CN115769400A - 电化学装置和电子装置 - Google Patents

电化学装置和电子装置 Download PDF

Info

Publication number
CN115769400A
CN115769400A CN202180040227.7A CN202180040227A CN115769400A CN 115769400 A CN115769400 A CN 115769400A CN 202180040227 A CN202180040227 A CN 202180040227A CN 115769400 A CN115769400 A CN 115769400A
Authority
CN
China
Prior art keywords
positive electrode
active material
electrode active
electrochemical device
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180040227.7A
Other languages
English (en)
Inventor
刘胜奇
王可飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Amperex Technology Ltd
Original Assignee
Dongguan Amperex Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Amperex Technology Ltd filed Critical Dongguan Amperex Technology Ltd
Publication of CN115769400A publication Critical patent/CN115769400A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请涉及一种电化学装置和电子装置。具体而言,本申请提供一种电化学装置,其包括正极和电解液,所述正极包括:正极集流体;和正极活性物质层,所述正极活性物质层位于所述正极集流体的至少一个表面上,其中所述正极活性物质层包括第一正极活性物质层和第二正极活性物质层,所述第一正极活性物质层包括第一正极活性物质且位于所述正极集流体和所述第二正极活性物质层之间,且所述第二正极活性物质层包括第二正极活性物质和粘结剂,所述粘结剂的密度为a g/cm3,0.6≤a≤1.5。上述正极设计能够显著改善电化学装置在高温高压下的安全性能。

Description

电化学装置和电子装置
技术领域
本申请涉及储能领域,具体涉及一种电化学装置和电子装置,特别是锂离子电池。
背景技术
近年来,随着智能手机、平板电脑和智能穿戴等电子产品的快速发展,考虑到电子产品的使用时长和工作环境的不同,消费者对电化学装置(例如,锂离子电池)的能量密度的要求越来越高。目前,主要通过采用高电压(4.4V及以上)的钴酸锂正极活性物质和高容、高压实密度的石墨负极材料来提高锂离子电池的能量密度。然而,随着温度和电压的升高,这类锂离子电池的循环性能和安全性能会明显恶化。同时,随着全球变暖等恶劣环境加剧(如面对印度、非洲等特殊使用地区),这对电池的高温性能提出了更高的要求。
有鉴于此,确有必要提供一种具有改进的高温性能的电化学装置和电子装置。
发明内容
本申请至少通过改进电化学装置的正极来提供一种具有改进的高温性能的电化学装置,以在某种程度上解决现有技术所存在的问题。
根据本申请的一个方面,本申请提供了一种电化学装置,其包括正极和电解液,所述正极包括:正极集流体;和正极活性物质层,所述正极活性物质层位于所述正极集流体的至少一个表面上,其中所述正极活性物质层包括第一正极活性物质层和第二正极活性物质层,所述第一正极活性物质层包括第一正极活性物质且位于所述正极集流体和所述第二正极活性物质层之间,且所述第二正极活性物质层包括第二正极活性物质和粘结剂,所述粘结剂的密度为a g/cm3,0.6≤a≤1.5。
根据本申请的实施例,所述第二正极活性物质的平均粒径为bμm,且5≤b≤20。
根据本申请的实施例,4≤b/a≤25。
根据本申请的实施例,所述正极活性物质层的厚度为H,所述第二正极活性物质层的厚度为H2,其中h=H2/H,0.6≤h≤0.98。
根据本申请的实施例,0.45≤h/a≤1.2。
根据本申请的实施例,所述电解液包括丙酸丙酯,其中基于所述电解液的总重量,所述丙酸丙酯的含量为x%且10≤x≤65。
根据本申请的实施例,7≤x/a≤90。
根据本申请的实施例,所述电解液包括含磷化合物,所述含磷化合物包括以下各者中的至少一者:二氟磷酸锂或二氟亚磷酸酯,其中基于所述电解液的总重量,所述含磷化合物的含量为y%,且0.01≤y≤3。
根据本申请的实施例,10≤x/y≤400。
根据本申请的实施例,所述二氟亚磷酸酯包括如下式1所示化合物或下式2所示化合物中的至少一者:
A-OPF2(式1);
A-(OPF2)2(式2),
其中A为经取代或未经取代的C1-C10烷基、C2-C10烯基、C2-C10氧烷基或者C2-C10氧烯基中的一者;
其中,经取代时,取代基为卤素或氰基中的至少一者。
根据本申请的实施例,所述二氟亚磷酸酯包括以下化合物中的至少一种:
Figure BDA0003977857130000021
Figure BDA0003977857130000031
根据本申请的实施例,所述电解液包括氟代碳酸乙烯酯、1,3-丙磺酸内酯、硫酸乙烯酯、碳酸乙烯亚乙酯、磷酸环酐、乙二醇二(2-氰基乙基)醚、1,2,3-三(2-氰基乙氧基)丙烷、1,2,4-三(2-氰基乙氧基)丁烷、1,1,1-三(氰基乙氧基亚甲基)乙烷、1,1,1-三(氰基乙氧基亚甲基)丙烷、3-甲基-1,3,5-三(氰基乙氧基)戊烷、1,2,7-三(氰基乙氧基)庚烷、1,2,6-三(氰基乙氧基)己烷或1,2,5-三(氰基乙氧基)戊烷中的至少一种。
根据本申请的另一个方面,本申请提供了一种电子装置,其包括上述实施例所述的电化学装置。
本申请通过在正极中采用多层正极活性物质层设计并至少在远离正极集流体的正极活性物质层中使用低密度粘结剂来改善正极活性物质层内部及多层界面的稳定性,以此来改善电化学装置在高温高压下的安全性能。
本申请实施例的额外层面及优点将部分地在后续说明中描述、显示、或是经由本申请实施例的实施而阐释。
具体实施方式
本申请的实施例将会被详细的描示在下文中。本申请的实施例不应该被解释为对本申请的限制。
除非另外明确指明,本文使用的下述术语具有下文指出的含义。
在具体实施方式及权利要求书中,由术语“中的至少一者”连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的至少一者”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。术语“中的至少一种”具有与术语“中的至少一者”相同的含义。
术语“包括”、“含有”和“包含”以其开放、非限制性含义使用。
术语“烷基”涵盖直链和支链烷基。例如,烷基可为C1-C50烷基、C1-C40烷基、C1-C30烷基、C1-C20烷基、C1-C12烷基、C1-C10烷基、C1-C6烷基、C2-C6烷基、C2-C5烷基。在一些实施例中,烷基包括甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基、戊基、己基、庚基、辛基等。另外,烷基可以是任选地被取代的。
术语“烯基”涵盖直链和支链烯基。例如,烯基可为C2-C50烯基、C2-C40烯基、C2-C30烯基、C2-C20烯基、C2-C12烯基、C2-C10烯基、C2-C6烯基。另外,烯基可以是任选地被取代的。
术语“氧烷基”为具有-O-R的有机物基团,其中R为直链或支链烷基。例如,烷基可为C1-C50烷基、C1-C40烷基、C1-C30烷基、C1-C20烷基、C1-C12烷基、C1-C10烷基、C1-C6烷基、C2-C6烷基、C2-C5烷基。另外,烷基可以是任选地被取代的。
术语“氧烯基”为具有-O-Q的有机物基团,其中Q为直链或支链烯基。例如,烯基可为C2-C50烯基、C2-C40烯基、C2-C30烯基、C2-C20烯基、C2-C12烯基、C2-C10烯基、C2-C6烯基。另外,烯基可以是任选地被取代的。
当上述基团经取代时,取代基可独立地选自氰基、卤素、硅烷基、硅氧烷基、氨基、醚基、酯基、羧基、磺酸基、巯基或其组合。
I、正极
常用的提高电化学装置(例如,锂离子电池)的能量密度的方法包括采用高电压(4.4V及以上)的钴酸锂正极活性物质和高容量、高压实密度的石墨负极材料。然而,随着温度和电压的升高,钴酸锂的结构稳定性变差,金属离子易从正极溶出并在负极表面还原沉积,破坏负极固体电解质界面(SEI)膜的结构,导致负极阻抗和电池厚度不断增大,从而导致电化学装置的容量损失和循环性能的劣化。此外,在高温和高压下,电解液容易在正极表面发生氧化分解产生大量的气体,导致电化学装置鼓胀并破坏电极界面,从而恶化电化学装置的电化学性能。同时,在高温高电压下,由于钴酸锂的氧化活性较高,其与电解液之间的副反应加剧,使得电解液的分解产物在正极表面不断沉积,这会进一步增大电化学装置的内阻,降低高温循环容量保持率和高温储存电芯残余容量。上述这些因素会使得电化学装置在高温高压下存在极大的安全隐患。
在至少一个方面,本申请通过在正极中设置多层正极活性物质层并至少在远离正极集流体的正极活性物质层中采用低密度粘结剂以克服现有技术存在的上述缺陷。
具体地,本申请所述的正极包括正极集流体和位于所述正极集流体的至少一个表面上的正极活性物质层,其中所述正极活性物质层包含正极活性物质。本申请所述的正极的主要特征在于,所述正极活性物质层包括第一正极活性物质层和第二正极活性物质层,所述第一正极活性物质层包括第一正极活性物质且位于所述正极集流体和所述第二正极活性物质层之间,且所述第二正极活性物质层包括第二正极活性物质和粘结剂,所述粘结剂的密度为a g/cm3,0.6≤a≤1.5。
在一些实施例中,所述第一正极活性物质和所述第二正极活性物质可以相同,也可以不同。
一方面,本申请在正极中设置多层正极活性物质层来实现电性能的改善。此外,本申请至少在远离集流体一侧的正极活性物质层(即,第二正极活性物质层)中应用的粘结剂相较于常规使用的粘结剂(密度通常大于1.5g/cm3)具有更低的密度。当正极粘结剂的密度大于1.5g/cm3时,会在一定程度上影响正极的柔韧性,使其在卷绕过程中易发生断裂;而当正极粘结剂的密度小于0.6g/cm3时,粘结剂的粘结力不足,从而不利地影响电化学装置的电化学稳定性。将正极粘结剂的密度控制在0.6g/cm3至1.5g/cm3的范围内,不仅可实现良好的粘结性,还能增强正极的柔韧度,降低其在卷绕过程中断裂的风险。同时,本申请使用的低密度粘结剂易与周边活性材料形成腔型结构,其中可容纳电解液,该结构在一定程度上改善电解液与正极活性材料的浸润性的同时,还有效减少了电解液与活性材料作用产生的副反应。此外,在高温高压下的充放电循环过程中,低密度粘结剂较为稳定,且不易与电解液中的组分发生副反应。所述低密度粘结剂还能够包覆在正极活性物质颗粒的表面,改善正极活性物质颗粒界面的稳定性。含有铝元素的绝缘层与含有低密度粘结剂的正极活性物质层的组合有助于改善电化学装置的高温性能,特别表现为能够有效地降低电化学装置的热滥用厚度膨胀率和高温短路变形率。
在一些实施例中,0.8≤a≤1.2。在一些实施例中,a可以为0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5或者处于由上述任意两个数值所组成的范围内。
在一些实施例中,所述粘结剂包括聚偏二氟乙烯(PVDF)。
在一些实施例中,进一步在靠近集流体一侧的正极活性物质层(即,第一正极活性物质层)中应用上述低密度粘结剂,能够进一步改善电化学装置的性能,尤其是高温性能。
在一些实施例中,所述第二正极活性物质的平均粒径为bμm,其中5≤b≤20。在一些实施例中,10≤b≤18。在一些实施例中,b为5、8、10、12、14、15、16、17、18、20或处于由上述任意两个数值所组成的范围内。
一方面,当正极活性物质的平均粒径处于上述范围内时,能够得到高振实密度的正极活性物质,从而提升电化学装置的电化学性能(例如,提高其能量密度)。另一方面,在正极的制备过程中(即,将正极活性物质、导电材料和粘合剂与溶剂混合均匀,制成浆料并在集流体上进行涂覆),其能够防止条纹产生。此外,在正极中同时使用具有不同平均粒径的两种以上的正极活性物质,能够进一步优化上述效果。
当正极活性物质为一次颗粒时,正极活性物质的平均粒径指的是正极活性物质颗粒的一次粒径。当正极活性物质颗粒的一次颗粒凝集而形成二次颗粒时,正极活性物质的平均粒径指的是正极活性物质颗粒的二次粒径。
正极活性物质的平均粒径可利用激光衍射/散射式粒度分布测定装置测定。在一些实施例中,可采用HORIBA社制造的LA-920作为粒度分布计进行测定,其中使用0.1%的六偏磷酸钠水溶液作为测定时的分散介质,并在5分钟的超声分散后将测定折射率设定为1.24而测定。在一些实施例中,正极活性物质的平均粒径也可以由激光衍射式粒度分析测量仪(岛津SALD-2300)及扫面电镜(ZEISS EVO18,取样数不少于100个)测得。
在一些实施例中,4≤b/a≤25。在一些实施例中,6≤b/a≤20。在一些实施例中,10≤b/a≤15。在一些实施例中,b/a为4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25或处于由上述任意两个数值所组成的范围内。当b/a满足上述关系时,一来能够促进粘结剂在正极浆料中的溶解和均匀分布,提高正极活性物质层的粘结力,降低正极活性物质层从集流体上脱落的风险;二来降低正极活性物质颗粒的团聚,从而降低或避免涂布时产生划痕。至少基于上述两个因素,当b/a满足上述关系时,能够进一步改善电化学装置在高温高压下的安全性能。
在一些实施例中,所述正极活性物质层的厚度为H,所述第二正极活性物质层的厚度为H2,其中h=H2/H,0.6≤h≤0.98。在一些实施例中,h为0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.98或处于由上述任意两个数值所组成的范围内。第一正极活性物质层能够起到保护集流体的作用,在对极片进行冷压时,第一正极活性物质层的存在能够起到缓冲作用,降低正极活性物质颗粒发生破碎的几率,从而降低副反应的发生。当h处于上述范围内时,既能够增强极片的压实密度,降低极片在卷绕过程中发生脆断的风险,又能够充分发挥第一正极活性物质层的功能,进一步改善电化学装置的在高温高压下的安全性能。
在一些实施例中,0.45≤h/a≤1.2。在一些实施例中,0.5≤h/a≤1.2。在一些实施例中,h/a为0.45、0.5、0.55、0.6、0.65、0.7、0.8、0.9、1.0、1.1、1.2或处于由上述任意两个数值所组成的范围内。当h/a满足上述关系时,能够进一步确保第一正极活性物质层起到足够的缓冲作用,并进一步促进粘结剂在正极活性物质浆料中的溶解和均匀分布,因此能够进一步改善电化学装置在高温高压下的安全性能。
正极活性物质的种类没有特别限制,只要是能够以电化学方式吸藏和释放金属离子(例如,锂离子)即可。在一些实施例中,正极活性物质为含有锂和至少一种过渡金属的物质。正极活性物质的实例可包括,但不限于,锂过渡金属复合氧化物和含锂过渡金属磷酸化合物。
在一些实施例中,锂过渡金属复合氧化物中的过渡金属包括V、Ti、Cr、Mn、Fe、Co、Ni、Cu等。在一些实施例中,锂过渡金属复合氧化物包括LiCoO2等锂钴复合氧化物、LiNiO2等锂镍复合氧化物、LiMnO2、LiMn2O4、Li2MnO4等锂锰复合氧化物、LiNi1/3Mn1/3Co1/3O2、LiNi0.5Mn0.3Co0.2O2等锂镍锰钴复合氧化物,其中作为这些锂过渡金属复合氧化物的主体的过渡金属原子的一部分被Na、K、B、F、Al、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Nb、Mo、Sn、W等其它元素所取代。锂过渡金属复合氧化物的实例可包括,但不限于,LiNi0.5Mn0.5O2、LiNi0.85Co0.10Al0.05O2、LiNi0.33Co0.33Mn0.33O2、LiNi0.45Co0.10Al0.45O2、LiMn1.8Al0.2O4和LiMn1.5Ni0.5O4等。锂过渡金属复合氧化物的组合的实例包括,但不限于,LiCoO2与LiMn2O4的组合,其中LiMn2O4中的一部分Mn可被过渡金属所取代(例如,LiNi0.33Co0.33Mn0.33O2),LiCoO2中的一部分Co可被过渡金属所取代。
在一些实施例中,含锂过渡金属磷酸化合物中的过渡金属包括V、Ti、Cr、Mn、Fe、Co、Ni、Cu等。在一些实施例中,含锂过渡金属磷酸化合物包括LiFePO4、Li3Fe2(PO4)3、LiFeP2O7等磷酸铁类、LiCoPO4等磷酸钴类,其中作为这些锂过渡金属磷酸化合物的主体的过渡金属原子的一部分被Al、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等其它元素所取代。
在上述正极活性物质的表面可附着有与其组成不同的物质。表面附着物质的实例可包括,但不限于:氧化铝、二氧化硅、二氧化钛、氧化锆、氧化镁、氧化钙、氧化硼、氧化锑、氧化铋等氧化物;硫酸锂、硫酸钠、硫酸钾、硫酸镁、硫酸钙、硫酸铝等硫酸盐;碳酸锂、碳酸钙、碳酸镁等碳酸盐;碳等。通过在正极活性物质表面附着物质,可以抑制正极活性物质表面的电解液的氧化反应,可以提高电化学装置的寿命。当表面附着物质的量过少时,其效果无法充分表现;当表面附着物质的量过多时,会阻碍锂离子的出入,因而电阻有时会增加。本申请中,将在正极活性物质的表面附着有与其组成不同的物质的正极活性物质也称为“正极活性物质”。
在一些实施例中,“正极活性物质”优选使用钴酸锂或镍钴锰酸锂。
在一些实施例中,正极活性物质颗粒的形状包括,但不限于,块状、多面体状、球状、椭圆球状、板状、针状和柱状等。在一些实施例中,正极活性物质颗粒包括一次颗粒、二次颗粒或其组合。在一些实施例中,一次颗粒可以凝集而形成二次颗粒。
正极导电材料的种类没有限制,可以使用任何已知的导电材料。正极导电材料的实例可包括,但不限于,天然石墨、人造石墨等石墨;乙炔黑等炭黑;针状焦等无定形碳等碳材料;碳纳米管;石墨烯等。上述正极导电材料可单独使用或任意组合使用。
用于形成正极浆料的溶剂的种类没有限制,只要是能够溶解或分散正极活性物质、导电材料、正极粘合剂和根据需要使用的增稠剂的溶剂即可。用于形成正极浆料的溶剂的实例可包括水系溶剂和有机系溶剂中的任一种。水系介质的实例可包括,但不限于,水和醇与水的混合介质等。有机系介质的实例可包括,但不限于,己烷等脂肪族烃类;苯、甲苯、二甲苯、甲基萘等芳香族烃类;喹啉、吡啶等杂环化合物;丙酮、甲基乙基酮、环己酮等酮类;乙酸甲酯、丙烯酸甲酯等酯类;二亚乙基三胺、N,N-二甲氨基丙胺等胺类;二乙醚、环氧丙烷、四氢呋喃(THF)等醚类;N-甲基吡咯烷酮(NMP)、二甲基甲酰胺、二甲基乙酰胺等酰胺类;六甲基磷酰胺、二甲基亚砜等非质子性极性溶剂等。
增稠剂通常是为了调节浆料的粘度而使用的。在使用水系介质的情况下,可使用增稠剂和丁苯橡胶(SBR)乳液进行浆料化。增稠剂的种类没有特别限制,其实例可包括,但不限于,羧甲基纤维素、甲基纤维素、羟甲基纤维素、乙基纤维素、聚乙烯醇、氧化淀粉、磷酸化淀粉、酪蛋白和它们的盐等。上述增稠剂可单独使用或任意组合使用。
正极集流体的种类没有特别限制,其可为任何已知适于用作正极集流体的材质。正极集流体的实例可包括,但不限于,铝、不锈钢、镍镀层、钛、钽等金属材料;碳布、碳纸等碳材料。在一些实施例中,正极集流体为金属材料。在一些实施例中,正极集流体为铝。
为了降低正极集流体和正极活性物质层的电子接触电阻,正极集流体的表面可包括导电助剂。导电助剂的实例可包括,但不限于,碳和金、铂、银等贵金属类。
正极可以通过在集流体上形成含有正极活性物质和粘结剂的正极活性物质层来制作。使用正极活性物质的正极的制造可以通过常规方法来进行,即,将正极活性物质和粘结剂、以及根据需要的导电材料和增稠剂等进行干式混合,制成片状,将所得到的片状物压接至正极集流体上;或者将这些材料溶解或分散于液体介质中而制成浆料,将该浆料涂布到正极集流体上并进行干燥,从而在集流体上形成正极活性物质层,由此可以得到正极。
在一些实施例中,基于所述正极活性物质层的总重量,所述正极活性物质的质量分数为M%,其中90≤M≤99.5。在一些实施例中,95≤M≤99。在一些实施例中,M可以为90、92、94、95、96、97、98或99,或者处于由上述任意两个数值所组成的范围内。当所述正极活性物质在所述正极活性物质层中的质量分数满足上述关系时,能够显著提高电化学装置的能量密度。
II、电解液
本申请的电化学装置还包括电解液,其中所述电解液包括电解质、溶解所述电解质的溶剂和添加剂。
在一些实施例中,所述电解液包括丙酸丙酯。丙酸丙酯不仅能够在正极活性物质颗粒表面形成更均匀的固体电解质界面膜(SEI膜),还能够与正极活性物质层中的低密度粘结剂相互作用,改善电化学装置在高温高压下的安全性。
在一些实施例中,基于所述电解液的总重量,所述丙酸丙酯的含量为x%,其中10≤x≤65。在一些实施例中,15≤x≤60。在一些实施例中,20≤x≤50。在一些实施例中,x为10、12、15、18、20、22、25、30、35、40、45、50、55、60、65或处于由上述任意两个数值所组成的范围内。
在一些实施例中,7≤x/a≤90。在一些实施例中,8≤x/a≤80。在一些实施例中,10≤x/a≤70。在一些实施例中,20≤x/a≤50。在一些实施例中,x/a为7、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90或处于由上述任意两个数值所组成的范围内。当x/a满足上述关系时,不仅能够促进粘结剂在正极活性物质浆料中更均匀的分布和溶解,并且确保有足够量的丙酸丙酯在正极表面形成均匀的SEI膜;而且能够避免丙酸丙酯与过多的未溶解的粘结剂发生成膜反应,从而影响电池性能的发挥。至少基于上述因素,当x/a满足上述关系时,能够进一步改善电化学装置在高温高压下的安全性能。
在一些实施例中,所述电解液包括含磷化合物,其中所述含磷化合物包括二氟磷酸锂或二氟亚磷酸酯中的至少一者。上述含磷化合物的加入能够增加SEI膜中的LiF成分,从而增强SEI膜的稳定性,进一步减少副反应的发生,从而改善电化学装置在高温高压下的结构稳定性和安全性能。
在一些实施例中,基于所述电解液的总重量,所述含磷化合物的含量为y%,其中0.01≤y≤3。在一些实施例中,0.05≤y≤2。在一些实施例中,0.1≤y≤1。在一些实施例中,y为0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.12、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、1.0、1.2、1.5、1.8、2.0、2。2、2.5、2.8、3.0或处于由上述任意两个数值所组成的范围内。
在一些实施例中,10≤x/y≤400。在一些实施例中,20≤x/y≤300。在一些实施例中,50≤x/y≤200。在一些实施例中,100≤x/y≤150。在一些实施例中,x/y为10、20、30、50、70、100、120、150、170、200、220、250、280、300、320、350、370、400或处于由上述任意两个数值所组成的范围内。通过优化电解液中的丙酸丙酯和含磷化合物的含量比例能够进一步改善电化学装置的性能,尤其高温高压下的安全性能。例如,当x/y处于上述范围内时,能够更好的发挥丙酸丙酯和含磷化合物之间的协同作用,促进两者在正极活性物质表面形成更有效的SEI膜,改善正极活性物质表面的稳定性,优化电芯的安全性能。同时,当x/y处于上述范围内时,会进一步优化电解液的粘度,促进电解液对极片的浸润,从而促进电芯的电化学性能发挥。
在一些实施例中,所述二氟亚磷酸酯包括如下式1所示化合物或下式2所示化合物中的至少一者:
A-OPF2(式1);
A-(OPF2)2(式2),
其中A为经取代或未经取代的C1-C10烷基、C2-C10烯基、C2-C10氧烷基或者C2-C10氧烯基中的一者;
其中,经取代时,取代基为卤素或氰基中的至少一者。
在一些实施例中,A为经取代或未经取代的C2-C8烷基、C2-C8烯基、C3-C8氧烷基或者C3-C8氧烯基中的一者,其中,经取代时,取代基为卤素或氰基中的至少一者。
在一些实施例中,所述二氟亚磷酸酯包括以下化合物中的至少一种:
Figure BDA0003977857130000111
Figure BDA0003977857130000121
在一些实施例中,所述电解液包括氟代碳酸乙烯酯、1,3-丙磺酸内酯、硫酸乙烯酯、碳酸乙烯亚乙酯、磷酸环酐、乙二醇二(2-氰基乙基)醚、1,2,3-三(2-氰基乙氧基)丙烷、1,2,4-三(2-氰基乙氧基)丁烷、1,1,1-三(氰基乙氧基亚甲基)乙烷、1,1,1-三(氰基乙氧基亚甲基)丙烷、3-甲基-1,3,5-三(氰基乙氧基)戊烷、1,2,7-三(氰基乙氧基)庚烷、1,2,6-三(氰基乙氧基)己烷或1,2,5-三(氰基乙氧基)戊烷中的至少一种。当电解液包括上述化合物中的一种或多种时,这些化合物能够在正极表面形成结构稳定的SEI复合膜,从而改善电化学装置在高温高压下的结构稳定性和安全性能。
在一些实施例中,所述电解液包含现有技术中已知的任何可作为电解液的溶剂的非水溶剂。
在一些实施例中,所述非水溶剂包括,但不限于,以下中的一种或多种:环状碳酸酯、链状碳酸酯、环状羧酸酯、链状羧酸酯、环状醚、链状醚、含磷有机溶剂、含硫有机溶剂和芳香族含氟溶剂。
在一些实施例中,所述环状碳酸酯的实例可包括,但不限于,以下中的一种或多种:碳酸亚乙酯(EC)、碳酸亚丙酯(PC)和碳酸亚丁酯。在一些实施例中,所述环状碳酸酯具有3-6个碳原子。
在一些实施例中,所述链状碳酸酯的实例可包括,但不限于,以下中的一种或多种:碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯(DEC)、碳酸甲基正丙基酯、碳酸乙基正丙基酯、碳酸二正丙酯等链状碳酸酯等。被氟取代的链状碳酸酯的实例可包括,但不限于,以下中的一种或多种:双(氟甲基)碳酸酯、双(二氟甲基)碳酸酯、双(三氟甲基)碳酸酯、双(2-氟乙基)碳酸酯、双(2,2-二氟乙基)碳酸酯、双(2,2,2-三氟乙基)碳酸酯、2-氟乙基甲基碳酸酯、2,2-二氟乙基甲基碳酸酯和2,2,2-三氟乙基甲基碳酸酯等。
在一些实施例中,所述环状羧酸酯的实例可包括,但不限于,以下中的一种或多种:γ-丁内酯和γ-戊内酯中的一种或多种。在一些实施例中,环状羧酸酯的部分氢原子可被氟取代。
在一些实施例中,所述链状羧酸酯的实例可包括,但不限于,以下中的一种或多种:乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸异丙酯、乙酸丁酯、乙酸仲丁酯、乙酸异丁酯、乙酸叔丁酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丙酸异丙酯、丁酸甲酯、丁酸乙酯、丁酸丙酯、异丁酸甲酯、异丁酸乙酯、戊酸甲酯、戊酸乙酯、特戊酸甲酯和特戊酸乙酯等。在一些实施例中,链状羧酸酯的部分氢原子可被氟取代。在一些实施例中,氟取代的链状羧酸酯的实例可包括,但不限于,三氟乙酸甲酯、三氟乙酸乙酯、三氟乙酸丙酯、三氟乙酸丁酯和三氟乙酸2,2,2-三氟乙酯等。
在一些实施例中,所述环状醚的实例可包括,但不限于,以下中的一种或多种:四氢呋喃、2-甲基四氢呋喃、1,3-二氧戊环、2-甲基1,3-二氧戊环、4-甲基1,3-二氧戊环、1,3-二氧六环、1,4-二氧六环和二甲氧基丙烷。
在一些实施例中,所述链状醚的实例可包括,但不限于,以下中的一种或多种:二甲氧基甲烷、1,1-二甲氧基乙烷、1,2-二甲氧基乙烷、二乙氧基甲烷、1,1-二乙氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基甲烷、1,1-乙氧基甲氧基乙烷和1,2-乙氧基甲氧基乙烷等。
在一些实施例中,所述含磷有机溶剂的实例可包括,但不限于,以下中的一种或多种:磷酸三甲酯、磷酸三乙酯、磷酸二甲基乙酯、磷酸甲基二乙酯、磷酸亚乙基甲酯、磷酸亚乙基乙酯、磷酸三苯酯、亚磷酸三甲酯、亚磷酸三乙酯、亚磷酸三苯酯、磷酸三(2,2,2-三氟乙基)酯和磷酸三(2,2,3,3,3-五氟丙基)酯等。
在一些实施例中,所述含硫有机溶剂的实例可包括,但不限于,以下中的一种或多种:环丁砜、2-甲基环丁砜、3-甲基环丁砜、二甲基砜、二乙基砜、乙基甲基砜、甲基丙基砜、二甲基亚砜、甲磺酸甲酯、甲磺酸乙酯、乙磺酸甲酯、乙磺酸乙酯、硫酸二甲酯、硫酸二乙酯和硫酸二丁酯。在一些实施例中,含硫有机溶剂的部分氢原子可被氟取代。
在一些实施例中,所述芳香族含氟溶剂包括,但不限于,以下中的一种或多种:氟苯、二氟苯、三氟苯、四氟苯、五氟苯、六氟苯和三氟甲基苯。
在一些实施例中,本申请的电解液中使用的溶剂包括环状碳酸酯、链状碳酸酯、环状羧酸酯、链状羧酸酯及其组合。在一些实施例中,本申请的电解液中使用的溶剂包含选自由下列物质组成的群组的有机溶剂:碳酸亚乙酯、碳酸亚丙酯、碳酸二乙酯、丙酸乙酯、丙酸丙酯、乙酸正丙酯、乙酸乙酯及其组合。在一些实施例中,本申请的电解液中使用的溶剂包含:碳酸亚乙酯、碳酸亚丙酯、碳酸二乙酯、丙酸乙酯、丙酸丙酯、γ-丁内酯及其组合。
在一些实施例中,电解质没有特别限制,可以任意地使用作为电解质公知的物质。在锂二次电池的情况下,通常使用锂盐。电解质的实例可包括,但不限于,LiPF6、LiBF4、LiClO4、LiAlF4、LiSbF6、LiWF7等无机锂盐;LiWOF5等钨酸锂类;HCO2Li、CH3CO2Li、CH2FCO2Li、CHF2CO2Li、CF3CO2Li、CF3CH2CO2Li、CF3CF2CO2Li、CF3CF2CF2CO2Li、CF3CF2CF2CF2CO2Li等羧酸锂盐类;FSO3Li、CH3SO3Li、CH2FSO3Li、CHF2SO3Li、CF3SO3Li、CF3CF2SO3Li、CF3CF2CF2SO3Li、CF3CF2CF2CF2SO3Li等磺酸锂盐类;LiN(FCO)2、LiN(FCO)(FSO2)、LiN(FSO2)2、LiN(FSO2)(CF3SO2)、LiN(CF3SO2)2、LiN(C2F5SO2)2、环状1,2-全氟乙烷双磺酰亚胺锂、环状1,3-全氟丙烷双磺酰亚胺锂、LiN(CF3SO2)(C4F9SO2)等酰亚胺锂盐类;LiC(FSO2)3、LiC(CF3SO2)3、LiC(C2F5SO2)3等甲基化锂盐类;双(丙二酸根合)硼酸锂盐、二氟(丙二酸根合)硼酸锂盐等(丙二酸根合)硼酸锂盐类;三(丙二酸根合)磷酸锂、二氟双(丙二酸根合)磷酸锂、四氟(丙二酸根合)磷酸锂等(丙二酸根合)磷酸锂盐类;以及LiPF4(CF3)2、LiPF4(C2F5)2、LiPF4(CF3SO2)2、LiPF4(C2F5SO2)2、LiBF3CF3、LiBF3C2F5、LiBF3C3F7、LiBF2(CF3)2、LiBF2(C2F5)2、LiBF2(CF3SO2)2、LiBF2(C2F5SO2)2等含氟有机锂盐类;二氟草酸硼酸锂、双(草酸)硼酸锂等草酸硼酸锂盐类;四氟草酸根合磷酸锂、二氟双(草酸根合)磷酸锂、三(草酸根合)磷酸锂等草酸根合磷酸锂盐类等。
在一些实施例中,电解质选自LiPF6、LiSbF6、FSO3Li、CF3SO3Li、LiN(FSO2)2、LiN(FSO2)(CF3SO2)、LiN(CF3SO2)2、LiN(C2F5SO2)2、环状1,2-全氟乙烷双磺酰亚胺锂、环状1,3-全氟丙烷双磺酰亚胺锂、LiC(FSO2)3、LiC(CF3SO2)3、LiC(C2F5SO2)3、LiBF3CF3、LiBF3C2F5、LiPF3(CF3)3、LiPF3(C2F5)3、二氟草酸硼酸锂、双(草酸)硼酸锂或二氟双(草酸根合)磷酸锂,其有助于改善电化学装置的输出功率特性、高倍率充放电特性、高温保存特性和循环特性等。
电解质的含量没有特别限制,只要不损害本申请的效果即可。在一些实施例中,电解液中的锂的总摩尔浓度为大于0.3mol/L以上、大于0.4mol/L或大于0.5mol/L。在一些实施例中,电解液中的锂的总摩尔浓度为小于3mol/L、小于2.5mol/L或小于2.0mol/L以下。在一些实施例中,电解液中的锂的总摩尔浓度在上述任意两个数值所组成的范围内。当电解质浓度在上述范围内时,作为带电粒子的锂不会过少,并且可以使粘度处于适当的范围,因而容易确保良好的电导率。
当使用两种以上的电解质的情况下,电解质包括至少一种为选自由单氟磷酸盐、硼酸盐、草酸盐和氟磺酸盐组成的组中的盐。在一些实施例中,电解质包括选自由单氟磷酸盐、草酸盐和氟磺酸盐组成的组中的盐。在一些实施例中,电解质包括锂盐。在一些实施例中,基于电解质的重量,选自由单氟磷酸盐、硼酸盐、草酸盐和氟磺酸盐组成的组中的盐的含量为大于0.01%或大于0.1%。在一些实施例中,基于电解质的重量,选自由单氟磷酸盐、硼酸盐、草酸盐和氟磺酸盐组成的组中的盐的含量为小于20%或小于10%。在一些实施例中,选自由单氟磷酸盐、硼酸盐、草酸盐和氟磺酸盐组成的组中的盐的含量在上述任意两个数值所组成的范围内。
在一些实施例中,电解质包含选自由单氟磷酸盐、硼酸盐、草酸盐和氟磺酸盐组成的组中的一种以上物质和除此以外的一种以上的盐。作为除此以外的盐,可以举出在上文中例示的锂盐,在一些实施例中为LiPF6、LiN(FSO2)(CF3SO2)、LiN(CF3SO2)2、LiN(C2F5SO2)2、环状1,2-全氟乙烷双磺酰亚胺锂、环状1,3-全氟丙烷双磺酰亚胺锂、LiC(FSO2)3、LiC(CF3SO2)3、LiC(C2F5SO2)3、LiBF3CF3、LiBF3C2F5、LiPF3(CF3)3、LiPF3(C2F5)3。在一些实施例中,除此以外的盐为LiPF6
在一些实施例中,基于电解质的重量,除此以外的盐的含量为大于0.01%或大于0.1%。在一些实施例中,基于电解质的重量,除此以外的盐的含量为小于20%、小于15%或小于10%。在一些实施例中,除此以外的盐的含量在上述任意两个数值所组成的范围内。具有上述含量的除此以外的盐有助于平衡电解液的电导率和粘度。
III、负极
负极包括负极集流体和设置在所述负极集流体的至少一个表面上的负极活性物质层,其中所述负极活性物质层包含负极活性物质。负极活性物质层可以是一层或多层,多层负极活性物质中的每层可以包含相同或不同的负极活性物质。负极活性物质为任何能够可逆地嵌入和脱出锂离子等金属离子的物质。在一些实施例中,负极活性物质的可充电容量大于正极活性物质的放电容量,以防止在充电期间锂金属无意地析出在负极上。
作为保持负极活性物质的集流体,可以任意使用公知的集流体。负极集流体的实例包括,但不限于,铝、铜、镍、不锈钢、镀镍钢等金属材料。在一些实施例中,负极集流体为铜。
在负极集流体为金属材料的情况下,负极集流体形式可包括,但不限于,金属箔、金属圆柱、金属带卷、金属板、金属薄膜、金属板网、冲压金属、发泡金属等。在一些实施例中,负极集流体为金属薄膜。在一些实施例中,负极集流体为铜箔。在一些实施例中,负极集流体为基于压延法的压延铜箔或基于电解法的电解铜箔。
在一些实施例中,负极集流体的厚度为大于1μm或大于5μm。在一些实施例中,负极集流体的厚度为小于100μm或小于50μm。在一些实施例中,负极集流体的厚度在上述任意两个数值所组成的范围内。
负极活性物质没有特别限制,只要能够可逆地吸藏、放出锂离子即可。负极活性物质的实例可包括,但不限于,天然石墨、人造石墨等碳材料;硅(Si)、锡(Sn)等金属;或Si、Sn等金属元素的氧化物等。负极活性物质可以单独使用或组合使用。
负极活性物质层还可包括负极粘合剂。负极粘合剂可提高负极活性物质颗粒彼此间的结合和负极活性物质与集流体的结合。负极粘合剂的种类没有特别限制,只要是对于电解液或电极制造时使用的溶剂稳定的材料即可。在一些实施例中,负极粘合剂包括树脂粘合剂。树脂粘合剂的实例包括,但不限于,氟树脂、聚丙烯腈(PAN)、聚酰亚胺树脂、丙烯酸系树脂、聚烯烃树脂等。当使用水系溶剂制备负极合剂浆料时,负极粘合剂包括,但不限于,羧甲基纤维素(CMC)或其盐、苯乙烯-丁二烯橡胶(SBR)、聚丙烯酸(PAA)或其盐、聚乙烯醇等。
负极可以通过以下方法制备:在负极集流体上涂布包含负极活性物质、树脂粘合剂等的负极合剂浆料,干燥后,进行压延而在负极集流体的两面形成负极活性物质层,由此可以得到负极。
IV、隔离膜
为了防止短路,在正极与负极之间通常设置有隔离膜。这种情况下,本申请的电解液通常渗入该隔离膜而使用。
对隔离膜的材料及形状没有特别限制,只要不显著损害本申请的效果即可。所述隔离膜可为由对本申请的电解液稳定的材料所形成的树脂、玻璃纤维、无机物等。在一些实施例中,所述隔离膜包括保液性优异的多孔性片或无纺布状形态的物质等。树脂或玻璃纤维隔离膜的材料的实例可包括,但不限于,聚烯烃、芳香族聚酰胺、聚四氟乙烯、聚醚砜等。在一些实施例中,所述聚烯烃为聚乙烯或聚丙烯。在一些实施例中,所述聚烯烃为聚丙烯。上述隔离膜的材料可以单独使用或任意组合使用。
所述隔离膜还可为上述材料层积而成的材料,其实例包括,但不限于,按照聚丙烯、聚乙烯、聚丙烯的顺序层积而成的三层隔离膜等。
无机物的材料的实例可包括,但不限于,氧化铝、二氧化硅等氧化物、氮化铝、氮化硅等氮化物、硫酸盐(例如,硫酸钡、硫酸钙等)。无机物的形式可包括,但不限于,颗粒状或纤维状。
所述隔离膜的形态可为薄膜形态,其实例包括,但不限于,无纺布、织布、微多孔性膜等。在薄膜形态中,所述隔离膜的孔径为0.01μm至1μm,厚度为5μm至50μm。除了上述独立的薄膜状隔离膜以外,还可以使用下述隔离膜:通过使用树脂类的粘合剂在正极和/或负极的表面形成含有上述无机物颗粒的复合多孔层而形成的隔离膜,例如,将氟树脂作为粘合剂使90%粒径小于1μm的氧化铝颗粒在正极的两面形成多孔层而形成的隔离膜。
所述隔离膜的厚度是任意的。在一些实施例中,所述隔离膜的厚度为大于1μm、大于5μm或大于8μm。在一些实施例中,所述隔离膜的厚度为小于50μm、小于40μm或小于30μm。在一些实施例中,所述隔离膜的厚度在上述任意两个数值所组成的范围内。当所述隔离膜的厚度在上述范围内时,则可以确保绝缘性和机械强度,并可以确保电化学装置的倍率特性和能量密度。
在使用多孔性片或无纺布等多孔质材料作为隔离膜时,隔离膜的孔隙率是任意的。在一些实施例中,所述隔离膜的孔隙率为大于10%、大于15%或大于20%。在一些实施例中,所述隔离膜的孔隙率为小于60%、小于50%或小于45%。在一些实施例中,所述隔离膜的孔隙率在上述任意两个数值所组成的范围内。当所述隔离膜的孔隙率在上述范围内时,可以确保绝缘性和机械强度,并可以抑制膜电阻,使电化学装置具有良好的安全特性。
所述隔离膜的平均孔径也是任意的。在一些实施例中,所述隔离膜的平均孔径为小于0.5μm或小于0.2μm。在一些实施例中,所述隔离膜的平均孔径为大于0.05μm。在一些实施例中,所述隔离膜的平均孔径在上述任意两个数值所组成的范围内。若所述隔离膜的平均孔径超过上述范围,则容易发生短路。当隔离膜的平均孔径在上述范围内时,使电化学装置具有良好的安全特性。
V、电化学装置
本申请的电化学装置包括发生电化学反应的任何装置,它的具体实例包括锂金属二次电池或锂离子二次电池。
VI、电子装置
本申请另提供了一种电子装置,其包括根据本申请所述的电化学装置。
本申请的电化学装置的用途没有特别限定,其可用于现有技术中已知的任何电子装置。在一些实施例中,本申请的电化学装置可用于,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
下面以锂离子电池为例并且结合具体的实施例说明锂离子电池的制备,本领域的技术人员将理解,本申请中描述的制备方法仅是实例,其他任何合适的制备方法均在本申请的范围内。
一、锂离子电池的制备
1、负极的制备
将人造石墨、丁苯橡胶和羧甲基纤维素钠按照96%:2%:2%的质量比例与去离子水混合,搅拌均匀,得到浆料。将浆料涂布在9μm的铜箔上。干燥,冷压,再经过裁片、焊接极耳,得到负极。
2、正极的制备
通过控制阶梯升温速度和压力以及各阶梯的时间,合成具有不同密度的聚偏氟乙烯(PVDF)。将磷酸铁锂、导电剂Super-P和密度为1.7g/cm3的粘结剂聚偏氟乙烯(PVDF)按照96.5%:1%:2.5%的质量比例与去离子水混合,搅拌均匀,制备下层浆料。将钴酸锂、Super-P和不同密度的PVDF按照97.5%:1%:1.5%的质量比例与N-甲基吡咯烷酮(NMP)混合,搅拌均匀,制备上层浆料。将下层浆料涂布在由铝箔制成的正极集流体的两侧上直至每侧上的厚度为H1μm作为第一正极活性物质层,接着在其上涂布上层浆料直至每侧上的上层浆料的厚度为H2μm作为第二正极活性物质层,单面涂布总厚度为Hμm。然后,干燥,冷压,再经过裁片、焊接极耳,得到正极。
3、电解液的制备
在干燥氩气环境下,将EC、PC和DEC(重量比1:1:1)混合,加入LiPF6混合均匀,形成基础电解液,其中LiPF6的浓度为12.5%。根据需要,在基础电解液中加入不同含量添加剂得到不同实施例和对比例的电解液。
电解液中组分的缩写及其名称如下表所示:
材料名称 缩写 材料名称 缩写
碳酸乙烯酯 EC 碳酸乙烯酯 PC
碳酸二乙酯 DEC 乙二醇二(2-氰基乙基)醚 EDN
1,2,3-三(2-氰基乙氧基)丙烷 TCEP 1,2,4-三(2-氰基乙氧基)丁烷 MJ-2
1,1,1-三(氰基乙氧基亚甲基)乙烷 MJ-3 1,1,1-三(氰基乙氧基亚甲基)丙烷 MJ-4
3-甲基-1,3,5-三(氰基乙氧基)戊烷 MJ-5 1,2,7-三(氰基乙氧基)庚烷 MJ-6
1,2,6-三(氰基乙氧基)己烷 MJ-7 1,2,5-三(氰基乙氧基)戊烷 MJ-8
二氟磷酸锂 LDP 丙酸丙酯 PP
4、隔离膜的制备
以聚乙烯多孔聚合物薄膜作为隔离膜。
5、锂离子电池的制备
将得到的正极、隔离膜和负极按次序卷绕,置于外包装箔中,留下注液口。从注液口灌注电解液,封装,再经过化成、容量等工序制得锂离子电池。
二、测试方法
1、锂离子电池的热滥用厚度膨胀率测试
在25℃下,将锂离子电池静置30分钟,测量其厚度为T1,然后以升温速度5℃/min开始升温至130℃时,保持30分钟,测量其厚度为T2。通过下式计算锂离子电池的热滥用厚度膨胀率:
厚度膨胀率=[(T2-T1)/T1]×100%。
2、锂离子电池的高温短路变形率测试
在25℃下,将锂离子电池静置30分钟,然后以0.5C倍率恒流充电至4.7V,再在4.7V下恒压充电至0.05C,静置60分钟,测量锂离子电池的厚度T3。然后,以100mΩ使电池短路10秒钟,测量锂离子电池的厚度T4。通过下式计算锂离子电池的高温短路变形率:
短路变形率=[(T4-T3)/T3]×100%。
三、测试结果
表1展示了在第二正极活性物质层中使用的粘结剂的密度和第二正极活性物质的平均粒径对锂离子电池在高温高压下安全性能的影响,其中在表1所述的实施例中,H1=5,H2=50,H=55。
表1
Figure BDA0003977857130000201
Figure BDA0003977857130000211
参见表1中的电化学测试结果可以看出,相较于对比例1-1和1-2,本申请实施例1-1至1-10的应用于第二正极活性物质层中的粘结剂密度在0.6g/cm3至1.5g/cm3范围内,得到的电化学装置在热滥用时具有更低的厚度膨胀率且在短路时具有更低的变形率。
将实施例1-1至1-4与实施例1-6进行比较可以看出,当粘结剂密度相同时,第二正极活性物质的平均粒径bμm处于5≤b≤20的范围内时,能够进一步降低电化学装置的热滥用厚度膨胀率和短路变形率。另外,当b/a处于4≤b/a≤25的范围内时,得到的电化学装置呈现出更优异的高温高压下的安全性能。
表2展示了第二正极活性物质层的厚度在正极活性物质层的比值和正极粘结剂的密度对锂离子电池在高温高压下安全性能的影响。表2中的实施例2-1至2-11与实施例1-1的区别仅在于表2所示的参数,其中保持H1不变,根据h调整H2的值。
表2
Figure BDA0003977857130000212
参见表2中的电化学测试结果可以看出,当在第二正极活性物质层中采用的粘结剂的密度相同的情况下,相较于实施例1-1和2-6,实施例2-1至2-5的h处于0.6-0.98的范围内,得到的电化学装置在热滥用时具有更低的厚度膨胀率且在短路时具有更低的变形率。当h/a处于0.45-1.2的范围内,对应得到的电化学装置呈现出更优异的高温性能。
表3展示了在电解液中添加PP和第二正极活性物质层中粘结剂的密度对锂离子电池在高温高压下安全性能的影响。表3中的实施例3-1至3-14与实施例1-1的区别仅在于表3所示的参数。
表3
Figure BDA0003977857130000221
参见表3中的电化学测试结果可以看出,相较于实施例1-1,实施例3-1至3-12在电解液中添加丙酸丙酯后,得到的电化学装置在热滥用时具有更低的厚度膨胀率且在短路时具有更低的变形率。
在第二正极活性物质层中采用的粘结剂的密度相同的情况下,相较于实施例3-6和3-7,实施例3-1至3-5和3-8中的PP含量处于10%-65%的范围内,得到的电化学装置呈现出更优异的高温高压下的安全性能。
当x/a处于7-90的范围内,得到的电化学装置呈现出更优异的高温性能。
表4展示了在电解液中添加PP和含磷化合物(二氟磷酸锂或二氟亚磷酸酯)对锂离子电池在高温高压下安全性能的影响。表4中的实施例4-1至4-18与实施例3-8的区别仅在于表4所示的参数。
表4
Figure BDA0003977857130000222
Figure BDA0003977857130000231
参见表4中的电化学测试结果可以看出,相较于实施例3-8,实施例4-1至4-18在电解液中进一步添加了二氟磷酸锂或二氟亚磷酸酯,对应得到的电化学装置在热滥用时具有更低的厚度膨胀率且在短路时具有更低的变形率。
此外,当电解液中同时添加PP和含磷化合物且两者含量满足10≤x/y≤400时,得到的电化学装置呈现出更优异的高温高压下的安全性能。
表5展示了在电解液中添加其他添加剂对锂离子电池高温性能的影响。表5中的实施例5-1至5-15与实施例3-8的区别仅在于表5所示的参数。
表5
Figure BDA0003977857130000232
Figure BDA0003977857130000241
参见表5中的电化学测试结果可以看出,当在电解液中添加氟代碳酸乙烯酯、1,3-丙磺酸内酯、硫酸乙烯酯、碳酸乙烯亚乙酯、磷酸环酐、乙二醇二(2-氰基乙基)醚或1,2,3-三(2-氰基乙氧基)丙烷时,能够进一步改善电化学装置的高温高压下的安全性能。
整个说明书中对“实施例”、“部分实施例”、“一个实施例”、“另一举例”、“举例”、“具体举例”或“部分举例”的引用,其所代表的意思是在本申请中的至少一个实施例或举例包含了该实施例或举例中所描述的特定特征、结构、材料或特性。因此,在整个说明书中的各处所出现的描述,例如:“在一些实施例中”、“在实施例中”、“在一个实施例中”、“在另一个举例中”,“在一个举例中”、“在特定举例中”或“举例”,其不必然是引用本申请中的相同的实施例或示例。此外,本文中的特定特征、结构、材料或特性可以以任何合适的方式在一个或多个实施例或举例中结合。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本申请的限制,并且可以在不脱离本申请的精神、原理及范围的情况下对实施例进行改变,替代和修改。

Claims (13)

1.一种电化学装置,其包括正极和电解液,所述正极包括:
正极集流体;和
正极活性物质层,所述正极活性物质层位于所述正极集流体的至少一个表面上,其中所述正极活性物质层包括第一正极活性物质层和第二正极活性物质层,所述第一正极活性物质层包括第一正极活性物质且位于所述正极集流体和所述第二正极活性物质层之间,且所述第二正极活性物质层包括第二正极活性物质和粘结剂,所述粘结剂的密度为a g/cm3,0.6≤a≤1.5。
2.根据权利要求1所述的电化学装置,其中所述第二正极活性物质的平均粒径为bμm,且5≤b≤20。
3.根据权利要求2所述的电化学装置,其中4≤b/a≤25。
4.根据权利要求1所述的电化学装置,其中所述正极活性物质层的厚度为H,所述第二正极活性物质层的厚度为H2,其中h=H2/H,0.6≤h≤0.98。
5.根据权利要求4所述的电化学装置,其中0.45≤h/a≤1.2。
6.根据权利要求1所述的电化学装置,其中所述电解液包括丙酸丙酯,其中基于所述电解液的总重量,所述丙酸丙酯的含量为x%且10≤x≤65。
7.根据权利要求6所述的电化学装置,其中7≤x/a≤90。
8.根据权利要求6所述的电化学装置,其中所述电解液包括含磷化合物,所述含磷化合物包括以下各者中的至少一者:二氟磷酸锂或二氟亚磷酸酯,其中基于所述电解液的总重量,所述含磷化合物的含量为y%,且0.01≤y≤3。
9.根据权利要求8所述的电化学装置,其中10≤x/y≤400。
10.根据权利要求8所述的电化学装置,其中所述二氟亚磷酸酯包括如下式1所示化合物或下式2所示化合物中的至少一者:
A-OPF2(式1);
A-(OPF2)2(式2),
其中A为经取代或未经取代的C1-C10烷基、C2-C10烯基、C2-C10氧烷基或者C2-C10氧烯基中的一者;
其中,经取代时,取代基为卤素或氰基中的至少一者。
11.根据权利要求10所述的电化学装置,其中所述二氟亚磷酸酯包括以下化合物中的至少一种:
Figure FDA0003977857120000021
12.根据权利要求1所述的电化学装置,其中所述电解液包括氟代碳酸乙烯酯、1,3-丙磺酸内酯、硫酸乙烯酯、碳酸乙烯亚乙酯、磷酸环酐、乙二醇二(2-氰基乙基)醚、1,2,3-三(2-氰基乙氧基)丙烷、1,2,4-三(2-氰基乙氧基)丁烷、1,1,1-三(氰基乙氧基亚甲基)乙烷、1,1,1-三(氰基乙氧基亚甲基)丙烷、3-甲基-1,3,5-三(氰基乙氧基)戊烷、1,2,7-三(氰基乙氧基)庚烷、1,2,6-三(氰基乙氧基)己烷或1,2,5-三(氰基乙氧基)戊烷中的至少一种。
13.一种电子装置,其包括根据权利要求1-12中任一项所述的电化学装置。
CN202180040227.7A 2021-12-31 2021-12-31 电化学装置和电子装置 Pending CN115769400A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143677 WO2023123354A1 (zh) 2021-12-31 2021-12-31 电化学装置和电子装置

Publications (1)

Publication Number Publication Date
CN115769400A true CN115769400A (zh) 2023-03-07

Family

ID=85332907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180040227.7A Pending CN115769400A (zh) 2021-12-31 2021-12-31 电化学装置和电子装置

Country Status (2)

Country Link
CN (1) CN115769400A (zh)
WO (1) WO2023123354A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165074A (ja) * 2005-12-13 2007-06-28 Hitachi Ltd リチウム二次電池、それを用いた電気自動車及び電動工具
CN102569740B (zh) * 2011-12-31 2016-02-03 杭州力奥科技有限公司 一种磷酸铁锂电池正极浆料制作与涂布方法
CN105826600A (zh) * 2016-05-18 2016-08-03 东莞市凯欣电池材料有限公司 一种锂离子电池用非水电解质溶液及其锂离子电池
CN106784996A (zh) * 2017-01-16 2017-05-31 安徽益佳通电池有限公司 一种高功率密度锂离子电池
CN109004171A (zh) * 2018-02-26 2018-12-14 宁德新能源科技有限公司 一种正极极片和锂离子电池
KR102152306B1 (ko) * 2018-04-19 2020-09-04 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
CN109301324A (zh) * 2018-09-11 2019-02-01 天津市捷威动力工业有限公司 一种高能量密度锂离子电池电解液
CN109560249A (zh) * 2018-11-30 2019-04-02 中国科学院过程工程研究所 一种双层结构正极极片、及其制备方法和用途

Also Published As

Publication number Publication date
WO2023123354A1 (zh) 2023-07-06

Similar Documents

Publication Publication Date Title
JP6555400B2 (ja) フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池
CN112151855B (zh) 电化学装置和电子装置
JP6079272B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
CN116344738A (zh) 电化学装置和电子装置
JP2012195223A (ja) 非水系電解液及びそれを用いたリチウム二次電池
WO2022078068A1 (en) Electrochemical apparatus and electronic apparatus
CN112151750A (zh) 电化学装置和电子装置
US20240250304A1 (en) Electrochemical apparatus and electronic apparatus containing same
CN115398700A (zh) 电化学装置和电子装置
JP2023546079A (ja) 電気化学装置及び電子装置
CN115053369B (zh) 电化学装置和电子装置
JP5050416B2 (ja) 非水系電解液及び非水系電解液二次電池
JP2007317655A (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP2014026972A (ja) 非水系電解液及びそれを用いた非水系電解液電池
CN115336067A (zh) 电化学装置和电子装置
CN115769400A (zh) 电化学装置和电子装置
WO2023123353A1 (zh) 电化学装置和电子装置
US20230275273A1 (en) Electrochemical apparatus and electronic apparatus
US20220223834A1 (en) Electrochemical apparatus and electronic apparatus
CN115380408A (zh) 电化学装置和电子装置
EP4228037A1 (en) Electrochemical device and electronic device
US20240356078A1 (en) Electrochemical apparatus and electronic apparatus
JP2015015240A (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
KR20240113589A (ko) 전기화학 디바이스 및 전자 디바이스

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination