CN115624653A - 双重缓释骨修复材料及其制备方法 - Google Patents

双重缓释骨修复材料及其制备方法 Download PDF

Info

Publication number
CN115624653A
CN115624653A CN202211074144.2A CN202211074144A CN115624653A CN 115624653 A CN115624653 A CN 115624653A CN 202211074144 A CN202211074144 A CN 202211074144A CN 115624653 A CN115624653 A CN 115624653A
Authority
CN
China
Prior art keywords
cao
calcium
bone
nha
bone repair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211074144.2A
Other languages
English (en)
Other versions
CN115624653B (zh
Inventor
周益
关晓旭
文俊儒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stomatology Hospital of Zhejiang University School of Medicine
Original Assignee
Stomatology Hospital of Zhejiang University School of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stomatology Hospital of Zhejiang University School of Medicine filed Critical Stomatology Hospital of Zhejiang University School of Medicine
Priority to CN202211074144.2A priority Critical patent/CN115624653B/zh
Publication of CN115624653A publication Critical patent/CN115624653A/zh
Application granted granted Critical
Publication of CN115624653B publication Critical patent/CN115624653B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明涉及一种双重缓释骨修复材料,包括钙基生物陶瓷,所述钙基生物陶瓷具有多孔结构,所述孔洞中吸附CaO2@Co‑Fc纳米颗粒;所述CaO2@Co‑Fc纳米颗粒具有Co‑Fc配位化合物包覆CaO2的核壳结构。本发明巧妙利用恶性肿瘤骨缺损区的低氧酸化的特点,基于芬顿反应为原理的化学动力疗法,开发出具有“产ROS‑H+中和‑Ca2+双重缓释”特性的载CaO2@Co‑Fc纳米粒钙基生物陶瓷骨复合材料,可以同步解决肿瘤杀伤与骨修复的时序性问题,并克服了手术治疗、传统放化疗、光动力及光热疗法的局限性,可以安全、有效地实现微创、温和、同步的抗肿瘤‑促成骨联合治疗。

Description

双重缓释骨修复材料及其制备方法
技术领域
本发明涉及仿生材料,尤其涉及一种双重缓释骨修复材料。
背景技术
骨肿瘤的治疗及瘤性骨缺损的修复一直是临床治疗的难点,具有重大社会需求。然而目前普遍采用的手术+放化疗+骨再植的序列疗法存在骨缺损修复滞后的问题,也不可避免会造成骨缺损的二次损伤,增加了病理性骨折及感染的风险。而传统的化疗/放疗也存在多药毒性,耐药性,肿瘤细胞的无效清除等缺点,反而延缓了瘤性骨缺损的组织再生。而基于新型纳米材料开发的光动力疗法、光热疗法由于其组分难以降解、潜在毒性、光热转换效率低及高温导致的正常组织细胞损伤,不利于成骨进程。
发明内容
本发明巧妙利用恶性肿瘤骨缺损区的低氧酸化的特点,基于芬顿反应为原理的化学动力疗法,开发出具有“产ROS-H+中和-Ca2+双重缓释”特性的载CaO2@Co-Fc纳米粒钙基生物陶瓷骨复合材料,可以同步解决肿瘤杀伤与骨修复的时序性问题,并克服了手术治疗、传统放化疗、光动力及光热疗法的局限性,可以安全、有效地实现微创、温和、同步的抗肿瘤-促成骨联合治疗。
具体的,本发明采用如下技术方案:一种双重缓释骨修复材料,包括钙基生物陶瓷,所述钙基生物陶瓷具有多孔结构,所述孔洞中吸附CaO2@Co-Fc纳米颗粒;所述CaO2@Co-Fc纳米颗粒具有Co-Fc配位化合物包覆CaO2的核壳结构。
通过试验证明,CaO2@Co-Fc纳米粒和钙基生物陶瓷的复合,显著性的提高了CaO2@Co-Fc的肿瘤杀伤,带来了意想不到的技术效果,具体的,CaO2可通过氧化-还原反应产生超氧离子,Co-Fc壳又提供了酸性微环境下触发芬顿反应的催化剂。随着肿瘤微环境下H+的作用,Co-Fc壳降解,CaO2水解生成H2O2,并释放Ca2+。H2O2又在Co-Fc的催化下,生成大量·OH,持续诱导肿瘤细胞凋亡。同时,钙基生物陶瓷,如SA@nHA不断中和肿瘤微环境中的H+,释放Ca2+,持续纠正酸性微环境,抑制肿瘤细胞增殖。由于nHA结构的稳定性,这一过程可持续3周以上。同时,钙基生物陶瓷的pH调节效应减缓了Co-Fc壳的降解速率,延长了·OH及Ca2+的作用时间,共同强化肿瘤杀伤。
通过试验证明,CaO2@Co-Fc纳米粒和钙基生物陶瓷的复合,显著性的提高钙基生物陶瓷的成骨效应:以SA@nHA为例,肿瘤微环境下,SA@nHA不断释放OH-,中和H+,将酸性肿瘤微环境逆转为碱性成骨微环境;从离子环境来说,CaO2@Co-Fc水解及SA@nHA降解均释放大量Ca2+,实现Ca2+的双重缓释,可延长成骨细胞募集时间,为细胞外基质矿化供钙,共同加强成骨效应;从胞外界面来说,SA@nHA提供了成骨细胞分化必不可少的胞外物理界面,有利于成骨细胞的黏附、长入、分化。
在本发明的某些实施例中,超声下将CaO2(3.5~5.5mg)与PVP(110~220mg)溶解于DMF中,并加入(CH3COO)2Co·4H2O(0.1~0.3M)和Fc(COOH)2(0.1~0.3M),80~100℃下搅拌4~6h,离心得到CaO2@Co-Fc纳米颗粒。二茂铁(Fc)及钴(Co)可交联形成的包裹粒子的“壳状”结构,以CaO2为核心,可以形成稳定的壳-核结构,保护CaO2在中性或碱性下的稳定性。同时,Co-Fc在n-HA酸性环境下可催化铁基芬顿反应,产生大量ROS。
SA@nHA具有疏松多孔的三维结构及巨大的比表面积,可稳定吸附CaO2@Co-Fc于材料内壁,本发明还提供上述双重缓释骨修复材料的制备方法如下:室温下混合海藻酸钙0.4~0.8g、纳米羟基磷灰石1.0~2.0g于水中,加入交联剂Ca-EDTA 3~6g及GDL 0.04~0.08g,搅拌均匀,得到SA@nHA;加入CaO2@Co-Fc纳米颗粒1~2g,混合均匀得到双重缓释骨修复材料。这种修复材料可以采用3D打印机上进行打印,冻干后获得特定形状的修复材料。作为本领域的公知常识,基于该方法,可以根据不同原料配比赋予SA@nHA不同的材料强度。
本发明的有益效果为:
1、同时具有肿瘤杀伤及成骨促进效应。杀肿瘤与成骨互相促进,用于肿瘤性骨缺损的治疗,缩减骨缺损修复时间,克服了传统治疗方式的“痛点”。
2、材料植入后无需后续附加治疗。基于局部铁基芬顿反应杀伤肿瘤,不产生全身化学、物理性毒副作用。
3、具备pH调节效应及pH响应性缓释效应,实现肿瘤微环境到成骨微环境的转变。
4、Ca2+双重缓释促进肿瘤杀伤,同时供应大量成骨相关离子,募集成骨细胞,促进成骨分化,具有优越的骨修复效应。
附图说明
图1.CaO2@Co-Fc合成反应机理图;
图2.a~b分别为不同放大倍数下的CaO2@Co-Fc扫描电镜成像;
图3.SA@nHA成功合成的特征性X射线衍射谱;
图4.a~b分别为不同放大倍数下的CaO2@Co-Fc/SA@nHA扫描电镜成像;
图5.CaO2@Co-Fc、CaO2@Co-Fc/SA@nHA体内抗肿瘤效果图;
图6.CaO2、CaO2@Co-Fc、CaO2@Co-Fc/SA@nHA植入后肿瘤体积缩小曲线;
图7.CaO2@Co-Fc、SA@nHA、CaO2@Co-Fc/SA@nHA修复骨缺损的microCT重建图;
图8.CaO2@Co-Fc、SA@nHA、CaO2@Co-Fc/SA@nHA修复骨缺损的骨体积分数定量图。
具体实施方式
为更进一步阐述本发明为实现预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如后。
实施例1,载CaO2@Co-Fc纳米粒SA@nHA
CaO2@Co-Fc纳米颗粒的制备:将CaCl2(0.1g)和PVP(0.35g)溶于15mL乙醇,连续搅拌下加入NH3·H2O(0.8M,1mL)并滴加H2O2(1M,0.2mL),以12000rpm离心10分钟制备CaO2纳米颗粒。超声下将CaO2(3.5~5.5mg)与PVP(110~220mg)溶解于18mL DMF并加入(CH3COO)2Co·4H2O(0.1~0.3M,0.2mL)和Fc(COOH)2(0.1~0.3M,0.2mL),80~100℃下搅拌4~6h,离心得到CaO2@Co-Fc纳米颗粒。其合成机制如图1所示(见)扫描电镜图如图2a和2b所示,从图中可以看出,具有Co-Fc配位化合物包覆CaO2的核壳结构。
SA@nHA包载CaO2@Co-Fc复合材料制备及3D打印:室温下混合海藻酸钙0.4g,纳米羟基磷灰石1.2g于20mL纯水,加入交联剂Ca-EDTA3~6g及GDL 0.04~0.08g,13000r/min下搅拌5min,其XRD如图3所示。加入CaO2@Co-Fc纳米颗粒1~2g,混合均匀后,即可采用3D打印机打印或置于固定形狀的容器内冻干,以获得具有特定形状的CaO2@Co-Fc包载SA@nHA复合植入材料,其SEM见图4,从图4可以看出,SA@nHA具有多孔结构,孔洞中吸附CaO2@Co-Fc纳米颗粒。
1)CaO2@Co-Fc/SA@nHA复合体系的抗肿瘤效应评估
CaO2@Co-Fc是本发明复合体系中的抗肿瘤作用部分,因此,将本发明的CaO2@Co-Fc/SA@nHA复合体系与CaO2@Co-Fc的抗肿瘤效果进行对比。
构建小鼠乳腺癌成瘤模型,分别将用于抗肿瘤部分CaO2@Co-Fc材料、本实施例得到的CaO2@Co-Fc/SA@nHA植入小鼠乳腺癌成瘤模型14天,进行5组平行对比试验,试验结果如图5所示。从图中可以看出,植入CaO2@Co-Fc/SA@nHA的模型的肿瘤体积相比于植入CaO2@Co-Fc的模型的肿瘤体积出现了显著缩小。进一步地,对肿瘤体积进行了跟踪,发现植入CaO2@Co-Fc/SA@nHA的模型的肿瘤生长速度相比于植入CaO2@Co-Fc的模型的肿瘤生长速度出现了显著区别,植入CaO2@Co-Fc的模型的肿瘤还保持生长,生长速度(斜率)为正;而植入CaO2@Co-Fc/SA@nHA的模型的肿瘤生长速度为负,表明CaO2@Co-Fc/SA@nHA复合材料相比于CaO2@Co-Fc具有显著增强的抗肿瘤效应。
这说明:CaO2@Co-Fc/SA@nHA相比于CaO2@Co-Fc,具有显著的抗肿瘤效果,这可能是因为CaO2可通过氧化-还原反应产生超氧离子,Co-Fc壳又提供了酸性微环境下触发芬顿反应的催化剂。随着肿瘤微环境下H+的作用,Co-Fc壳降解,CaO2水解生成H2O2,并释放Ca2+。H2O2又在Co-Fc的催化下,生成大量·OH,持续诱导肿瘤细胞凋亡。同时,SA@nHA不断中和肿瘤微环境中的H+,释放Ca2+,持续纠正酸性微环境,抑制肿瘤细胞增殖。由于nHA结构的稳定性,这一过程可持续3周以上。同时,钙基生物陶瓷的pH调节效应减缓了Co-Fc壳的降解速率,延长了·OH及Ca2+的作用时间,共同强化肿瘤杀伤。
2)CaO2@Co-Fc/SA@nHA复合体系的骨修复效应评估
SA@nHA是本发明复合体系中的骨修复作用部分,而CaO2@Co-Fc中由于其含有钙离子,也可能一定程度上促进骨修复。因此,将本发明的CaO2@Co-Fc/SA@nHA复合体系与CaO2@Co-Fc、CaO2@Co-Fc的骨修复效果进行对比。
构建兔股骨缺损模型,分别将CaO2@Co-Fc材料、SA@nHA材料、本实施例得到的CaO2@Co-Fc/SA@nHA植入兔股骨缺损模型,进行对比试验,12周后,micro CT三维重建结果显示,植入CaO2@Co-Fc/SA@nHA后,骨缺损位点的骨小梁成骨及皮质骨愈合显著增强,如图7所示。
对micro CT三维重建后进行骨小梁分析,发现CaO2@Co-Fc/SA@nHA复合材料植入后,骨体积分数BV/TV:7.0242±1.2302%,而CaO2@Co-Fc植入组为0.4840±0.0300%,SA@nHA植入组为3.9905±0.4630%,如图8所示。CaO2@Co-Fc/SA@nHA复合材料的骨体积分数显著大于CaO2@Co-Fc和SA@nHA的骨体积分数之和。这可能是因为:肿瘤微环境下,SA@nHA不断释放OH-,中和H+,将酸性肿瘤微环境逆转为碱性成骨微环境;从离子环境来说,CaO2@Co-Fc水解及SA@nHA降解均释放大量Ca2+,实现Ca2+的双重缓释,可延长成骨细胞募集时间,为细胞外基质矿化供钙,共同加强成骨效应;从胞外界面来说,SA@nHA提供了成骨细胞分化必不可少的胞外物理界面,有利于成骨细胞的黏附、长入、分化。
由上可知,本发明将CaO2@Co-Fc和SA@nHA结合,显著性提升了SA@nHA的骨修复性能和CaO2@Co-Fc的抗肿瘤性能,两者协效,带来了意想不到的技术效果。
实施例2
CaO2@Co-Fc纳米颗粒的制备:将CaCl2(0.1g)和PVP(0.35g)溶于15mL乙醇,连续搅拌下加入NH3·H2O(0.8M,1mL)并滴加H2O2(1M,0.2mL),以12000rpm离心10分钟制备CaO2纳米颗粒。超声下将CaO2(3.5~5.5mg)与PVP(110~220mg)溶解于18mL DMF并加入(CH3COO)2Co·4H2O(0.1~0.3M,0.2mL)和Fc(COOH)2(0.1~0.3M,0.2mL),80~100℃下搅拌4~6h,离心得到CaO2@Co-Fc纳米颗粒。其合成机制如图1所示(见)扫描电镜图如图2a和2b所示,从图中可以看出,具有Co-Fc配位化合物包覆CaO2的核壳结构。
SA@nHA包载CaO2@Co-Fc复合材料制备及3D打印:室温下混合海藻酸钙0.4g,纳米羟基磷灰石1.2g于20mL纯水,加入交联剂Ca-EDTA3~6g及GDL 0.04~0.08g,13000r/min下搅拌5min,其XRD如图3所示。加入CaO2@Co-Fc纳米颗粒1~2g,混合均匀后,即可采用3D打印机打印或置于固定形狀的容器内冻干,以获得具有特定形状的CaO2@Co-Fc包载SA@nHA复合植入材料,SEM图可以看出,SA@nHA具有多孔结构,孔洞中吸附CaO2@Co-Fc纳米颗粒。
参照实施例1的方案进行抗肿瘤效应和骨修复效应评估,试验结果表明,植入本实施例的CaO2@Co-Fc/SA@nHA的模型的肿瘤生长速度为负;植入本实施例的CaO2@Co-Fc/SA@nHA复合材料12周后,骨体积分数BV/TV:7.0242±1.2302%。
实施例3
CaO2@Co-Fc纳米颗粒的制备:将CaCl2(0.1g)和PVP(0.35g)溶于15mL乙醇,连续搅拌下加入NH3·H2O(0.8M,1mL)并滴加H2O2(1M,0.2mL),以12000rpm离心10分钟制备CaO2纳米颗粒。超声下将CaO2(3.5~5.5mg)与PVP(110~220mg)溶解于18mL DMF并加入(CH3COO)2Co·4H2O(0.1~0.3M,0.2mL)和Fc(COOH)2(0.1~0.3M,0.2mL),80~100℃下搅拌4~6h,离心得到CaO2@Co-Fc纳米颗粒。其合成机制如图1所示(见)扫描电镜图如图2a和2b所示,从图中可以看出,具有Co-Fc配位化合物包覆CaO2的核壳结构。
SA@nHA包载CaO2@Co-Fc复合材料制备及3D打印:室温下混合海藻酸钙0.4g,纳米羟基磷灰石1.2g于20mL纯水,加入交联剂Ca-EDTA3~6g及GDL 0.04~0.08g,13000r/min下搅拌5min,其XRD如图3所示。加入CaO2@Co-Fc纳米颗粒1~2g,混合均匀后,即可采用3D打印机打印或置于固定形狀的容器内冻干,以获得具有特定形状的CaO2@Co-Fc包载SA@nHA复合植入材料,SEM图可以看出,SA@nHA具有多孔结构,孔洞中吸附CaO2@Co-Fc纳米颗粒。
参照实施例1的方案进行抗肿瘤效应和骨修复效应评估,试验结果表明,植入本实施例的CaO2@Co-Fc/SA@nHA的模型的肿瘤生长速度为负;植入本实施例的CaO2@Co-Fc/SA@nHA复合材料12周后,骨体积分数BV/TV:7.0242±1.2302%。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明,任何本领域技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简介修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (4)

1.一种双重缓释骨修复材料,其特征在于,包括钙基生物陶瓷,所述钙基生物陶瓷具有多孔结构,所述孔洞中吸附CaO2@Co-Fc纳米颗粒;所述CaO2@Co-Fc纳米颗粒具有Co-Fc配位化合物包覆CaO2的核壳结构。
2.根据权利要求1所述的双重缓释骨修复材料,其特征在于,钙基生物陶瓷为海藻酸钠-羟基磷灰石复合材料。
3.根据权利要求1所述的双重缓释骨修复材料,其特征在于,所述CaO2@Co-Fc纳米颗粒的制备方法如下:超声下将CaO2(3.5~5.5mg)与PVP(110~220mg)溶解于DMF中,并加入(CH3COO)2Co·4H2O(0.1~0.3M)和Fc(COOH)2(0.1~0.3M),80~100℃下搅拌4~6h,离心得到CaO2@Co-Fc纳米颗粒。
4.如权利要求1所述的双重缓释骨修复材料的制备方法,其特征在于,该方法为:室温下混合海藻酸钙0.4~0.6g、纳米羟基磷灰石1.0~1.5g于水中,加入交联剂Ca-EDTA 3~4g及GDL 0.04~0.08g,搅拌均匀;加入CaO2@Co-Fc纳米颗粒1~2g,混合均匀得到双重缓释骨修复材料。
CN202211074144.2A 2022-09-02 2022-09-02 双重缓释骨修复材料及其制备方法 Active CN115624653B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211074144.2A CN115624653B (zh) 2022-09-02 2022-09-02 双重缓释骨修复材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211074144.2A CN115624653B (zh) 2022-09-02 2022-09-02 双重缓释骨修复材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115624653A true CN115624653A (zh) 2023-01-20
CN115624653B CN115624653B (zh) 2023-11-07

Family

ID=84902100

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211074144.2A Active CN115624653B (zh) 2022-09-02 2022-09-02 双重缓释骨修复材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115624653B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110302421A (zh) * 2019-07-04 2019-10-08 中国科学院深圳先进技术研究院 用于治疗骨肉瘤的光热骨修复材料及其应用
CN112516382A (zh) * 2020-11-26 2021-03-19 中国科学院深圳先进技术研究院 一种具备光热抗肿瘤及促成骨复合材料及其制备方法
CN112661500A (zh) * 2021-01-07 2021-04-16 中国科学院上海硅酸盐研究所 表面具有微纳米结构的生物陶瓷支架及其制备方法和应用
CN113041402A (zh) * 2021-03-23 2021-06-29 南方医科大学 具有抗肿瘤和组织缺损修复作用的双功能支架和制备方法
CN113332445A (zh) * 2021-05-13 2021-09-03 浙江大学杭州国际科创中心 CaO2/Cu-ferrocene多功能纳米颗粒及制备方法
WO2022088634A1 (zh) * 2020-10-30 2022-05-05 郝定均 一种注射型镁基碳纳米管复合微球活化磷酸钙生物骨粘合剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110302421A (zh) * 2019-07-04 2019-10-08 中国科学院深圳先进技术研究院 用于治疗骨肉瘤的光热骨修复材料及其应用
WO2022088634A1 (zh) * 2020-10-30 2022-05-05 郝定均 一种注射型镁基碳纳米管复合微球活化磷酸钙生物骨粘合剂及其制备方法和应用
CN112516382A (zh) * 2020-11-26 2021-03-19 中国科学院深圳先进技术研究院 一种具备光热抗肿瘤及促成骨复合材料及其制备方法
CN112661500A (zh) * 2021-01-07 2021-04-16 中国科学院上海硅酸盐研究所 表面具有微纳米结构的生物陶瓷支架及其制备方法和应用
CN113041402A (zh) * 2021-03-23 2021-06-29 南方医科大学 具有抗肿瘤和组织缺损修复作用的双功能支架和制备方法
CN113332445A (zh) * 2021-05-13 2021-09-03 浙江大学杭州国际科创中心 CaO2/Cu-ferrocene多功能纳米颗粒及制备方法

Also Published As

Publication number Publication date
CN115624653B (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
Eivazzadeh‐Keihan et al. Metal‐based nanoparticles for bone tissue engineering
Wang et al. Integrative treatment of anti-tumor/bone repair by combination of MoS2 nanosheets with 3D printed bioactive borosilicate glass scaffolds
Yang et al. Degradable photothermal bioactive glass composite hydrogel for the sequential treatment of tumor-related bone defects: From anti-tumor to repairing bone defects
CN113318272B (zh) 基于纳米酶药物修饰的骨植入材料及其制备方法和应用
MX2010013322A (es) Nanoparticulas inorganicas de alta densidad para destruir celulas in vivo.
Qian et al. A pH-responsive CaO2@ ZIF-67 system endows a scaffold with chemodynamic therapy properties
Xu et al. Balancing the toxicity, photothermal effect, and promotion of osteogenesis: Photothermal scaffolds for malignant bone tumor therapy
CN104548095B (zh) 一种PLGA/MoS2复合药物支架材料及其制备方法和应用
CN106039316A (zh) 一种基于多肽构建的成骨细胞靶向载体及其制备与应用
CN108379658B (zh) 具有含铜涂层的骨科植入器件及其制备方法
CN111265714A (zh) 黒磷功能化的可注射水凝胶及其制备方法和应用
Izbudak et al. Layered double hydroxide-based nanocomposite scaffolds in tissue engineering applications
CN104192817A (zh) 利用模板法制备高比表面积介孔羟基磷灰石纳米粒子的方法
Yang et al. In-biofilm generation of nitric oxide using a magnetically-targetable cascade-reaction container for eradication of infectious biofilms
Du et al. Bismuth-coated 80S15C bioactive glass scaffolds for photothermal antitumor therapy and bone regeneration
KR101574646B1 (ko) 나노 하이드록시아파타이트 표면처리 기술을 이용하여 세포부착 및 골형성 능력이 우수한 이종골 이식재를 제조하는 방법 및 이에 의하여 제조된 이종골 이식재
CN113398334B (zh) 碳量子点水凝胶复合支架材料及制备方法和应用
Shi et al. Graphene oxide-modified layered double hydroxide/chitosan nacre-mimetic scaffolds treat breast cancer metastasis-induced bone defects
Huang et al. Functional anti-bone tumor biomaterial scaffold: construction and application
CN115624653A (zh) 双重缓释骨修复材料及其制备方法
CN108653805B (zh) 一种具有光热效应的钙硅基复合骨水泥及其制备方法和应用
CN116370404A (zh) 用于骨肉瘤诊疗一体化的可注射复合水凝胶及其制备方法
Andronescu et al. Nano-hydroxyapatite: novel approaches in biomedical applications
CN113499476B (zh) 协同骨肉瘤治疗和促进骨再生的导电水凝胶支架材料、制备方法及其应用
CN117942427B (zh) 一种可注射智能控释水凝胶及其在治疗骨骼损伤中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant