CN115624964A - 一种具有蕨草状分级结构的Bi2O3-碳纸柔性复合光催化剂的制备方法 - Google Patents

一种具有蕨草状分级结构的Bi2O3-碳纸柔性复合光催化剂的制备方法 Download PDF

Info

Publication number
CN115624964A
CN115624964A CN202211253370.7A CN202211253370A CN115624964A CN 115624964 A CN115624964 A CN 115624964A CN 202211253370 A CN202211253370 A CN 202211253370A CN 115624964 A CN115624964 A CN 115624964A
Authority
CN
China
Prior art keywords
carbon paper
hierarchical structure
composite photocatalyst
beta
flexible composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211253370.7A
Other languages
English (en)
Other versions
CN115624964B (zh
Inventor
赫荣安
万佳宜
雷芳
植汉梅
梁炜珊
黄谧妍
倪协芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University
Original Assignee
Changsha University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University filed Critical Changsha University
Priority to CN202211253370.7A priority Critical patent/CN115624964B/zh
Publication of CN115624964A publication Critical patent/CN115624964A/zh
Application granted granted Critical
Publication of CN115624964B publication Critical patent/CN115624964B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种具有蕨草状分级结构的Bi2O3‑碳纸柔性复合光催化剂的制备方法,所述方法包括如下步骤:S1,将Bi(NO3)3加入稀硝酸中,使其溶解,配制成Bi(NO3)3水溶液;S2,采用导电碳纸作电极,用配制好的Bi(NO3)3水溶液作电解质,构建电解池;S3,在碳纸间加上直流电压,使溶液中的Bi3+离子在连接负极的碳纸上被还原成具有蕨草状分级结构的金属Bi,制备出Bi/碳纸复合前驱体;S4,在空气中,将Bi/碳纸前驱体煅烧,保温,使前驱体中的Bi被原位氧化成β‑Bi2O3,形成β‑Bi2O3/碳纸柔性复合光催化剂。该方法解决了α‑Bi2O3可见光光催化活性差、亚稳态β‑Bi2O3及其复合光催化剂不易制备、且分级结构难以形成的问题,同时解决了粉体光催化剂回收困难的问题。

Description

一种具有蕨草状分级结构的Bi2O3-碳纸柔性复合光催化剂的 制备方法
技术领域
本发明涉及半导体复合光催化剂制备技术领域,具体是涉及一种具有蕨草状分级结构的Bi2O3-碳纸柔性复合光催化剂的制备方法。
背景技术
光催化技术以其安全、节能的特点,在污水处理中有着良好的应用前景。特别是利用可见光进行光催化污染物去除,在实际应用中更具优势,这是由于可见光在太阳能中占比最高,而且对人体更加安全。相应的,可见光光催化剂的研究也更加广泛。
在可见光光催化剂中,Bi2O3是较为常见的一种,其无毒、廉价、制备方便灵活的特点对于实际应用非常有利,也吸引了越来越多的关注。然而,室温稳定的α-Bi2O3单独使用的效果较差,这主要是因为其带隙较宽,可见光响应性差,且光生电子与光生空穴容易复合,妨碍了光生空穴氧化污染物的反应。同时,α-Bi2O3颗粒的比表面积较低,更加剧了这一情况,大幅降低了其光催化活性。此外,α-Bi2O3粉体在使用中回收和重复使用困难,不利于其大范围应用。与α-Bi2O3相比,β-Bi2O3具有更高的可见光光催化活性。然而,β-Bi2O3是亚稳态的,在制备过程中,其形成较为困难,容易形成α-Bi2O3或两相混合物,因此,β-Bi2O3及其复合物的制备是较为困难的。要控制制备具有特定分级结构的β-Bi2O3及其复合物,使其光生电子和空穴得到有效分离,并增强其光吸收、促进其与反应物的接触,则更加困难。
利用石墨烯、氧化石墨烯、碳纳米管等碳质纳米材料构建肖特基异质结被证明是一条有效途径。然而,石墨烯、还原氧化石墨烯、碳纳米管等都是纳米尺度的,只适合用于进行光催化剂的表面装饰,而不适合作为基底材料,因此,不仅无法解决Bi2O3的回收问题,还会阻碍光催化剂的光吸收和表面反应,对复合光催化剂的性能提升有局限性。
除了构建异质结,控制制备具有分级结构的光催化剂,能增强其光吸收、促进其与反应物的接触,故也可有效提高光催化剂的活性。目前,具有分级结构的Bi2O3(包括α-Bi2O3和β-Bi2O3)可通过水热法、化学沉淀法、前驱体转化法等方法,并借助模板剂、抑制剂或合适的载体等制备得到。不过,这些方法所制备的Bi2O3主要是具有分级结构纳米颗粒,且分级结构尺寸较小,分级结构的优越性还不能得到充分发挥。同时,要将他们负载到宏观尺度的载体上用于实际,并保持或拓展其分级结构,仍具有较大的挑战性。
发明内容
本发明的目的是为了克服上述背景技术的不足,提供一种能制备β-Bi2O3/碳纸柔性复合光催化剂的简易方法,并通过该方法制备一种具有蕨草状分级结构的β-Bi2O3/碳纸柔性复合光催化剂,解决α-Bi2O3活性差和β-Bi2O3不稳定的问题,同时解决粉体光催化剂回收困难的问题。
为达到本发明的目的,本发明具有蕨草状分级结构的Bi2O3-碳纸柔性复合光催化剂的制备方法包括如下步骤:
S1,将Bi(NO3)3加入稀硝酸中,使其溶解,配制成Bi(NO3)3水溶液;
S2,采用导电碳纸作电极,用配制好的Bi(NO3)3水溶液作电解质,构建电解池;
S3,在碳纸间加上直流电压,使溶液中的Bi3+离子在连接负极的碳纸上被还原成具有蕨草状分级结构的金属Bi,制备出Bi/碳纸复合前驱体;
S4,在空气中,将Bi/碳纸前驱体煅烧,保温,使前驱体中的Bi被原位氧化成β-Bi2O3,形成β-Bi2O3/碳纸柔性复合光催化剂。
进一步地,在本发明的一些实施例中,所述步骤S1中Bi(NO3)3溶液的浓度为4-6g/L。
进一步地,在本发明的一些实施例中,所述步骤S1中Bi(NO3)3溶液的pH范围为2-4。
进一步地,在本发明的一些实施例中,所述步骤S2中碳纸为石墨导电碳纸。
进一步地,在本发明的一些实施例中,所述步骤S3中直流电压为1.8-2.3V,通电时间为6-12min。
进一步地,在本发明的一些实施例中,所述步骤S4中煅烧温度为280-350℃。
进一步地,在本发明的一些实施例中,所述步骤S4中保温时间为2-4h。
另一方面,本发明还提供了一种使用上述方法制备的具有蕨草状分级结构的β-Bi2O3/碳纸柔性复合光催化剂。
与现有技术相比,本发明的优点如下:
(1)现有制备方法中,主要是将β-Bi2O3或α-Bi2O3通过粘结剂与碳质材料结合,这些方法无法制备出具有仿生分级结构的β-Bi2O3,且β-Bi2O3与碳质基底材料的结合不紧密,复合物也不是宏观尺度的,无法实现光生电荷的有效分离,回收还不方便。而本发明利用Bi3+在碳纸表面发生光还原反应所形成的具有独特分级结构的单质Bi作先驱体,利用原位氧化反应使碳纸上的单质Bi原位氧化形成具有分级结构β-Bi2O3,从而制备出具有蕨草状分级结构的β-Bi2O3/碳纸柔性复合光催化剂。
(2)本发明采用导电碳纸作为基底材料,利用电化学沉积和后续煅烧氧化的方法,在导电碳纸上形成具有分级结构的Bi2O3,制备出可徒手操作的柔性Bi2O3/碳纸复合光催化剂,光催化效果明显优于α-Bi2O3,且制备所得复合光催化剂长和宽在3-8cm范围之间,具有宏观尺度,可徒手回收。
附图说明
图1为本发明实施例1中制备的β-Bi2O3/碳纸柔性复合光催化剂的XRD图谱;
图2为本发明实施例1中制备的β-Bi2O3/碳纸柔性复合光催化剂的SEM图像(右上角插图为蕨草照片);
图3为本发明实施例1中制备的β-Bi2O3/碳纸柔性复合光催化剂与α-Bi2O3催化降解苯酚的性能对比。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。应当理解,以下描述仅仅用以解释本发明,并不用于限定本发明。
本文中所用的术语“包含”、“包括”、“具有”、“含有”或其任何其它变形,意在覆盖非排它性的包括。例如,包含所列要素的组合物、步骤、方法、制品或装置不必仅限于那些要素,而是可以包括未明确列出的其它要素或此种组合物、步骤、方法、制品或装置所固有的要素。
当量、浓度、或者其它值或参数以范围、优选范围、或一系列上限优选值和下限优选值限定的范围表示时,这应当被理解为具体公开了由任何范围上限或优选值与任何范围下限或优选值的任一配对所形成的所有范围,而不论该范围是否单独公开了。例如,当公开了范围“1至5”时,所描述的范围应被解释为包括范围“1至4”、“1至3”、“1至2”、“1至2和4至5”、“1至3和5”等。当数值范围在本文中被描述时,除非另外说明,否则该范围意图包括其端值和在该范围内的所有整数和分数。
此外,下面所描述的术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不是必须针对相同的实施例或示例。而且,本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明中光催化性能测试方法是以苯酚为标的物,用水溶液中苯酚的去除效率评价样品的光催化性能:将50mg的样品加入装有10mL苯酚溶液(100mg·L-1)的培养皿中,然后,用60W的LED灯(λ>400nm)进行照射,每隔一段时间,用岛津UVmini-1280光谱仪测定一次苯酚溶液的紫外-可见光谱,以光谱中269nm处特征吸收峰强度反映苯酚的浓度变化。光催化反应中自由基的电子自旋共振(ESR)测试在布鲁克公司的MEX-nano光谱仪上进行,调制频率为100kHz,微波功率为15mW,自由基捕获剂为5,5’-二甲基-1-吡咯啉-N-氧化物(DMPO)。
实施例1
将一定量的Bi(NO3)3加入稀硝酸中,使其溶解,配制成溶液(浓度为5g/L,pH=3);取两张导电石墨碳纸作两电极,分别接入直流稳压电源的正负极,用配制好的Bi(NO3)3水溶液作电解质,构建电解池;在碳纸间加上2.0V直流电压,通电10min,使溶液中的Bi3+离子在连接负极的碳纸上被还原成具有蕨草状分级结构的金属Bi,得到Bi/碳纸复合前驱体;最后,将Bi/碳纸复合前驱体放入管式炉,在300℃下煅烧3h,制备得到β-Bi2O3/碳纸样品。
图1为上述制备的Bi/碳纸前驱体和β-Bi2O3/碳纸复合光催化剂的XRD图谱。图2为制备的β-Bi2O3/碳纸复合光催化剂的SEM图。由图2可知,本发明所制备的β-Bi2O3/碳纸复合光催化剂中,Bi2O3为四方相结构(即β-Bi2O3),具有类似蕨草状的分级结构。
图3为制备的α-Bi2O3和β-Bi2O3/碳纸复合光催化剂光催化降解苯酚的降解曲线,从图中可以看出,本发明制备的β-Bi2O3/碳纸复合光催化剂光催化效果明显优于α-Bi2O3粉体,且经过5个反应循环,性能没有明显下降,表现出良好的稳定性。
综合N2吸附、紫外可见漫反射光谱、荧光和自由基测试等分析手段,研究发现Bi2O3/碳纸复合光催化剂的性能提升源于其分级结构和导电碳纸的电子捕获作用。分级结构有利于Bi2O3与反应物接触,导电碳纸的电荷捕获作用能有效分离了光生电子和空穴,这些都促进了光生载流子的有效利用。此外,复合光催化剂的宏观尺寸(长和宽在3-8cm范围之间)和柔性纸状外观也使其使用和回收变得更为方便。
考虑到加入的样品量都是50mg,而根据碳纸负载Bi2O3前后的增重,可知β-Bi2O3/碳纸复合光催化剂中的Bi2O3含量只有21wt%,故即使其性能与Bi2O3粉末相同,其Bi2O3的性能发挥也更好。由于β-Bi2O3/碳纸复合光催化剂的比表面积约是Bi2O3粉末的5倍(基于脱附等温线,计算得到Bi2O3和β-Bi2O3/碳纸复合光催化剂的比表面积分别为4m2/g和22m2/g)这一因素考虑进来,故加入的β-Bi2O3/碳纸复合光催化剂中Bi2O3的总表面积与Bi2O3的总表面积大致接近,可近似认为,图3中β-Bi2O3/碳纸复合光催化剂性能增强的部分,是扣除了比表面积因素后,主要由其它因素作用的结果。形成这种情况可能的因素之一是Bi2O3与碳纸的复合后,碳纸对电子的捕获作用在性能提升中起到了重要作用。
实施例2
实施例2与实施例1的不同之处在于,步骤S1中,Bi(NO3)3溶液的浓度为4g/L,pH=2。
实施例3
实施例3与实施例1的不同之处在于,步骤S1中,Bi(NO3)3溶液的浓度为6g/L,pH=4。
实施例4
实施例4与实施例1的不同之处在于,步骤S3中,直流电压为1.8V,通电时间为6min。
实施例5
实施例5与实施例1的不同之处在于,步骤S3中,直流电压为2.3V,通电时间为12min。
实施例6
实施例6与实施例1的不同之处在于,步骤S4中,煅烧温度为280℃。
实施例7
实施例7与实施例1的不同之处在于,步骤S4中,煅烧温度为350℃。
实施例2-7所得Bi2O3-碳纸柔性复合光催化剂光催化效果与实施例1相当,也明显优于α-Bi2O3粉体,且长和宽在3-8cm范围之间,具有宏观尺度,可徒手回收。
此外,本发明方法中低于所述煅烧温度会有金属铋残留,高于所述温度范围,会有α-Bi2O3生成。低于本发明所述pH,电解过程会产生氢气,不能形成稳定结合,高于本发明所述pH,硝酸铋不能完全溶解。
用铜片基底,可以形成分级结构,但不能形成蕨草状分级结构,分级结构不显著,尺度也相对较小,在加入相同量催化剂的情况下,其催化性能相对于β-Bi2O3/碳纸复合光催化剂较差(β-Bi2O3/碳纸复合光催化剂中的Bi2O3含量只有21wt%,折算后,加入的β-Bi2O3/碳纸复合光催化剂中Bi2O3的总表面积约为用铜片基底的到产物总表面积的60%,因此,β-Bi2O3/碳纸复合光催化剂的性能提升不应归结于其Bi2O3的高比表面积。较为可能的原因在于Bi2O3更明显的分级结构促进了反应物与其表面的接触,同时,Bi2O3与碳纸的复合后,碳纸对电子的捕获作用促进了载流子的分离)。
本发明的反应是金属Bi与空气中的氧气进行反应,原位生成Bi2O3。有趣的是,Bi2O3-C制备中,碳纸上的金属Bi氧化生成了亚稳态β-Bi2O3。通常在煅烧制备β-Bi2O3时,容易产生α-Bi2O3,要得到较纯的β-Bi2O3,需要采用含有碳酸根或醋酸根的前驱体,并控制煅烧温度,使生成的β-Bi2O3表面残留一定的分解产物,以降低表面能,从而增加产物的稳定性。而本发明采用的是直接氧化金属Bi,没有分解残留物,而生成的β-Bi2O3没有出现转化成α-Bi2O3的情况,推测是碳纸与β-Bi2O3结合,增加了β-Bi2O3的稳定性。
对比例1
采用常规的方法仅得到Bi2O3粉体:在Bi(NO3)3水溶液(5g/L)中加入NaOH溶液(1mol/L),调节溶液pH达到14,继续搅拌3h,得到淡黄色沉淀,经蒸馏水和乙醇洗涤、离心和干燥处理后,再在300℃热处理3h,得到淡黄色Bi2O3粉末。
本领域的技术人员容易理解,以上所述仅为本发明的实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种具有蕨草状分级结构的Bi2O3-碳纸柔性复合光催化剂的制备方法,其特征在于,所述制备方法包括如下步骤:
S1,将Bi(NO3)3加入稀硝酸中,使其溶解,配制成Bi(NO3)3水溶液;
S2,采用导电碳纸作电极,用配制好的Bi(NO3)3水溶液作电解质,构建电解池;
S3,在碳纸间加上直流电压,使溶液中的Bi3+离子在连接负极的碳纸上被还原成具有蕨草状分级结构的金属Bi,制备出Bi/碳纸复合前驱体;
S4,在空气中,将Bi/碳纸前驱体煅烧,保温,使前驱体中的Bi被原位氧化成β-Bi2O3,形成β-Bi2O3/碳纸柔性复合光催化剂。
2.根据权利要求1所述的具有蕨草状分级结构的Bi2O3-碳纸柔性复合光催化剂的制备方法,其特征在于,所述步骤S1中Bi(NO3)3溶液的浓度为4-6g/L。
3.根据权利要求1所述的具有蕨草状分级结构的Bi2O3-碳纸柔性复合光催化剂的制备方法,其特征在于,所述步骤S1中Bi(NO3)3溶液的pH范围为2-4。
4.根据权利要求1所述的具有蕨草状分级结构的Bi2O3-碳纸柔性复合光催化剂的制备方法,其特征在于,所述步骤S2中碳纸为石墨导电碳纸。
5.根据权利要求1所述的具有蕨草状分级结构的Bi2O3-碳纸柔性复合光催化剂的制备方法,其特征在于,所述步骤S3中直流电压为1.8-2.3V,通电时间为6-12min。
6.根据权利要求1所述的具有蕨草状分级结构的Bi2O3-碳纸柔性复合光催化剂的制备方法,其特征在于,所述步骤S4中煅烧温度为280-350℃。
7.根据权利要求1所述的具有蕨草状分级结构的Bi2O3-碳纸柔性复合光催化剂的制备方法,其特征在于,所述步骤S4中保温时间为2-4h。
8.一种β-Bi2O3/碳纸柔性复合光催化剂,其特征在于,所述β-Bi2O3/碳纸柔性复合光催化剂是采用权利要求1-7任一项所述方法制备得到的。
CN202211253370.7A 2022-10-13 2022-10-13 一种具有蕨草状分级结构的Bi2O3-碳纸柔性复合光催化剂的制备方法 Active CN115624964B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211253370.7A CN115624964B (zh) 2022-10-13 2022-10-13 一种具有蕨草状分级结构的Bi2O3-碳纸柔性复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211253370.7A CN115624964B (zh) 2022-10-13 2022-10-13 一种具有蕨草状分级结构的Bi2O3-碳纸柔性复合光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN115624964A true CN115624964A (zh) 2023-01-20
CN115624964B CN115624964B (zh) 2024-03-05

Family

ID=84904320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211253370.7A Active CN115624964B (zh) 2022-10-13 2022-10-13 一种具有蕨草状分级结构的Bi2O3-碳纸柔性复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN115624964B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117116662A (zh) * 2023-08-28 2023-11-24 济南大学 一种纸基氧化铋-Bi纳米簇光电极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000584A (zh) * 2010-12-02 2011-04-06 北京师范大学 一种钴掺杂改性Beta-氧化铋光催化剂的制备方法
CN102962051A (zh) * 2012-11-21 2013-03-13 同济大学 一种高稳定可见光催化活性的β-Bi2O3/TiO2-NTs复合光催化剂的制备方法
WO2017128847A1 (zh) * 2016-01-28 2017-08-03 中国科学院大连化学物理研究所 一种规模化太阳能光催化-光电催化分解水制氢的方法
CN109603806A (zh) * 2019-01-16 2019-04-12 哈尔滨工业大学 一种Bi催化剂及其制备方法
CN111330568A (zh) * 2020-03-25 2020-06-26 陕西科技大学 碳布负载原位生长非贵金属Bi修饰BiVO4柔性易回收光催化材料、制备方法及其应用
CN111359603A (zh) * 2020-03-12 2020-07-03 辽宁大学 一种铋基自支撑电催化剂及其制备方法和在氮气还原产氨中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000584A (zh) * 2010-12-02 2011-04-06 北京师范大学 一种钴掺杂改性Beta-氧化铋光催化剂的制备方法
CN102962051A (zh) * 2012-11-21 2013-03-13 同济大学 一种高稳定可见光催化活性的β-Bi2O3/TiO2-NTs复合光催化剂的制备方法
WO2017128847A1 (zh) * 2016-01-28 2017-08-03 中国科学院大连化学物理研究所 一种规模化太阳能光催化-光电催化分解水制氢的方法
CN109603806A (zh) * 2019-01-16 2019-04-12 哈尔滨工业大学 一种Bi催化剂及其制备方法
CN111359603A (zh) * 2020-03-12 2020-07-03 辽宁大学 一种铋基自支撑电催化剂及其制备方法和在氮气还原产氨中的应用
CN111330568A (zh) * 2020-03-25 2020-06-26 陕西科技大学 碳布负载原位生长非贵金属Bi修饰BiVO4柔性易回收光催化材料、制备方法及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117116662A (zh) * 2023-08-28 2023-11-24 济南大学 一种纸基氧化铋-Bi纳米簇光电极材料及其制备方法
CN117116662B (zh) * 2023-08-28 2024-04-19 济南大学 一种纸基氧化铋-Bi纳米簇光电极材料及其制备方法

Also Published As

Publication number Publication date
CN115624964B (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
Tahir et al. 2D/2D/2D O-C3N4/Bt/Ti3C2Tx heterojunction with novel MXene/clay multi-electron mediator for stimulating photo-induced CO2 reforming to CO and CH4
Patil et al. Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification
Yu et al. Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis
He et al. Interlaced rosette-like MoS2/Ni3S2/NiFe-LDH grown on nickel foam: a bifunctional electrocatalyst for hydrogen production by urea-assisted electrolysis
Huang et al. Controlled growth of ZnS/ZnO heterojunctions on porous biomass carbons via one-step carbothermal reduction enables visible-light-driven photocatalytic H 2 production
He et al. NiFe-layered double hydroxide decorated BiVO4 photoanode based bi-functional solar-light driven dual-photoelectrode photocatalytic fuel cell
Sayed et al. Co-Fe layered double hydroxide decorated titanate nanowires for overall photoelectrochemical water splitting
CN112458495B (zh) 一种钌基过渡金属氧化物固溶体的电催化剂及其制备方法和应用
Zhang et al. Surface modification of CuO nanoflake with Co3O4 nanowire for oxygen evolution reaction and electrocatalytic reduction of CO2 in water to syngas
Liu et al. Co-doped Ni–Mo oxides: highly efficient and robust electrocatalysts for urea electrooxidation assisted hydrogen production
Hu et al. Enhanced electrocatalytic ethanol oxidation reaction in alkaline media over Pt on a 2D BiVO 4-modified electrode under visible light irradiation
CN111715245B (zh) 基于高催化活性和结晶性RuTe2的电解水催化剂及其制备方法
CN113578297A (zh) 一种氧封端单层碳化钛复合二氧化钛光催化剂及其制备方法
CN112958116B (zh) 一种Bi2O2.33-CdS复合光催化剂及其制备工艺
Liu et al. Synergistic effect of single-atom Cu and hierarchical polyhedron-like Ta3N5/CdIn2S4 S-scheme heterojunction for boosting photocatalytic NH3 synthesis
Wang et al. Effects of NH4F quantity on N-doping level, photodegradation and photocatalytic H2 production activities of N-doped TiO2 nanotube array films
CN115624964A (zh) 一种具有蕨草状分级结构的Bi2O3-碳纸柔性复合光催化剂的制备方法
Zhang et al. Growth of NiMn layered double hydroxides on nanopyramidal BiVO4 photoanode for enhanced photoelectrochemical performance
Darrudi et al. Electrochemical co-deposition of cobalt and graphene, produced from recycled polypropylene, on TiO2 nanotube as a new catalyst for photoelectrochemical water splitting
Sun et al. Alkynyl carbon functionalized N-TiO2: Ball milling synthesis and investigation of improved photocatalytic activity
CN108821394B (zh) 一种钼酸铁(ii)/氧化石墨烯催化电极的制备方法
Mat et al. Photoelectrocatalytic oxidation of methanol over RuO2MnO2Co3O4 supported porous anatase under visible light irradiation
Singh et al. Efficient electrochemical water oxidation catalysis by nanostructured Mn 2 O 3
Balamurugan et al. Electrochemical and photoelectrochemical oxygen evolution reactions by Group X hetero-metal oxides
Li et al. In situ preparation of a novel Z-scheme BiOBr/BiVO 4 composite film with enhanced photocatalytic CO 2 reduction performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant