CN115616041A - 一种基于GaN基QDs薄膜的气体传感器及其制备方法 - Google Patents

一种基于GaN基QDs薄膜的气体传感器及其制备方法 Download PDF

Info

Publication number
CN115616041A
CN115616041A CN202211612727.6A CN202211612727A CN115616041A CN 115616041 A CN115616041 A CN 115616041A CN 202211612727 A CN202211612727 A CN 202211612727A CN 115616041 A CN115616041 A CN 115616041A
Authority
CN
China
Prior art keywords
gan
gas sensor
film
source
qds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211612727.6A
Other languages
English (en)
Other versions
CN115616041B (zh
Inventor
韩丹
刘青明
陈毅
桑胜波
许并社
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202211612727.6A priority Critical patent/CN115616041B/zh
Publication of CN115616041A publication Critical patent/CN115616041A/zh
Application granted granted Critical
Publication of CN115616041B publication Critical patent/CN115616041B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)

Abstract

本发明属于气体传感器技术领域,涉及一种基于GaN基QDs薄膜的气体传感器及其制备方法,是利用MOCVD在衬底上不经高温退火处理的GaN成核层上生长掺杂有硅或镁和/或铝或铟的GaN基QDs薄膜,再在所述GaN基QDs薄膜上利用磁控溅射或蒸镀技术沉积Ti/Al/Ti/Au电极,高温退火使其与GaN基QDs薄膜之间形成欧姆接触,获得的GaN基QDs薄膜载流子浓度为(5‑30)×1016 cm‑3的气体传感器。本发明的气体传感器具有ppt‑ppb级检测下限和高的稳定性,并具有良好的生物相容性和环境友好性,可用于气体环境中NO2气体浓度的检测。

Description

一种基于GaN基QDs薄膜的气体传感器及其制备方法
技术领域
本发明属于气体传感器技术领域,涉及一种基于GaN基QDs薄膜的气体传感器,以及该气体传感器的制备方法。
背景技术
气体传感器一般用来测量环境中某种气体或者有机挥发物的浓度,主要用于气体的含氧量监测、易燃易爆气体和有毒有害气体的泄露检测等安全监管领域,在智能家居、环保监测、石油化工生产安全监管、煤矿瓦斯监测、医学诊断等领域具有重要意义。
气体传感器用气敏材料可以分为金属氧化物多晶、新型单/数个原子层二维材料及氮化镓(GaN)基单晶材料等。传统的气体传感器存在传感性能不稳定、测试温度高、检测下限高等诸多缺点。例如,利用水热法制备的α-MoO3半导体传感器用于NH3的检测,检测下限可以达到400ppb,但基于金属氧化物的气体传感器工作温度较高,纳米级敏感材料容易出现团簇。再比如,利用光生载流子数目提高单层MoS2气体传感器对NO2的响应,也实现了ppb级检测,但二维材料易形成堆叠结构,材料的稳定性存在一定的不足。因此制备出性能稳定、检测下限低、常温下工作的气体传感器是很有必要的。
宽禁带半导体GaN基器件具有高的电子迁移率、载流子浓度、热稳定性、化学稳定性、良好的生物相容性和环境友好性,给未来GaN基生物传感器的发展提供了广阔的舞台,在痕量检测各类气体的气体传感器领域也具有极大的应用前景。
但是,目前的GaN传感器仍然存在检测下限较高的问题。利用PA-MBE(等离子体辅助分子束外延)法在V型槽Si(111)基板上生长的GaN纳米棒制作气体传感器,表现出优异的热稳定性和化学稳定性,但在室温紫外线照射下仅可检测500ppb NO2气体;利用金属有机化学气相沉积(MOCVD)制作的增强型多栅Pt/AlGaN/GaN高电子迁移率晶体管,在275℃时对于50ppb NO2仅有1.2%的传感响应,检测下限较低,但工作温度高且响应度较低。
为了解决目前GaN传感器仍然存在的检测下限较高的问题,需要进一步提高传感材料的比表面积和表面活性,从而利用其精准连续可调的MOCVD工艺实现高灵敏、高选择和高稳定性的气敏传感器,并有望实现GaN敏感材料的规范化制程,加速推进其的产业化发展。
发明内容
本发明的目的是克服现有技术存在的不足,提供一种基于GaN基QDs薄膜的气体传感器及其制备方法,以制备出ppt-ppb级检测限和高稳定性的气体传感器。
为实现上述发明目的,本发明提供了一种基于GaN基QDs薄膜的气体传感器,是利用MOCVD在衬底上不经高温退火处理的GaN成核层上生长GaN基QDs薄膜,并在生长的同时掺杂硅或镁,或者掺杂铝或铟,或者在掺杂硅或镁的同时掺杂铝或铟,再在所述GaN基QDs薄膜上利用磁控溅射或蒸镀技术沉积Ti/Al/Ti/Au电极,高温退火使其与GaN基QDs薄膜之间形成欧姆接触,所获得的一种GaN基QDs薄膜载流子浓度为(5-30)×1016 cm-3的气体传感器。
本发明上述获得的基于GaN基QDs薄膜的气体传感器不同于传统的液滴外延法和S-K(Stranski-Krastanow)模式,而是基于其独特的自组织高温GaN基QDs生长技术,实现了高质量单晶GaN基QDs的生长,获得的超小尺寸量子点比表面积大、活性高,且批次间一致性高,可用于检测ppt-ppb级浓度的气体。
具体地,本发明所述基于GaN基QDs薄膜的气体传感器中,用于所述GaN基QDs薄膜生长的衬底可以包括但不限于是蓝宝石、碳化硅或硅等中的任意一种。
更具体地,本发明所述基于GaN基QDs薄膜的气体传感器中,所述GaN基QDs薄膜的厚度为3-80nm。
更具体地,本发明所述基于GaN基QDs薄膜的气体传感器中,所述Ti/Al/Ti/Au电极的厚度为60-200nm。
进一步地,本发明所述基于GaN基QDs薄膜的气体传感器中,在所述GaN基QDs薄膜中掺杂硅或镁时,掺杂有浓度为(2-10)×1018 cm-3的硅,或者掺杂有浓度为(1-3)×1018 cm-3的镁,通过精准调控GaN基QDs薄膜中的掺杂硅或镁浓度,可以实现ppt-ppb级浓度不同种类气体的检测。
更进一步地,本发明所述基于GaN基QDs薄膜的气体传感器中,在所述GaN基QDs薄膜中掺杂铝或铟时,是以元素计,所掺杂铝或铟元素的质量为Ga元素质量的1-30wt%。
本发明还进一步提供了所述基于GaN基QDs薄膜的气体传感器的具体制备方法。
1)、将衬底置于MOCVD系统的反应室中抽真空,加热至900-1200℃通入H2进行衬底表面预处理,以除去衬底表面的氧及其杂质,达到清洁衬底表面的作用。
2)、降温至400-600℃,通入NH3并保温,对预处理的衬底进行氮化处理,此时反应室内的气氛为NH3和H2的混合气氛。
3)、在持续通入NH3的气氛下,升温至500-700℃通入镓源TMGa,在氮化处理的衬底上生长GaN成核层。
4)、不按照传统工艺对成核层进行高温退火(重结晶)过程,而是在持续通入NH3和镓源TMGa下,直接将反应室升温至1000-1400℃,同时通入掺杂元素源,在GaN成核层上生长厚度为3-80nm的GaN基QDs薄膜。
5)、关闭镓源TMGa及掺杂元素源,在持续通入NH3气氛下,将MOCVD系统降至室温。
6)、采用磁控溅射技术或蒸镀技术,在GaN基QDs薄膜表面沉积上厚度60-200nm的Ti/Al/Ti/Au电极,高温退火使其与GaN基QDs薄膜之间形成欧姆接触,得到GaN基QDs薄膜气体传感器。
其中,所述同时通入的掺杂元素源可以有多种方式,可以是单通入硅源SiH4或镁源Cp2Mg,可以是单通入铟源TMIn或铝源TMAl,也可以是同时通入硅源SiH4或镁源Cp2Mg中的一种以及铟源TMIn或铝源TMAl中的一种。
具体地,所述针对衬底的表面预处理是将衬底加热至900-1200℃,通入H2并保温处理200-800s。
具体地,所述针对预处理衬底进行的氮化处理是在降温至400-600℃后,持续通入流量为1000-3000sccm的NH3,保温处理50-400s。
具体地,本发明在所述氮化处理的衬底上生长GaN成核层时,是在持续通入流量为1000-3000sccm的NH3气氛下升温至500-700℃,调控通入镓源TMGa的流量为10-70sccm,反应室压力为400-700mbar,进行40-120s的GaN成核层生长。
进而,具体地,本发明在所述GaN成核层表面生长GaN基QDs薄膜时,是在直接将反应室升温至1000-1400℃后,调控NH3的流量为10-100sccm,镓源TMGa的流量为10-100sccm,同时通入流量为10-100sccm的掺杂元素源,在反应室压力100-300mbar下生长50-250s。
具体地,控制在MOCVD系统降温的过程中,NH3的流量为1000-1400sccm。
本发明针对传统气体传感器传感性能不稳定、测试温度高、检测下限高等问题,基于GaN在气体传感方面具有的器件性能稳定、工作温度低以及抗高湿、批次间一致性高等特点,利用MOCVD技术,以独特的高温生长技术生长GaN基QDs薄膜,再在GaN基QDs薄膜上利用磁控溅射或蒸镀沉积Ti/Al/Ti/Au电极,经高温退火形成欧姆接触,制备出了具有ppt-ppb级检测下限和高稳定性的气体传感器。
本发明基于GaN基QDs薄膜的气体传感器可以作为气体检测用传感器,应用于气体浓度的检测。
特别地,本发明基于GaN基QDs薄膜的气体传感器尤其是可以作为NO2气体检测用传感器,应用于气体环境中NO2气体浓度的检测。
本发明的气体传感器能够在室温下工作,稳定性好,而且可以通过清洗等工艺保证其的长期使用,在高湿环境下仍可实现低ppb级检测,因此,利用GaN基QDs生长技术可制备出低检测限和高稳定性的室温抗湿高灵敏度气体传感器,有望推动GaN气体敏感材料的产业化发展。
本发明的气体传感器采用了宽禁带半导体GaN基器件,具有高的机械稳定性、热稳定性和化学稳定性,同时,GaN基气体传感器还具有良好的生物相容性和环境友好性。
本发明基于GaN基QDs薄膜的气体传感器可以快速量产,检测过程简单易操作,检测结果选择性高、检测极限低、稳定性高。
附图说明
图1是以图形化蓝宝石为衬底生长GaN基QDs薄膜气体传感器的制备流程图。
图2是以图形化蓝宝石为衬底生长的GaN基QDs薄膜的SEM图。
图3是GaN基QDs薄膜气体传感器室温下对5ppb-100ppm NO2气体的响应曲线图。
图4是GaN基QDs薄膜气体传感器的重复性测试结果。
图5是GaN基QDs薄膜气体传感器的稳定性测试结果。
图6是GaN基QDs薄膜气体传感器的批次间一致性测试结果。
图7是以图形化蓝宝石为衬底生长的经成核层退火处理GaN基QDs薄膜的SEM图。
图8是经成核层退火处理GaN基QDs薄膜气体传感器室温下对100ppm NO2气体的响应曲线图。
图9是以图形化蓝宝石为衬底生长的未掺杂硅GaN基QDs薄膜的SEM图。
图10是未掺杂硅GaN基QDs薄膜气体传感器室温下对100ppm NO2气体的响应曲线图。
具体实施方式
下面结合附图和实施例对本发明的具体实施方式作进一步的详细描述。以下实施例仅用于更加清楚地说明本发明的技术方案,从而使本领域技术人员能很好地理解和利用本发明,而不是限制本发明的保护范围。
本发明实施例中涉及到的生产工艺、实验方法或检测方法,若无特别说明,均为现有技术中的常规方法,且其名称和/或简称均属于本领域内的常规名称,在相关用途领域内均非常清楚明确,本领域技术人员能够根据该名称理解常规工艺步骤并应用相应的设备,按照常规条件或制造商建议的条件进行实施。
本发明实施例中使用的各种仪器、设备、原料或试剂,并没有来源上的特殊限制,均为可以通过正规商业途径购买获得的常规产品,也可以按照本领域技术人员熟知的常规方法进行制备。
实施例1。
基于GaN QDs薄膜的气体传感器的制备流程如图1所示,其中衬底选择图形化蓝宝石衬底(PSS)。
对MOCVD系统进行安全自检,并将反应室进行抽真空处理30min。
开启加热系统,将PSS加热至1100℃,通入H2,并在H2气氛下保温350s,以除去衬底表面的氧及其杂质,达到清洁衬底表面的作用。
降温至550℃,持续通入1200sccm的NH3并保温350s,对衬底进行氮化处理,此时反应室内的气氛为NH3与H2的混合气氛。
设置GaN成核层温度为650℃,通入三甲基镓(TMGa)源,并调整TMGa源的流量为15sccm,NH3流量为1200sccm,反应室压力为600mbar,在氮化处理过的PSS上生长GaN成核层,生长时间50s。
不对GaN成核层进行高温退火处理,直接将反应室升温至1100℃,并调整TMGa源的流量为60sccm,NH3流量为60sccm,反应室压力为140mbar,同时通入流量为20sccm的硅源SiH4,生长时间125s,在GaN成核层表面生长掺杂硅的GaN QDs薄膜,薄膜厚度25nm,掺杂硅浓度为5×1018 cm−3
关闭TMGa源和SiH4源,保持NH3流量为1200sccm,将MOCVD系统降至室温。
将生长有GaN QDs薄膜的PSS置于磁控溅射仪真空室中,采用磁控溅射技术,在GaNQDs薄膜的表面沉积厚度为100nm的Ti/Al/Ti/Au电极,经600℃高温退火10s,使其与GaNQDs薄膜之间形成欧姆接触,制备得到GaN QDs薄膜气体传感器。
图2是本实施例在PSS上生长的GaN QDs薄膜的SEM图,从图中可以看出图形化衬底上各个位置成核均匀,具有大量的形核位点。
利用CGS-MT智能气敏分析系统,在温度RT为(27±2)℃和相对湿度RH为50%的条件下,测量本实施例制备的GaN QDs薄膜气体传感器在5ppb-100ppm NO2气体浓度下的电阻变化。
在传感试验过程中,将GaN QDs薄膜气体传感器放置在配气室中,待其基底电阻在空气背景气体下稳定后,以微注射器将目标气体注入气体反应室,利用公式Response(%) =(Rg-Ra)/Ra×100%来评价GaN QDs薄膜气体传感器的响应。其中,Rg和Ra分别表示暴露于目标气体和空气中的电阻。
图3为本实施例测试的GaN QDs薄膜气体传感器在室温下对5ppb-100ppm NO2气体的响应曲线图。可以看出,GaN QDs薄膜气体传感器展现了宽的检测范围和ppb级检测下限。
本实施例还针对GaN QDs薄膜气体传感器的重复性、稳定性和批次间一致性进行了测试。
图4给出了GaN QDs薄膜气体传感器在室温下针对5ppm NO2的五次重复测试,可以看出,其五次测试的响应度差异小于1%,表明传感器具有优异的重复性。
图5为在150天内持续使用GaN QDs薄膜气体传感器在室温下对1ppm NO2气体进行检测的稳定性测试结果,表明传感器具有良好的长期稳定性。
图6是使用五个批次制备的GaN QDs薄膜气体传感器,在室温下测试200ppb NO2的电阻响应曲线,图中各批次间的电阻基线基本不变,且响应度差异在3%以内,表明传感器具有良好的的批次间一致性。
本实施例不对GaN成核层进行高温退火处理,而是在成核层上直接高温生长GaNQDs薄膜,获得的GaN QDs薄膜具有丰富的表面态,比表面积大,硅掺杂后传感器还具有高的载流子浓度、载流子迁移率以及良好的导电性,使得气体传感器具有高灵敏、高选择、高稳定特性。
比较例1。
对MOCVD系统进行安全自检,并将反应室进行抽真空处理30min。
开启加热系统,将PSS加热至1100℃,通入H2,并在H2气氛下保温350s,以除去衬底表面的氧及其杂质,达到清洁衬底表面的作用。
降温至550℃,持续通入1200sccm的NH3并保温350s,对衬底进行氮化处理,此时反应室内的气氛为NH3与H2的混合气氛。
设置GaN成核层温度为650℃,通入三甲基镓(TMGa)源,并调整TMGa源的流量为15sccm,NH3流量为1200sccm,反应室压力为600mbar,在氮化处理过的PSS上生长GaN成核层,生长时间50s。
持续通入流量为1200sccm的NH3,关闭TMGa源,将反应室升温至1100℃,并保温130s,对GaN成核层进行高温退火(重结晶)处理。
保持反应室温度1100℃,打开TMGa源并调整TMGa源流量为60sccm,NH3流量为60sccm,反应室压力为140mbar,并通入流量为20sccm的硅源SiH4,生长时间125s,在高温退火处理的GaN成核层表面生长掺杂硅的GaN QDs薄膜,薄膜厚度25nm,掺杂硅浓度为5×1018 cm−3
关闭TMGa源和SiH4源,保持NH3流量为1200sccm,将MOCVD系统降至室温。
按照实施例1中方法,将生长有GaN QDs薄膜的PSS置于磁控溅射仪真空室中,采用磁控溅射技术在GaN QDs薄膜表面沉积厚度为100nm的Ti/Al/Ti/Au电极,经600℃高温退火10s,使其与GaN QDs薄膜之间形成欧姆接触,制备得到GaN QDs薄膜气体传感器。
图7是本比较例在PSS上生长的GaN QDs薄膜的SEM图,从图中可以看出,经GaN成核层高温退火处理后的图形化衬底上只有平面位置出现QDs,而在衬底的图形上QDs难以成核。
按照实施例1中方法,测量本比较例制备的GaN QDs薄膜气体传感器在室温下对100ppm NO2气体浓度的电阻变化响应曲线,结果如图8所示,可以看出,GaN QDs薄膜气体传感器只对100ppm的NO2有较低的响应。
因此,经过GaN成核层高温退火处理后的GaN QDs薄膜气体传感器仅对NO2有较低的响应,检测下限也在ppm级,原因是经GaN成核层高温退火处理后,GaN QDs的形核位点显著减少。
比较例2。
对MOCVD系统进行安全自检,并将反应室进行抽真空处理30min。
开启加热系统,将PSS加热至1100℃,通入H2,并在H2气氛下保温350s,以除去衬底表面的氧及其杂质,达到清洁衬底表面的作用。
降温至550℃,持续通入1200sccm的NH3并保温350s,对衬底进行氮化处理,此时反应室内的气氛为NH3与H2的混合气氛。
设置GaN成核层温度为650℃,通入三甲基镓(TMGa)源,并调整TMGa源的流量为15sccm,NH3流量为1200sccm,反应室压力为600mbar,在氮化处理过的PSS上生长GaN成核层,生长时间50s。
不对GaN成核层进行高温退火处理,直接将反应室升温至1100℃,并调整TMGa源的流量为60sccm,NH3流量为60sccm,反应室压力为140mbar,生长时间125s,在GaN成核层表面生长厚度为25nm的GaN QDs薄膜。
关闭TMGa源,保持NH3流量为1200sccm,将MOCVD系统降至室温。
按照实施例1中方法,将生长有GaN QDs薄膜的PSS置于磁控溅射仪真空室中,采用磁控溅射技术在GaN QDs薄膜表面沉积厚度为100nm的Ti/Al/Ti/Au电极,经600℃高温退火10s,使其与GaN QDs薄膜之间形成欧姆接触,制备得到GaN QDs薄膜气体传感器。
图9是本比较例在PSS上生长的未掺杂硅的GaN QDs薄膜的SEM图,可以看出未进行GaN成核层高温退火处理的图形化衬底上各个位置成核也较为均匀。
按照实施例1中方法,测量本比较例制备的GaN QDs薄膜气体传感器在室温下对100ppm NO2气体浓度的电阻变化响应曲线,结果如图10所示,可以看出,未掺杂硅的GaNQDs薄膜气体传感器对100ppm的NO2仅有1.4%的响应度。
可以看出,与实施例1相比,未掺杂硅的GaN基QDs薄膜气体传感器对100ppm NO2的响应明显下降且检测限很高。这是由于未掺杂硅导致GaN基QDs薄膜气体传感器的电阻过高,不利于气敏传感。
实施例2。
本实施例基于GaN基QDs薄膜的气体传感器选择碳化硅作为衬底。
对MOCVD系统进行安全自检,并对反应室进行抽真空处理30min。
开启加热系统,将碳化硅衬底加热至1000℃,通入H2,在H2气氛下保温300s,以除去衬底表面的氧及其杂质,达到清洁衬底表面的作用。
降温至500℃,持续通入1150sccm的NH3并保温300s,对衬底进行氮化处理,此时反应室内的气氛为NH3与H2的混合气氛。
设置GaN成核层温度600℃,通入三甲基镓(TMGa)源,调整TMGa源的流量为20sccm,NH3流量为1100sccm,反应室压力为550mbar,在氮化处理过的碳化硅衬底上生长GaN成核层,生长时间60s。
不对GaN成核层进行高温退火处理,直接将反应室升温至1200℃,并调整TMGa源的流量为50sccm,NH3流量为80sccm,反应室压力为120mbar,同时通入20sccm的铟源TMIn,在GaN成核层表面生长GaN基QDs薄膜,生长时间120s,形成的铟镓氮(InGaN)薄膜厚度为30nm,在InGaN薄膜中并入了10wt%原子质量的铟。
关闭TMGa源和TMIn源,保持NH3流量为1100sccm,将MOCVD系统降至室温。
将生长有GaN基QDs薄膜的碳化硅衬底置于磁控溅射仪真空室中,采用磁控溅射技术,在GaN基QDs薄膜的表面沉积厚度为120nm的Ti/Al/Ti/Au电极,经600℃高温退火15s,使其与GaN基QDs薄膜之间形成欧姆接触,制备得到GaN基QDs薄膜气体传感器。
本发明以上实施例并没有详尽叙述所有的细节,也不限制本发明仅为以上所述实施例。本领域普通技术人员在不脱离本发明原理和宗旨的情况下,针对这些实施例进行的各种变化、修改、替换和变型,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于GaN基QDs薄膜的气体传感器,是利用MOCVD在衬底上不经高温退火处理的GaN成核层上生长GaN基QDs薄膜,并在生长的同时掺杂硅或镁,或者掺杂铝或铟,或者在掺杂硅或镁的同时掺杂铝或铟,再在所述GaN基QDs薄膜上利用磁控溅射或蒸镀技术沉积Ti/Al/Ti/Au电极,高温退火使其与GaN基QDs薄膜之间形成欧姆接触,获得的GaN基QDs薄膜载流子浓度为(5-30)×1016 cm-3的气体传感器。
2.根据权利要求1所述的基于GaN基QDs薄膜的气体传感器,其特征是所述的衬底是蓝宝石、碳化硅或硅。
3.根据权利要求1或2所述的基于GaN基QDs薄膜的气体传感器,其特征是掺杂硅的浓度为(2-10)×1018 cm-3,掺杂镁的浓度为(1-3)×1018 cm-3
4.根据权利要求1或2所述的基于GaN基QDs薄膜的气体传感器,其特征是所述掺杂铝或铟是以元素计,所掺杂铝或铟元素的质量为Ga元素质量的1-30wt%。
5.根据权利要求1或2所述的基于GaN基QDs薄膜的气体传感器,其特征是所述GaN基QDs薄膜的厚度为3-80nm,Ti/Al/Ti/Au电极的厚度为60-200nm。
6.权利要求1所述基于GaN基QDs薄膜的气体传感器的制备方法,包括:
1)、将衬底置于MOCVD系统的反应室中抽真空,加热至900-1200℃通入H2进行衬底表面预处理;
2)、降温至400-600℃,通入NH3并保温,对预处理的衬底进行氮化处理;
3)、在持续通入NH3的气氛下,升温至500-700℃通入镓源TMGa,在氮化处理的衬底上生长GaN成核层;
4)、持续通入NH3和镓源TMGa下,将反应室升温至1000-1400℃,同时通入掺杂元素源,在GaN成核层上生长GaN基QDs薄膜;通入的所述掺杂元素源是硅源SiH4、镁源Cp2Mg中的一种,或者是铟源TMIn、铝源TMAl中的一种,或者是同时通入硅源SiH4、镁源Cp2Mg中的一种与铟源TMIn、铝源TMAl中的一种;
5)、关闭镓源TMGa及掺杂元素源,在持续通入NH3气氛下,将MOCVD系统降至室温;
6)、采用磁控溅射技术或蒸镀技术在GaN基QDs薄膜表面沉积Ti/Al/Ti/Au电极,高温退火使其与GaN基QDs薄膜之间形成欧姆接触,得到GaN基QDs薄膜气体传感器。
7.根据权利要求6所述的基于GaN基QDs薄膜的气体传感器的制备方法,其特征是所述表面预处理的时间为200-800s,所述氮化处理的NH3流量为1000-3000sccm,处理时间50-400s。
8.根据权利要求6所述的基于GaN基QDs薄膜的气体传感器的制备方法,其特征是所述生长GaN成核层的镓源TMGa流量10-70sccm,NH3流量1000-3000sccm,反应室压力400-700mbar,GaN成核层生长时间40-120s;所述生长GaN基QDs薄膜的镓源TMGa流量10-100sccm,掺杂元素源流量10-100sccm,NH3流量10-100sccm,反应室压力100-300mbar,生长时间50-250s。
9.根据权利要求6所述的基于GaN基QDs薄膜的气体传感器的制备方法,其特征是MOCVD系统降温时保持NH3流量为1000-1400sccm。
10.权利要求1所述基于GaN基QDs薄膜的气体传感器作为NO2气体浓度检测用传感器的应用。
CN202211612727.6A 2022-12-15 2022-12-15 一种基于GaN基QDs薄膜的气体传感器及其制备方法 Active CN115616041B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211612727.6A CN115616041B (zh) 2022-12-15 2022-12-15 一种基于GaN基QDs薄膜的气体传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211612727.6A CN115616041B (zh) 2022-12-15 2022-12-15 一种基于GaN基QDs薄膜的气体传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN115616041A true CN115616041A (zh) 2023-01-17
CN115616041B CN115616041B (zh) 2023-06-16

Family

ID=84881006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211612727.6A Active CN115616041B (zh) 2022-12-15 2022-12-15 一种基于GaN基QDs薄膜的气体传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN115616041B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282944A (ja) * 2002-03-26 2003-10-03 Shin Etsu Handotai Co Ltd 可視光発光装置
CN104020207A (zh) * 2014-06-24 2014-09-03 上海大学 薄膜芯片气体传感器及其制备方法
CN107064260A (zh) * 2017-04-28 2017-08-18 中国科学院半导体研究所 用于肿瘤标志物检测的核酸适配子传感器及其制备方法
US20180204976A1 (en) * 2015-07-13 2018-07-19 Crayonano As Nanowires or nanopyramids grown on graphitic substrate
CN108428621A (zh) * 2018-03-29 2018-08-21 太原理工大学 一种在非晶态SiO2衬底上生长GaN薄膜的方法
CN111063725A (zh) * 2019-12-19 2020-04-24 太原理工大学 一种三维氮化镓基呼出式气体传感器及其制备方法
CN111640817A (zh) * 2020-05-09 2020-09-08 北京科技大学 一种悬空横向双异质结光探测器及其制作方法
CN111735859A (zh) * 2020-08-21 2020-10-02 深圳第三代半导体研究院 一种GaN基气体传感器及其制备方法
CN112525954A (zh) * 2020-12-02 2021-03-19 西安交通大学 一种多孔氮化镓基室温气体传感器的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282944A (ja) * 2002-03-26 2003-10-03 Shin Etsu Handotai Co Ltd 可視光発光装置
CN104020207A (zh) * 2014-06-24 2014-09-03 上海大学 薄膜芯片气体传感器及其制备方法
US20180204976A1 (en) * 2015-07-13 2018-07-19 Crayonano As Nanowires or nanopyramids grown on graphitic substrate
CN107064260A (zh) * 2017-04-28 2017-08-18 中国科学院半导体研究所 用于肿瘤标志物检测的核酸适配子传感器及其制备方法
CN108428621A (zh) * 2018-03-29 2018-08-21 太原理工大学 一种在非晶态SiO2衬底上生长GaN薄膜的方法
CN111063725A (zh) * 2019-12-19 2020-04-24 太原理工大学 一种三维氮化镓基呼出式气体传感器及其制备方法
CN111640817A (zh) * 2020-05-09 2020-09-08 北京科技大学 一种悬空横向双异质结光探测器及其制作方法
CN111735859A (zh) * 2020-08-21 2020-10-02 深圳第三代半导体研究院 一种GaN基气体传感器及其制备方法
CN112525954A (zh) * 2020-12-02 2021-03-19 西安交通大学 一种多孔氮化镓基室温气体传感器的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DAN HAN 等: "Conductometric nitrogen dioxide gas sensor based on gallium nitride quantum dots film", 《SENSORS AND ACTUATORS: B. CHEMICAL》, vol. 379, pages 1 - 10 *
MD ASHFAQUE 等: "Gallium Nitride (GaN) Nanostructures and Their Gas Sensing Properties: A review", 《SENSORS》, vol. 20, pages 1 - 22 *
XIAOMEI HAN 等: "Resistive NO2 gas sensor based on GaN hexagonal pits at room temperature", 《SENSORS AND ACTUATORS: B. CHEMICAL》, vol. 371, pages 1 - 7 *
张德恒 等: "用MOCVD方法制备的n型GaN薄膜紫外光电导", 《物理学报》, no. 09, pages 1800 - 1804 *
翟化松 等: "N2流量对GaN的形貌及光学和电学性能的影响", 《无机化学学报》, vol. 29, no. 10, pages 2027 - 2033 *

Also Published As

Publication number Publication date
CN115616041B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
CN101719483B (zh) 用于生长纤锌矿型晶体的衬底、其制造方法和半导体器件
CN111725072B (zh) 一种电子浓度稳定的高质量氧化镓薄膜及其制备方法
KR101352246B1 (ko) 산화아연 박막의 제조방법
Kaminska et al. Transparent p-type ZnO films obtained by oxidation of sputter-deposited Zn3N2
Van Hieu et al. Low-temperature growth and ethanol-sensing characteristics of quasi-one-dimensional ZnO nanostructures
TW201013754A (en) Method of reducing memory effects in semiconductor epitaxy
JP2017128492A (ja) 結晶性酸化物膜
Cha et al. Characterization of non-stoichiometric Ga2O3-x thin films grown by radio-frequency powder sputtering
Jiang et al. Study of N-polar GaN growth with a high resistivity by metal-organic chemical vapor deposition
CN106471163A (zh) 半导体衬底、外延片及其制造方法
CN115616041B (zh) 一种基于GaN基QDs薄膜的气体传感器及其制备方法
Kumar et al. Growth, properties, and applications of β-Ga2O3 nanostructures
Chan et al. Morphology, stoichiometry, and crystal structure control via post-annealing for Pt–ZnO nanograin Schottky barrier interfaces
KR20120100340A (ko) Pt촉매를 이용한 GaN 나노와이어의 성장방법
Popa et al. A GaN-based two-sensor array for methane detection in an ethanol environment
CN111982885B (zh) 非接触式薄膜水氧透过性能测试方法
Köhler et al. Reactor dependent starting transients of doping profiles in MOVPE grown GaN
JP2577550B2 (ja) ▲iii▼−▲v▼族化合物半導体単結晶薄膜の不純物添加法
CN113089091A (zh) 氮化硼模板及其制备方法
Isai et al. Preparation of Ga2O3 films and evaluation of oxygen sensing properties
KR101267116B1 (ko) 산화주석 나노판 복합구조체, 이의 제조방법 및 이를 이용한 가스센서
CN111987235B (zh) 非接触式薄膜水氧透过性能测试装置及其生产工艺
KR101921603B1 (ko) 이산화주석 나노구조물을 포함하는 수소가스 검출장치 제조방법
Huang et al. Carbon doping in GaAs using carbon tetrabromide in solid source molecular beam epitaxy
Pritchett et al. Influence of growth conditions and surface reaction byproducts on GaN grown via metal organic molecular beam epitaxy: Toward an understanding of surface reaction chemistry

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant