CN115612985A - 一种锗烯/碲化亚铜垂直异质结材料及其制备方法 - Google Patents

一种锗烯/碲化亚铜垂直异质结材料及其制备方法 Download PDF

Info

Publication number
CN115612985A
CN115612985A CN202211636670.3A CN202211636670A CN115612985A CN 115612985 A CN115612985 A CN 115612985A CN 202211636670 A CN202211636670 A CN 202211636670A CN 115612985 A CN115612985 A CN 115612985A
Authority
CN
China
Prior art keywords
germanium
alkene
preparation
cuprous telluride
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211636670.3A
Other languages
English (en)
Other versions
CN115612985B (zh
Inventor
张利杰
黎博
秦志辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN202211636670.3A priority Critical patent/CN115612985B/zh
Publication of CN115612985A publication Critical patent/CN115612985A/zh
Application granted granted Critical
Publication of CN115612985B publication Critical patent/CN115612985B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明公开了一种锗烯/碲化亚铜垂直异质结材料及其制备方法。其制备方法如下:(1)在超高真空环境中,对金属基底材料进行溅射后,于300~500℃退火,然后在金属基底材料上沉积碲元素,然后于300~400℃退火;(2)保持步骤(1)样品温度为100~200℃,在其上沉积锗元素即可。本发明通过外延方法生长高质量的锗烯二维原子晶体材料,锗烯原子成六角蜂窝状排布,并在二维平面内扩展,便于进一步研究锗烯二维原子晶体材料的电子性质及相关器件开发。这种锗烯二维晶体材料不同于金属上的锗稀,其不会受到来自基底的影响,具有独立的1×1翘曲结构,为研究二维体系中新的量子现象和电子行为以及自旋电子学及器件应用铺平道路。

Description

一种锗烯/碲化亚铜垂直异质结材料及其制备方法
技术领域
本发明属于纳米材料制备技术领域,具体涉及一种锗烯/碲化亚铜垂直异质结材料及其制备方法。
背景技术
以石墨烯为代表的二维原子晶体材料表现出一系列奇特的物理与电子特性,有望应用到下一代电子器件中。锗烯是由单原子锗组成的二维翘曲蜂窝结构,与石墨烯有诸多相似之处,尤其是其可以保留狄拉克线性色散关系在基础研究领域引起广泛兴趣。而因锗烯较大的自旋轨道耦合使之可以实现量子自旋霍尔效应,是新型的二维拓扑绝缘体材料,这为未来的非耗散电子器件的应用有很大的潜力。
然而目前的研究是将锗烯制备在金属衬底之上,但这不利于电子器件的制作,而且金属衬底也会破坏锗烯的物理特性。因此在半导体衬底上实现高质量锗烯的制备迫在眉睫,尤其是制备出非重构的1×1晶格锗烯。
发明内容
针对现有技术中的上述不足,本发明提供一种锗烯/碲化亚铜垂直异质结材料及其制备方法,合成了一种锗烯/碲化亚铜垂直异质结材料,其具有非重构的1×1晶格锗烯。
为实现上述目的,本发明解决其技术问题所采用的技术方案是:
一种锗烯/碲化亚铜垂直异质结材料的制备方法,包括以下步骤:
(1)在超高真空环境中,对金属基底材料进行溅射后,于300~500℃退火,然后在金属基底材料上沉积碲元素,然后于300~400℃退火;
(2)保持步骤(1)样品温度为100~200℃,将锗元素沉积至步骤(1)所得产物上即可。
进一步地,超高真空环境的真空度为10e-7~10e-10 mbar。
进一步地,金属基底材料为铜。
进一步地,步骤(1)中碲元素通过热蒸发方式沉积至金属基底材料上,碲原子纯度为99.999%,蒸发速率在0.1-0.2ML/min,沉积时间在10min。
进一步地,步骤(1)在沉积碲元素后,形成了周期为0.455nm,呈六角状排布的二维有序的周期性原子晶体薄膜碲化亚铜。
进一步地,步骤(1)中采用氩离子对金属基底材料进行溅射处理,然后于350~500℃对溅射后的基底进行退火处理。
进一步地,步骤(1)中第二次退火温度为400℃。
进一步地,锗元素通过克努力曾盒型蒸发源加热蒸发的方法沉积。
进一步地,步骤(2)中温度为100~150℃。
一种锗烯/碲化亚铜垂直异质结材料,采用上述方法制备得到。
进一步地,锗烯/碲化亚铜垂直异质结材料具有非重构的1×1晶格锗烯。
进一步地,上述碲化亚铜二维原子晶体材料形成了周期为0.455nm的六角结构,该周期性结构可以被扫描隧道显微镜所表征。
进一步地,上述锗烯二维原子晶体材料形成了周期为0.39nm的六角蜂窝状排布的二维有序结构,该周期性结构可以被扫描隧道显微镜所表征。
本发明的有益效果:
本发明通过外延方法生长高质量的锗烯二维原子晶体材料,锗烯原子成六角蜂窝状排布,并在二维平面内扩展,便于进一步研究锗烯二维原子晶体材料的电子性质及相关器件开发。这种锗烯二维晶体材料不同于金属上的锗稀,其不会受到来自基底的影响,具有独立的1×1翘曲结构,为研究二维体系中新的量子现象和电子行为以及自旋电子学及器件应用铺平道路。
附图说明
图1为本发明的整体制备过程示意图;
图2为本发明中在铜的(111)表面沉积的高覆盖度碲化亚铜的扫描隧道显微镜图像;其中,图2中a是40nm标尺的碲化亚铜的扫描隧道显微镜图像;b是1.5nm标尺的碲化亚铜原子级分辨的扫描隧道显微镜图像;c是对应于b的碲化亚铜的快速傅里叶变换的图像;
图3为扫描隧道显微镜图像和快速傅里叶变换图;其中,a为本发明中在碲化亚铜面上制备的大尺度锗烯纳米岛的扫描隧道显微镜图像;b为具有原子级分辨率的锗烯和碲化亚铜扫描隧道显微镜图像;c为锗烯快速傅里叶变换图。
其中,图1中1为锗烯;2为碲化亚铜;3为铜。
具体实施方式
下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
实施例1
一种锗烯/碲化亚铜垂直异质结材料的制备方法,具体过程如下:
(1)在真空度小于10-10mbar的超高真空腔内对铜单晶的(111)晶面进行氩离子溅射,然后通过将铜基底加热并保持在500℃退火得到干净平整的晶面;
(2)之后在干净平整的铜表面,通过电阻热蒸发将碲加热至200℃均匀沉积其上,此过程中基底保持在室温;
(3)将沉积有碲颗粒的样品在400℃下退火,原来沉积在衬底表面的碲颗粒消失了,之后通过克努力曾盒型蒸发源将锗均匀沉积其上,基底保持在100℃,从而在碲化亚铜表面形成了一种周期为0.394 nm的二维有序的锗烯原子晶体材料。
实施例2
一种锗烯/碲化亚铜垂直异质结材料的制备方法,具体过程如下:
(1)在真空度小于10-10 mbar的超高真空腔内对铜单晶的(111)晶面进行氩离子溅射,然后通过将铜基底加热并保持在400℃退火得到干净平整的晶面;
(2)之后在干净平整的铜表面,通过电阻热蒸发将碲加热至200℃均匀沉积其上,此过程中基底保持在室温;
(3)将沉积有碲颗粒的样品在400℃下退火,原来沉积在衬底表面的碲颗粒消失了,之后通过克努力曾盒型蒸发源将锗均匀沉积其上,基底保持在150℃,从而在碲化亚铜表面形成了一种周期为0.394 nm的二维有序的锗烯原子晶体材料。
实施例3
一种锗烯/碲化亚铜垂直异质结材料的制备方法,具体过程如下:
(1)在真空度小于10-10mbar的超高真空腔内对铜单晶的(111)晶面进行氩离子溅射,然后通过将铜基底加热并保持在500℃退火得到干净平整的晶面;
(2)之后在干净平整的铜表面,通过电阻热蒸发将碲加热至200℃均匀沉积其上,此过程中基底保持在室温;
(3)将沉积有碲颗粒的样品在400℃下退火,原来沉积在衬底表面的碲颗粒消失了,之后通过克努力曾盒型蒸发源将锗均匀沉积其上,基底保持在200℃,从而在碲化亚铜表面形成了一种周期为0.394 nm的二维有序的锗烯原子晶体材料。
本发明的整体制备过程效果示意图如图1所示。上部分图示出了本发明中在铜的(111)表面沉积的高覆盖度的碲化亚铜薄膜;下部分图示出了本发明中基底保持100-200℃后在碲化亚铜表面生长出的锗烯二维原子晶体材料。
本发明在制备过程中将沉积有碲颗粒的样品在400℃下退火,原来沉积在衬底表面的碲颗粒消失了,如图2所示,而在铜表面形成了一种周期为0.455nm的六角周期结构,该结构源于退火处理后在样品表面形成的二维有序碲化亚铜的原子晶体材料。图3的扫描隧道显微镜图像和快速傅里叶变换图表明该有序结构的存在。
之后锗岛在衬底表面呈六边形或三角形分布,高度为330 pm,从而在碲化亚铜表面形成了一种周期为0.394 nm的二维有序的锗烯原子晶体材料,其中,翘曲度为15pm。如图3的扫描隧道显微镜图像所示,由此制备出了1×1锗烯/碲化亚铜垂直异质结材料。

Claims (9)

1.一种锗烯/碲化亚铜垂直异质结材料的制备方法,其特征在于,包括以下步骤:
(1)在超高真空环境中,对铜基底材料进行溅射后,于300~500℃退火,然后在铜基底材料上沉积碲元素,然后于300~400℃退火;
(2)保持步骤(1)样品温度为100~200℃,在其上沉积锗元素即可。
2.根据权利要求1所述的制备方法,其特征在于,所述超高真空环境的真空度为10e-7~10e-10 mbar。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中碲元素通过热蒸发方式沉积至铜基底材料上,所述碲原子纯度为99.999%,蒸发速率在0.1-0.2ML/min,沉积时间在10min。
4.根据权利要求1所述的制备方法,其特征在于,步骤(1)在沉积碲元素后,形成了周期为0.455nm,呈六角状排布的二维有序的周期性原子晶体薄膜碲化亚铜。
5.根据权利要求1所述的制备方法,其特征在于,步骤(1)中采用氩离子对铜基底材料进行溅射处理,然后于350~500℃对溅射后的基底进行退火处理。
6.根据权利要求1所述的制备方法,其特征在于,所述锗元素通过克努力曾盒型蒸发源加热蒸发的方法沉积。
7.根据权利要求1所述的制备方法,其特征在于,步骤(2)中温度为100~150℃。
8.一种锗烯/碲化亚铜垂直异质结材料,其特征在于,采用权利要求1~7任一项所述方法制备得到。
9.根据权利要求8所述的锗烯/碲化亚铜垂直异质结材料,其特征在于,所述锗烯/碲化亚铜垂直异质结材料具有非重构的1×1晶格锗烯。
CN202211636670.3A 2022-12-20 2022-12-20 一种锗烯/碲化亚铜垂直异质结材料及其制备方法 Active CN115612985B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211636670.3A CN115612985B (zh) 2022-12-20 2022-12-20 一种锗烯/碲化亚铜垂直异质结材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211636670.3A CN115612985B (zh) 2022-12-20 2022-12-20 一种锗烯/碲化亚铜垂直异质结材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115612985A true CN115612985A (zh) 2023-01-17
CN115612985B CN115612985B (zh) 2023-02-28

Family

ID=84880582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211636670.3A Active CN115612985B (zh) 2022-12-20 2022-12-20 一种锗烯/碲化亚铜垂直异质结材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115612985B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120115315A1 (en) * 2009-05-22 2012-05-10 Advanced Technology Materials, Inc. Low temperature gst process
CN103643287A (zh) * 2013-11-14 2014-03-19 中国科学院物理研究所 一种锗烯二维原子晶体材料及其制备方法
US20170175258A1 (en) * 2015-12-21 2017-06-22 The Penn State Research Foundation Facile Route to Templated Growth of Two-Dimensional Layered Materials
CN108611677A (zh) * 2018-05-08 2018-10-02 中国科学院物理研究所 一种自然图案化单层硒化铜二维原子晶体材料及制备方法
RU2723125C1 (ru) * 2020-02-10 2020-06-08 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" СПОСОБ СОЗДАНИЯ МАТЕРИАЛОВ НА ОСНОВЕ ГЕРМАНЕНА EuGe2 И SrGe2 С ВЫСОКОЙ ПОДВИЖНОСТЬЮ НОСИТЕЛЕЙ ЗАРЯДА
CN112397154A (zh) * 2020-11-18 2021-02-23 华东理工大学 一种基于锗烯的二维肖特基异质结模型的构建方法
CN114169213A (zh) * 2021-12-07 2022-03-11 华东理工大学 一种基于石墨烯/二硒化钨的异质结气体传感器模型的构建方法
CN114361928A (zh) * 2021-12-31 2022-04-15 南京科耐激光技术有限公司 一种基于数个原子层厚的锗材料的实用化可饱和吸收器件及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120115315A1 (en) * 2009-05-22 2012-05-10 Advanced Technology Materials, Inc. Low temperature gst process
TW201247589A (en) * 2009-05-22 2012-12-01 Advanced Tech Materials Low temperature GST process
CN103643287A (zh) * 2013-11-14 2014-03-19 中国科学院物理研究所 一种锗烯二维原子晶体材料及其制备方法
US20170175258A1 (en) * 2015-12-21 2017-06-22 The Penn State Research Foundation Facile Route to Templated Growth of Two-Dimensional Layered Materials
CN108611677A (zh) * 2018-05-08 2018-10-02 中国科学院物理研究所 一种自然图案化单层硒化铜二维原子晶体材料及制备方法
RU2723125C1 (ru) * 2020-02-10 2020-06-08 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" СПОСОБ СОЗДАНИЯ МАТЕРИАЛОВ НА ОСНОВЕ ГЕРМАНЕНА EuGe2 И SrGe2 С ВЫСОКОЙ ПОДВИЖНОСТЬЮ НОСИТЕЛЕЙ ЗАРЯДА
CN112397154A (zh) * 2020-11-18 2021-02-23 华东理工大学 一种基于锗烯的二维肖特基异质结模型的构建方法
CN114169213A (zh) * 2021-12-07 2022-03-11 华东理工大学 一种基于石墨烯/二硒化钨的异质结气体传感器模型的构建方法
CN114361928A (zh) * 2021-12-31 2022-04-15 南京科耐激光技术有限公司 一种基于数个原子层厚的锗材料的实用化可饱和吸收器件及其制备方法

Also Published As

Publication number Publication date
CN115612985B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
CN108193276B (zh) 制备大面积单一取向六方氮化硼二维原子晶体的方法
Liou et al. RETRACTED: Growth behavior and microstructure evolution of ZnO nanorods grown on Si in aqueous solution
KR20130020351A (ko) 그래핀 박막의 형성방법 및 그 방법에 의해 제조된 그래핀
US20130266739A1 (en) Process for forming carbon film or inorganic material film on substrate by physical vapor deposition
JP4784947B2 (ja) 圧縮応力を用いたナノワイヤ製造方法
CN108611677A (zh) 一种自然图案化单层硒化铜二维原子晶体材料及制备方法
CN115612985B (zh) 一种锗烯/碲化亚铜垂直异质结材料及其制备方法
KR20080104455A (ko) 인장응력을 이용한 단결정 열전 나노선 제조 방법
Nomoto et al. Effects of thermal annealing on the distribution of boron and phosphorus in pin structured silicon nanocrystals embedded in silicon dioxide
US20210123158A1 (en) Rhombohedron Epitaxial Growth with Molten Target Sputtering
CN105304736B (zh) 磁控溅射联合快速退火技术制备Ge/Si量子点
CN114855282A (zh) 二碲化硅二维晶体材料及其制备方法
RU2723125C1 (ru) СПОСОБ СОЗДАНИЯ МАТЕРИАЛОВ НА ОСНОВЕ ГЕРМАНЕНА EuGe2 И SrGe2 С ВЫСОКОЙ ПОДВИЖНОСТЬЮ НОСИТЕЛЕЙ ЗАРЯДА
CN110804727B (zh) 应变薄膜异质结、制备方法及应用
Molnár et al. Thickness dependent aggregation of Fe–silicide islands on Si substrate
CN110004488B (zh) 一种石墨烯/Mn5Ge3/锗(110)异质结及其制备方法
CN111606322B (zh) 一种铁磁薄膜外延单层石墨烯及其制备方法
Yang et al. Characteristics of Ni films deposited on SiO2/Si (1 0 0) and MgO (0 0 1) by direct current magnetron sputtering system with the oblique target
KR20190061514A (ko) 단결정 금속 박막 및 이의 제조 방법
KR102170111B1 (ko) 다결정 금속 필름의 비정상입자성장에 의한 단결정 금속 필름 및 그 제조방법
KR100738659B1 (ko) 니켈 할로겐 화합물 분위기를 이용한 다결정 규소박막의제조방법
JP4854180B2 (ja) InSbナノ細線構造の作製方法
CN111517291B (zh) 一种具有条纹结构的过渡金属二硫属化合物及其制备方法
Roy et al. Growth of oriented Ag nanocrystals on air-oxidized Si surfaces: An in-situ reflection high energy electron diffraction study
Aznilinda et al. Physical characteristic of room-temperature deposited TiO 2 thin films by RF magnetron sputtering at different RF power

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant