CN115728259A - 一种多组分气体分析方法 - Google Patents

一种多组分气体分析方法 Download PDF

Info

Publication number
CN115728259A
CN115728259A CN202211676841.5A CN202211676841A CN115728259A CN 115728259 A CN115728259 A CN 115728259A CN 202211676841 A CN202211676841 A CN 202211676841A CN 115728259 A CN115728259 A CN 115728259A
Authority
CN
China
Prior art keywords
gas
spectrum
characteristic
detected
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211676841.5A
Other languages
English (en)
Inventor
郭波
高捷
隋峰
林振强
崔震
杨中元
何东郡
朱建强
周宁宁
管其红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Institute of Metrology
Original Assignee
Shandong Institute of Metrology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Institute of Metrology filed Critical Shandong Institute of Metrology
Priority to CN202211676841.5A priority Critical patent/CN115728259A/zh
Publication of CN115728259A publication Critical patent/CN115728259A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种多组分气体分析方法,其包括获取光谱并计算吸光度、提取特征值并进行线性交叉干扰消除、二级非线性交叉干扰消除和特征值转化为浓度值,所述获取光谱并计算吸光度:采集待测气体光谱,利用特征谱线将采集的待测气体光谱和参考光谱的光谱波长对齐,通过获取待测气体的吸光度曲线;采用傅里叶变换‑多元线性回归方法计算所述待测气体的特征值并消除气体间线性交叉干扰,对残留的非线性交叉干扰采用多项式拟合的方法消除二级非线性交叉干扰,实现多种气体的同时计算,消除气体间交叉干扰,有效降低检测限,解决波长漂移对反演精度的影响问题。

Description

一种多组分气体分析方法
技术领域
本发明涉及环境监测技术领域,具体为一种多组分气体分析方法。
背景技术
针对应急监测过程中现有分析方法时效性差、分析效率低、选择性差、抗干扰能力差、检测成本高等问题,采用紫外-可见连续光谱法与现代计量学方法相结合开发的现场自动监测的便携式紫外差分吸收光谱仪,实现VOCs、NOx等多参数同时测量。
紫外-可见连续光谱分析技术中常采用紫外差分吸收方法,从采集的光谱数据建立数学模型计算得出气体浓度。现有常用的紫外差分吸收气体浓度计算方法主要包括以下几类:①采用多项式拟合得到吸收光谱慢变部分,扣除后得到差分吸收光谱,然后采用特征谱段的累积差分吸光度进行最小二乘拟合得到浓度反演公式;②对差分吸收光谱采用多元线性回归方法进行分解求解浓度;③采用傅里叶变换方法提取高频部分反变换得到差分吸收光谱,然后再进行累积吸光度最小二乘拟合或者多元线性回归求解浓度。
但前述第①种方法由于采用累积差分吸光度计算浓度,不能有效利用光谱形状信息,无检测气体时引入的光谱噪声的计算值也总为正值,因此抬高了检测限;第②种方法充分利用了光谱形状信息,能有效避免噪声干扰和气体间交叉干扰,但对光谱的波长漂移非常敏感,一两个像素的光谱漂移能使反演精度下降较多;第③种方法同样不能避免前述两种方法所遇到的检测下限高或对波长漂移敏感的问题;此外,多组分气体间的非线性交叉干扰是气体分析的难点问题。
发明内容
针对上述情况,为克服现有技术的缺陷,本发明提供一种多组分气体分析方法,有效的解决了上述技术背景中提到的问题。
为实现上述目的,本发明提供如下技术方案:本发明包括获取光谱并计算吸光度、提取特征值并进行线性交叉干扰消除、二级非线性交叉干扰消除和特征值转化为浓度值,所述获取光谱并计算吸光度:采集待测气体光谱,利用特征谱线将采集的待测气体光谱和参考光谱的光谱波长对齐;
计算待测气体光谱的气体吸光度曲线,计算公式如下:
Figure BDA0004017300340000021
其中,A为待测气体光谱的气体吸光度曲线,为参考光谱,为待测气体光谱;
所述提取特征值并进行线性交叉干扰消除:是指采用傅里叶变换-多元线性拟合方法提取所述待测气体的吸光度曲线中各种气体的特征值,并消除气体间线性交叉干扰,包括采用傅里叶变换方法得到所述待测气体中SO2、NO2、NO、NH3、苯、甲苯的吸收频谱,选取所述吸收频谱的特征高频吸收频谱进行最小二乘多元线性回归得到特征值;
所述二级非线性交叉干扰消除:包括前述消除气体间线性交叉干扰后仍残留的气体间干扰,采用多项式拟合得到干扰气体特征值与对待测气体特征贡献值的关系,并从待测气体特征值中扣除干扰气体贡献值,得到待测气体最终的特征值;
所述特征值转化为浓度值:指建立待测气体特征值与浓度值之间的关系曲线,用于从特征值计算得到浓度值。
根据上述技术方案:所述利用特征谱线将采集的待测气体光谱和参考光谱的光谱波长对齐,包括:
选择待测气体光谱中至少一个较尖锐且不被待测物吸收或吸收较少的峰作为特征谱线;
通过寻找所述至少一个特征谱线,将采集的待测气体光谱和参考光谱的峰值位置进行对齐,多个特征谱线分别针对不同波长范围的光谱进行对齐,从而分段实现整个光谱的对齐。
根据上述技术方案:所述采用傅里叶变换方法得到所述待测气体吸收频谱,包括:
选取待测气体SO2中吸收谱段为280-320nm的吸光度曲线进行傅里叶变换;
选取待测气体NO2中吸收谱段为420-450nm的吸光度曲线进行傅里叶变换;
选取待测气体NO中吸收谱段为200-230nm的吸光度曲线进行傅里叶变换;
选取待测气体NH3中吸收谱段为200-230nm的吸光度曲线进行傅里叶变换;
选取待测气体苯,甲苯中吸收谱段为260-285nm的吸光度曲线进行傅里叶变换。
根据上述技术方案:所述吸收频谱的特征高频吸收频谱进行最小二乘多元线性回归得到特征值,包括:将待测气体及干扰气体的特征高频吸收频谱组建成特征矩阵,利用最小二乘多元线性回归方法得到特征值并消除气体间线性交叉干扰。
根据上述技术方案:所述步骤特征值转化为浓度值中当计算出的浓度值小于设定的阈值时,根据吸收光谱谱型匹配重新计算浓度值,包括建立吸收光谱谱型特征矩阵,采用最小二乘线性回归计算气体浓度。
有益效果:本发明通过获取待测气体的吸光度曲线;采用傅里叶变换-多元线性回归方法计算所述待测气体的特征值并消除气体间线性交叉干扰,对残留的非线性交叉干扰采用多项式拟合的方法消除二级非线性交叉干扰,实现多种气体的同时计算,消除气体间交叉干扰,有效降低检测限,解决波长漂移对反演精度的影响问题。
有益效果:。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1是本发明整流程图。
具体实施方式
下面结合附图1对本发明的具体实施方式做进一步详细说明。
实施例一,由图1给出,本发明提供一种多组分气体分析方法,包括获取光谱并计算吸光度、提取特征值并进行线性交叉干扰消除、二级非线性交叉干扰消除和特征值转化为浓度值,1)所述获取光谱并计算吸光度:采集待测气体光谱,利用特征谱线将采集的待测气体光谱和参考光谱的光谱波长对齐;
计算待测气体光谱的气体吸光度曲线,计算公式如下:
Figure BDA0004017300340000041
其中,A为待测气体光谱的气体吸光度曲线,为参考光谱,为待测气体光谱;
2)所述提取特征值并进行线性交叉干扰消除:是指采用傅里叶变换-多元线性拟合方法提取所述待测气体的吸光度曲线中各种气体的特征值,并消除气体间线性交叉干扰,包括采用傅里叶变换方法得到所述待测气体中SO2、NO2、NO、NH3、苯、甲苯的吸收频谱,选取待测气体SO2中吸收谱段为280nm的吸光度曲线进行傅里叶变换;选取待测气体NO2中吸收谱段为420nm的吸光度曲线进行傅里叶变换;选取待测气体NO中吸收谱段为200nm的吸光度曲线进行傅里叶变换;选取待测气体NH3中吸收谱段为200nm的吸光度曲线进行傅里叶变换;选取待测气体苯,甲苯中吸收谱段为260nm的吸光度曲线进行傅里叶变换,选取所述吸收频谱的特征高频吸收频谱进行最小二乘多元线性回归得到特征值;
3)所述二级非线性交叉干扰消除:包括前述消除气体间线性交叉干扰后仍残留的气体间干扰,采用多项式拟合得到干扰气体特征值与对待测气体特征贡献值的关系,并从待测气体特征值中扣除干扰气体贡献值,得到待测气体最终的特征值;
4)所述特征值转化为浓度值:指建立待测气体特征值与浓度值之间的关系曲线,用于从特征值计算得到浓度值。
所述利用特征谱线将采集的待测气体光谱和参考光谱的光谱波长对齐,包括:
选择待测气体光谱中至少一个较尖锐且不被待测物吸收或吸收较少的峰作为特征谱线;
通过寻找所述至少一个特征谱线,将采集的待测气体光谱和参考光谱的峰值位置进行对齐,多个特征谱线分别针对不同波长范围的光谱进行对齐,从而分段实现整个光谱的对齐。
所述吸收频谱的特征高频吸收频谱进行最小二乘多元线性回归得到特征值,包括:将待测气体及干扰气体的特征高频吸收频谱组建成特征矩阵,利用最小二乘多元线性回归方法得到特征值并消除气体间线性交叉干扰。
所述步骤特征值转化为浓度值中当计算出的浓度值小于设定的阈值时,根据吸收光谱谱型匹配重新计算浓度值,包括建立吸收光谱谱型特征矩阵,采用最小二乘线性回归计算气体浓度。
实施例二,由图1给出,本发明提供一种多组分气体分析方法,包括获取光谱并计算吸光度、提取特征值并进行线性交叉干扰消除、二级非线性交叉干扰消除和特征值转化为浓度值,1)所述获取光谱并计算吸光度:采集待测气体光谱,利用特征谱线将采集的待测气体光谱和参考光谱的光谱波长对齐;
计算待测气体光谱的气体吸光度曲线,计算公式如下:
Figure BDA0004017300340000061
其中,A为待测气体光谱的气体吸光度曲线,为参考光谱,为待测气体光谱;
2)所述提取特征值并进行线性交叉干扰消除:是指采用傅里叶变换-多元线性拟合方法提取所述待测气体的吸光度曲线中各种气体的特征值,并消除气体间线性交叉干扰,包括采用傅里叶变换方法得到所述待测气体中SO2、NO2、NO、NH3、苯、甲苯的吸收频谱,选取待测气体SO2中吸收谱段为320nm的吸光度曲线进行傅里叶变换;选取待测气体NO2中吸收谱段为450nm的吸光度曲线进行傅里叶变换;选取待测气体NO中吸收谱段为230nm的吸光度曲线进行傅里叶变换;选取待测气体NH3中吸收谱段为230nm的吸光度曲线进行傅里叶变换;选取待测气体苯,甲苯中吸收谱段为285nm的吸光度曲线进行傅里叶变换,选取所述吸收频谱的特征高频吸收频谱进行最小二乘多元线性回归得到特征值;
3)所述二级非线性交叉干扰消除:包括前述消除气体间线性交叉干扰后仍残留的气体间干扰,采用多项式拟合得到干扰气体特征值与对待测气体特征贡献值的关系,并从待测气体特征值中扣除干扰气体贡献值,得到待测气体最终的特征值;
4)所述特征值转化为浓度值:指建立待测气体特征值与浓度值之间的关系曲线,用于从特征值计算得到浓度值。
所述利用特征谱线将采集的待测气体光谱和参考光谱的光谱波长对齐,包括:
选择待测气体光谱中至少一个较尖锐的峰作为特征谱线;
通过寻找所述至少一个特征谱线,将采集的待测气体光谱和参考光谱的峰值位置进行对齐,多个特征谱线分别针对不同波长范围的光谱进行对齐,从而分段实现整个光谱的对齐。
所述吸收频谱的特征高频吸收频谱进行最小二乘多元线性回归得到特征值,包括:将待测气体及干扰气体的特征高频吸收频谱组建成特征矩阵,利用最小二乘多元线性回归方法得到特征值并消除气体间线性交叉干扰。
所述步骤特征值转化为浓度值中当计算出的浓度值小于设定的阈值时,根据吸收光谱谱型匹配重新计算浓度值,包括建立吸收光谱谱型特征矩阵,采用最小二乘线性回归计算气体浓度。
有益效果:本发明通过获取待测气体的吸光度曲线;采用傅里叶变换-多元线性回归方法计算所述待测气体的特征值并消除气体间线性交叉干扰,对残留的非线性交叉干扰采用多项式拟合的方法消除二级非线性交叉干扰,实现多种气体的同时计算,消除气体间交叉干扰,有效降低检测限,解决波长漂移对反演精度的影响问题。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种多组分气体分析方法,其特征在于:包括获取光谱并计算吸光度、提取特征值并进行线性交叉干扰消除、二级非线性交叉干扰消除和特征值转化为浓度值,所述获取光谱并计算吸光度:采集待测气体光谱,利用特征谱线将采集的待测气体光谱和参考光谱的光谱波长对齐;
计算待测气体光谱的气体吸光度曲线,计算公式如下:
Figure FDA0004017300330000011
其中,A为待测气体光谱的气体吸光度曲线,为参考光谱,为待测气体光谱;
所述提取特征值并进行线性交叉干扰消除:是指采用傅里叶变换-多元线性拟合方法提取所述待测气体的吸光度曲线中各种气体的特征值,并消除气体间线性交叉干扰,包括采用傅里叶变换方法得到所述待测气体中SO2、NO2、NO、NH3、苯、甲苯的吸收频谱,选取所述吸收频谱的特征高频吸收频谱进行最小二乘多元线性回归得到特征值;
所述二级非线性交叉干扰消除:包括前述消除气体间线性交叉干扰后仍残留的气体间干扰,采用多项式拟合得到干扰气体特征值与对待测气体特征贡献值的关系,并从待测气体特征值中扣除干扰气体贡献值,得到待测气体最终的特征值;
所述特征值转化为浓度值:指建立待测气体特征值与浓度值之间的关系曲线,用于从特征值计算得到浓度值。
2.根据权利要求1所述的一种多组分气体分析方法,其特征在于,所述利用特征谱线将采集的待测气体光谱和参考光谱的光谱波长对齐,包括:
选择待测气体光谱中至少一个较尖锐的峰作为特征谱线;
通过寻找所述至少一个特征谱线,将采集的待测气体光谱和参考光谱的峰值位置进行对齐,多个特征谱线分别针对不同波长范围的光谱进行对齐,从而分段实现整个光谱的对齐。
3.根据权利要求1所述的一种多组分气体分析方法,其特征在于,所述采用傅里叶变换方法得到所述待测气体吸收频谱,包括:
选取待测气体SO2中吸收谱段为280-320nm的吸光度曲线进行傅里叶变换;
选取待测气体NO2中吸收谱段为420-450nm的吸光度曲线进行傅里叶变换;
选取待测气体NO中吸收谱段为200-230nm的吸光度曲线进行傅里叶变换;
选取待测气体NH3中吸收谱段为200-230nm的吸光度曲线进行傅里叶变换;
选取待测气体苯,甲苯中吸收谱段为260-285nm的吸光度曲线进行傅里叶变换。
4.根据权利要求1所述的一种多组分气体分析方法,其特征在于,所述吸收频谱的特征高频吸收频谱进行最小二乘多元线性回归得到特征值,包括:将待测气体及干扰气体的特征高频吸收频谱组建成特征矩阵,利用最小二乘多元线性回归方法得到特征值并消除气体间线性交叉干扰。
5.根据权利要求1所述的一种多组分气体分析方法,其特征在于,所述步骤特征值转化为浓度值中当计算出的浓度值小于设定的阈值时,根据吸收光谱谱型匹配重新计算浓度值,包括建立吸收光谱谱型特征矩阵,采用最小二乘线性回归计算气体浓度。
CN202211676841.5A 2022-12-26 2022-12-26 一种多组分气体分析方法 Pending CN115728259A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211676841.5A CN115728259A (zh) 2022-12-26 2022-12-26 一种多组分气体分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211676841.5A CN115728259A (zh) 2022-12-26 2022-12-26 一种多组分气体分析方法

Publications (1)

Publication Number Publication Date
CN115728259A true CN115728259A (zh) 2023-03-03

Family

ID=85302106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211676841.5A Pending CN115728259A (zh) 2022-12-26 2022-12-26 一种多组分气体分析方法

Country Status (1)

Country Link
CN (1) CN115728259A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116952884A (zh) * 2023-06-25 2023-10-27 青岛崂应海纳光电环保集团有限公司 一种非分散红外气体检测的气体浓度计算方法
CN117368132A (zh) * 2023-12-07 2024-01-09 杭州泽天春来科技股份有限公司 恶臭气体检测方法、装置及计算机设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116952884A (zh) * 2023-06-25 2023-10-27 青岛崂应海纳光电环保集团有限公司 一种非分散红外气体检测的气体浓度计算方法
CN116952884B (zh) * 2023-06-25 2024-03-15 青岛崂应海纳光电环保集团有限公司 一种非分散红外气体检测的气体浓度计算方法
CN117368132A (zh) * 2023-12-07 2024-01-09 杭州泽天春来科技股份有限公司 恶臭气体检测方法、装置及计算机设备
CN117368132B (zh) * 2023-12-07 2024-02-27 杭州泽天春来科技股份有限公司 恶臭气体检测方法、装置及计算机设备

Similar Documents

Publication Publication Date Title
CN115728259A (zh) 一种多组分气体分析方法
CN104568836B (zh) 基于多种光谱技术融合的低浓度、多组分气体检测方法
CN101105446B (zh) 差分吸收光谱空气质量检测系统
CN107643252B (zh) Wms检测瓶内氧气浓度的实时扣背景非线性校正方法
WO2015096779A1 (zh) 拉曼光谱检测方法
CN103175805B (zh) 一种近红外光谱测定污水中cod和bod5指标的方法
CN110084212B (zh) 一种基于改进正弦余弦算法的光谱特征峰识别定位方法
CN101576485A (zh) 一种多源光谱融合水质分析方法
CN108918446B (zh) 一种超低浓度二氧化硫紫外差分特征提取算法
CN103033481A (zh) 基于fft的激光分析仪二次谐波滤波方法
CN105486655A (zh) 基于红外光谱智能鉴定模型的土壤有机质快速检测方法
CN117030654B (zh) 一种空气中痕量级二氧化硫浓度测量方法
CN103543132B (zh) 一种基于小波变换的煤质特性测量方法
CN111487213A (zh) 多光谱融合的化学需氧量测试方法及装置
CN105784672A (zh) 一种基于双树复小波算法的毒品检测仪标准化方法
CN112504983A (zh) 一种基于浊度色度补偿的硝酸盐浓度预测方法
CN106769906B (zh) 光谱仪数据漂移补偿方法
CN106126879B (zh) 一种基于稀疏表示技术的土壤近红外光谱分析预测方法
CN105572067A (zh) 基于光谱分析的烟气浓度测量方法
CN112666104A (zh) 一种基于doas的气体浓度反演方法
CN106323888B (zh) 一种超低排放烟气测量方法
CN111141809B (zh) 一种基于非接触式电导信号的土壤养分离子含量检测方法
CN115597901B (zh) 一种桥梁伸缩缝损伤的监测方法
CN110553988B (zh) 一种基于叠加态思想的no低浓度信号提取方法
CN111639763B (zh) 一种液压油污染度的检测模型训练方法、检测方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination