (en) * 2021-04-16 2023-02-21 Micron Technology, Inc. Determining voltage offsets for memory read operations
US11664074B2 (en) 2021-06-02 2023-05-30 Micron Technology, Inc. Programming intermediate state to store data in self-selecting memory cells
US11694747B2 (en) 2021-06-03 2023-07-04 Micron Technology, Inc. Self-selecting memory cells configured to store more than one bit per memory cell

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8767482B2 (en) 2011-08-18 2014-07-01 Micron Technology, Inc. Apparatuses, devices and methods for sensing a snapback event in a circuit
KR20140064434A (ko) 2012-11-20 2014-05-28 에스케이하이닉스 주식회사 반도체 메모리 장치, 그것을 포함하는 메모리 시스템 및 그것의 동작 방법
WO2016054241A1 (en) 2014-09-30 2016-04-07 Yongjune Kim Reducing errors caused by inter-cell interference in a memory device
US9484089B2 (en) 2014-10-20 2016-11-01 Sandisk Technologies Llc Dual polarity read operation
KR102261813B1 (ko) 2014-11-26 2021-06-07 삼성전자주식회사 저항성 메모리 장치 및 저항성 메모리 장치의 동작 방법
US9799381B1 (en) 2016-09-28 2017-10-24 Intel Corporation Double-polarity memory read
KR20180096845A (ko) * 2017-02-20 2018-08-30 에스케이하이닉스 주식회사 메모리 시스템 및 이의 동작 방법
US10431301B2 (en) 2017-12-22 2019-10-01 Micron Technology, Inc. Auto-referenced memory cell read techniques
US10566052B2 (en) 2017-12-22 2020-02-18 Micron Technology, Inc. Auto-referenced memory cell read techniques
US10235294B1 (en) 2018-04-23 2019-03-19 Sandisk Technologies Llc Pre-read voltage pulse for first read error handling
US10755781B2 (en) 2018-06-06 2020-08-25 Micron Technology, Inc. Techniques for programming multi-level self-selecting memory cell
US11335402B2 (en) 2018-12-19 2022-05-17 Micron Technology, Inc. Systems and techniques for accessing multiple memory cells concurrently
KR20210083466A (ko) * 2019-12-26 2021-07-07 삼성전자주식회사 스토리지 장치 및 스토리지 장치의 동작 방법

Also Published As

Publication number Publication date
US20220013183A1 (en) 2022-01-13
WO2022010691A1 (en) 2022-01-13
US11355209B2 (en) 2022-06-07
US20220284973A1 (en) 2022-09-08
TW202203228A (zh) 2022-01-16
US11894078B2 (en) 2024-02-06
TWI775484B (zh) 2022-08-21

Similar Documents

Publication Publication Date Title
US11817148B2 (en) Techniques for programming a memory cell
TWI775484B (zh) 用於支援存取多位階記憶體單元之方法及設備,以及非暫時性電腦可讀媒體
CN112219240A (zh) 用于对多电平自选择存储器单元进行编程的技术
US11302390B2 (en) Reading a multi-level memory cell
CN111462788B (zh) 垂直解码器
KR102656533B1 (ko) 메모리 셀 선택
US11468930B2 (en) Vertical decoder
CN113678201A (zh) 用于存储器装置的多组件单元架构
EP4059016A1 (en) Socket design for a memory device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination