CN115608333B - 一种碳点功能化的树脂材料及制备方法和应用 - Google Patents

一种碳点功能化的树脂材料及制备方法和应用 Download PDF

Info

Publication number
CN115608333B
CN115608333B CN202211073614.3A CN202211073614A CN115608333B CN 115608333 B CN115608333 B CN 115608333B CN 202211073614 A CN202211073614 A CN 202211073614A CN 115608333 B CN115608333 B CN 115608333B
Authority
CN
China
Prior art keywords
microsphere
carbon
resin material
ethanol
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211073614.3A
Other languages
English (en)
Other versions
CN115608333A (zh
Inventor
龚波林
欧俊杰
韩速
黄超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia Bethel Active Carbon Co ltd
North Minzu University
Original Assignee
Ningxia Bethel Active Carbon Co ltd
North Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningxia Bethel Active Carbon Co ltd, North Minzu University filed Critical Ningxia Bethel Active Carbon Co ltd
Priority to CN202211073614.3A priority Critical patent/CN115608333B/zh
Publication of CN115608333A publication Critical patent/CN115608333A/zh
Application granted granted Critical
Publication of CN115608333B publication Critical patent/CN115608333B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明属于重金属离子检测及吸附材料技术领域,公开了一种碳点功能化的树脂材料及制备方法和应用。具体该树脂材料的基质为表面带有环氧基的大孔树脂微球,且微球粒径为5~6μm;所述微球表面接枝有含炔基的聚合物刷,且微球表面还引入有巯基碳点,其碳点粒径不超过10nm。该制备方法首先以丙烯酸缩水甘油酯为功能单体、采用种子溶胀法制备表面带有环氧基的大孔树脂微球;然后利用原子转移自由基聚合技术在所述大孔树脂微球表面接枝带有炔基的聚合物刷;最后通过光引发“巯基‑炔”点击化学反应将巯基碳点作为功能基团引入所述大孔树脂微球表面,得到可应用于金属离子检测和/或吸附的碳点功能化的树脂材料。

Description

一种碳点功能化的树脂材料及制备方法和应用
技术领域
本发明属于重金属离子检测及吸附材料技术领域,具体涉及一种碳点功能化的树脂材料及制备方法和应用。
背景技术
随着工业的发展,大量的工业废水和废气排放到环境中,使得重金属污染已经成为世界范围内最严重的污染之一(文献1. S. Bolisetty, M. Peydayesh,R.Mezzenga,Sustainable technologies for water purification from heavy metals: review andanalysis, Chem. Soc. Rev. 48 (2019) 463-487)。金属离子在环境中难以降解,并随着食物链在人体中积累,不仅对生态系统构成持续风险,还会对人类健康构成重大威胁(文献2. A.I. Bush, The metallobiology of Alzheimer's disease, Trends Neurosci. 26(2003) 207-214)。
铁是日常生活中常见的元素,同时还是人体必需的微量元素,对人体新陈代谢具有重要的促进作用。然而随着重金属污染的日益加剧,体内铁元素积累过多会导致帕金森病、癌症、肝硬化等严重疾病(文献3. M.W. Hentze, M.U. Muckenthaler, N.C. Andrews,Balancing acts: molecular control of mammalian iron metabolism, Cell 117(2004) 285-297)。因此,对环境中重金属的检测和去除是减少污染、预防人类疾病的迫切需求。
关于重金属检测:传统检测大多采用电感耦合等离子体质谱、原子吸收光谱和电化学方法等检测策略,存在耗时长、程序繁琐、专业知识复杂且成本高等问题,大大限制了这些检测方式的广泛应用(文献5. B. Bansod, T. Kumar, R. Thakur, S. Rana, I.Singh, A review on various electrochemical techniques for heavy metal ionsdetection with different sensing platforms, Biosens. Bioelectron. 94 (2017)443-455)。因此,迫切需要一种快速、灵敏、方便的分析方法来检测水样中的金属离子。
碳点(CDs)作为一种尺寸小于10nm的准零维碳基材料,由于其良好的生物相容性、优良的光稳定性、低毒和良好的水溶性,在重金属离子检测中得到了迅速的发展(文献6.Y. Kim, J. Kim, Bioinspired thiol functionalized carbon dots for rapiddetection of lead (II) ions in human serum, Opt. Mater. 99 (2020) 109514)。
Zhang等人制备了氮硫共掺杂荧光CDs用于检测细胞中Fe3+和硫醇(文献7. X.Zhang, Y. Li, Y. Wang, X. Liu, F. Jiang, Y. Liu, P. Jiang, Nitrogen andsulfur co-doped carbon dots with bright fluorescence for intracellulardetection of iron ion and thiol, J. Colloid. Interface. Sci. 611 (2022) 255-264)。
Lu等人通过水热法制备了一种简单、经济、绿色的水溶性CDs,可用于水中Hg2+的检测(文献8. W. Lu, X. Qin, S. Liu, G. Chang, Y. Zhang, Y. Luo, A.M. Asiri,A.O. Al-Youbi, X. Sun, Economical, green synthesis of fluorescent carbonnanoparticles and their use as probes for sensitive and selective detectionof mercury(II) ions, Anal. Chem. 84 (2012) 5351-5357)。
关于重金属去除:现有去除策略包括吸附、沉淀、离子交换、膜技术等(文献4.Y.Chen,M.He,C.Wang,Y.Wei, A novel polyvinyltetrazole-grafted resin withhigh capacity for adsorption of Pb(II), Cu(II) and Cr(III) ions from aqueoussolutions, J. Mater. Chem. A 2 (2014) 10444-10453)。其中,吸附法因其操作简单、成本低、效率高而广泛应用于水处理中。
综上,虽然碳点在重金属检测方面取得了很大的进展,但必须面对碳点的毒性以及检测后难以去除等问题。此外,现有的处理方式中,其处理材料大多仅用于检测或吸附重金属离子,基于此将吸附法与碳点相结合而开发出一种能同时检测和吸附的双功能材料对解决重金属污染问题具有重要意义。
发明内容
本发明涉及一种碳点功能化的树脂材料,具体该树脂材料的基质为表面带有环氧基的大孔树脂微球,且微球粒径为5~6µm;所述微球表面接枝有含炔基的聚合物刷,且微球表面还引入有巯基碳点,其碳点粒径不超过10nm。
本发明还涉及一种碳点功能化的树脂材料的制备方法,首先以丙烯酸缩水甘油酯为功能单体、采用种子溶胀法制备表面带有环氧基的大孔树脂微球;然后利用原子转移自由基聚合技术在所述大孔树脂微球表面接枝带有炔基的聚合物刷;最后通过光引发“巯基-炔”点击化学反应将巯基碳点作为功能基团引入所述大孔树脂微球表面,得到可应用于金属离子检测和/或吸附的碳点功能化的树脂材料。
具体制备过程包括如下步骤:
S1.制备表面带有环氧基的大孔树脂微球
将聚甲基丙烯酸缩水甘油酯、丙烯酸缩水甘油酯、聚二季戊四醇六丙烯酸酯、聚乙二醇和偶氮二异丁腈混合乳化,其中聚甲基丙烯酸缩水甘油酯:丙烯酸缩水甘油酯:聚二季戊四醇六丙烯酸酯:聚乙二醇:偶氮二异丁腈=(8~10mL):(6~10mL):(6~10mL):(6~10mL):(0.4~0.6g);
室温反应12~18h,然后升温至60~80℃继续反应12~18h;
反应后索式提取24~48h,然后用无水乙醇和去离子水分别洗涤3~5次,最后60℃真空干燥12~24h,得到表面带有环氧基的大孔树脂微球。
S2.制备表面接枝有含炔基的聚合物刷的微球
取表面带有环氧基的大孔树脂微球分散于硫酸溶液中,40~60℃条件下反应10~12h,然后将反应后的产物洗涤至中性并真空干燥;
将干燥后的微球溶于二氯甲烷中,然后在冰浴条件下加入三乙胺、2-溴异丁酰溴和4-二甲氨基吡啶,室温反应,反应后依次用二氯甲烷、去离子水和乙醇洗涤,真空干燥得到大分子引发剂;
将大分子引发剂、2,2'-联吡啶和丙烯酸丙炔酯分散于乙醇中,其中大分子引发剂:2,2'-联吡啶:丙烯酸丙炔酯:乙醇=(400~600mg):(20~30mg):(0.2~0.3mL):( 8~12mL);
通过冷冻、抽真空和充氮的操作去除溶剂中的氧气,向乙醇中添加溴化亚铜催化剂,其中乙醇:溴化亚铜=(8~12mL):(10~15mg),并且在氮气氛围下50~60℃催化反应6~8h,反应后依次用乙醇、去离子水和乙二胺四乙酸二钠水溶液洗涤3~5次,得到表面接枝带有含炔基的聚合物刷的大孔树脂微球。
S3.制备碳点功能化的树脂材料
以β-环糊精为碳源、谷胱甘肽为功能单体,采用一锅水热法制备得到碳点悬浮液;
将光引发剂苯偶酰双甲醚溶于乙醇-去离子水的溶液中,其中乙醇-去离子水的溶液中乙醇/去离子水的体积比为1/1;
加入表面接枝带有炔基的聚合物刷的大孔树脂微球并超声分散,然后加入碳点悬浮液;
在365nm紫外光下照射60~80min,用乙醇和去离子水分别洗涤3~5次,室温干燥得到碳点功能化的树脂材料;
其中
将β-环糊精和谷胱甘肽溶于N,N-二甲基甲酰胺中,其中β-环糊精:谷胱甘肽:N,N-二甲基甲酰胺=(0.5~1g):(0.125~0.5g):(25~50mL),超声分散5~10min后转至装有特氟龙的不锈钢高压釜中,升温至180℃并保温反应2~4h,反应后8000~10000rpm离心15min,取上清液并采用0.22µm的滤膜过滤,得到滤液即为碳点悬浮液;
苯偶酰双甲醚、乙醇-去离子水的溶液、表面接枝带有炔基的聚合物刷的大孔树脂微、碳点悬浮液的混合比例为(20~30mg):(4~6mL):(300~400mg):(10~12mL)。
本发明与现有技术相比,具有以下有益效果:
1.本发明将碳点(CDs)和大孔树脂(MAR)材料相结合,拓宽了碳点和大孔树脂的应用范围,为金属离子的检测和去除提供了新策略。具体的:
本发明的碳点功能化的树脂材料以表面带有环氧基的大孔树脂MAR微球为基质,采用原子转移自由基聚合技术在微球表面接枝带有炔基的聚合物刷,最后通过光引发“巯基-烯”点击化学反应将巯基碳点作为功能基团引入微球表面,其中由于碳点的引入使得该树脂材料不仅具有金属离子的吸附功能、还具有金属离子的检测功能,另外碳点以树脂微球的形式置入水样中,还有效避免了检测完成后碳点难去除的问题。
2.本发明的制备方法简单、原料廉价且易获得,有效适合于大规模制备。
附图说明
图1为本发明碳点功能化的树脂材料的制备流程图;
图2为大孔树脂微球(a)和碳点功能化的树脂材料(b)的扫描电镜图;
图3为大孔树脂微球与碳点功能化的树脂材料的氮气吸脱等温曲线图(a),孔径分布图(b);
图4为碳点悬浮液、大孔树脂微球、表面接枝有含炔基的聚合物刷的微球、碳点功能化的树脂材料的红外表征图;
图5为碳点功能化的树脂材料吸附Fe3+前后的XPS光谱图:(a)吸附前光谱,(b)吸附后谱图,(c)Fe-2p高分辨率谱图;
图6为碳点功能化的树脂材料的荧光发射光谱图:(a)对13种金属离子的荧光发射光谱,(b)451nm处的荧光强度,(c)对不同浓度Fe3+的荧光发射光谱,(d)Fe3+检测的线性响应曲线;
图7为碳点功能化的树脂材料对Fe3+吸附等温曲线(a)和动力学曲线(d),并由Langmuir模型(b)、Freundlich模型(c)、准一级模型(e)和准二级模型(f)拟合。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
1、碳点功能化的树脂材料的制备
(1)制备碳点悬浮液
将0.5g的β-环糊精和0.125g的谷胱甘肽溶于25mL的N,N-二甲基甲酰胺中,超声分散5min后转至装有特氟龙的不锈钢高压釜中,升温至180℃并保温反应2h,反应后8000rpm离心15min,取上清液并采用0.22µm的滤膜过滤,得到滤液即为碳点悬浮液(HS-CDs)。
(2)制备表面带有环氧基的大孔树脂微球
将8mL的丙烯酸缩水甘油酯(GA)、8mL的聚二季戊四醇六丙烯酸酯(DPE6A)、8mL的聚乙二醇和0.4g的偶氮二异丁腈(AIBN)超声破碎乳化后与9mL的聚甲基丙烯酸缩水甘油酯种子液混合;
室温反应16h,然后升温至70℃并继续反应16h;
反应后索式提取24h,然后用无水乙醇、去离子水分别洗涤3次,最后60℃真空干燥12h,得到表面带有环氧基的大孔树脂微球(MAR)。
(3)制备表面接枝有含炔基的聚合物刷的微球
取表面带有环氧基的大孔树脂微球(MAR)分散于硫酸溶液中,60℃条件下反应12h,然后将反应后的产物洗涤至中性并真空干燥;
将干燥后的微球溶于二氯甲烷中,然后在冰浴条件下加入三乙胺、2-溴异丁酰溴和4-二甲氨基吡啶,室温反应,反应后依次用二氯甲烷、去离子水和乙醇洗涤,真空干燥得到大分子引发剂;
将400mg的大分子引发剂、20mg的2,2'-联吡啶、0.2mL的丙烯酸丙炔酯(PA)分散于10mL的乙醇中;
循环执行3次冷冻、抽真空和充氮的操作以去除溶剂中的氧气,然后添加10mg的溴化亚铜催化剂;
再循环执行3次冷冻、抽真空和充氮的操作并且在氮气氛围下60℃催化反应6h,反应后依次用乙醇、去离子水和乙二胺四乙酸二钠水溶液洗涤3次,得到表面接枝有含炔基的聚合物刷的微球(MAR@poly(PA)微球)。
(4)制备碳点功能化的树脂材料
将20mg的光引发剂苯偶酰双甲醚溶于4mL的乙醇-去离子水的溶液中,其中乙醇-去离子水的溶液中乙醇/去离子水的体积比为1/1;
加入300mg的MAR@poly(PA)微球并超声分散,然后加入10mL的碳点悬浮液(HS-CDs),在365nm紫外光下照射60min,用乙醇和去离子水分别洗涤3次,室温干燥得到碳点功能化的树脂材料(MAR@poly(PA)@CD)。
2、材料表征
图2为大孔树脂微球(MAR)和碳点功能化的树脂材料(MAR@poly(PA)@CD)的扫描电镜图。由图可知,通过种子溶胀聚合成功制备了直径约5µm的单分散MAR微球(图2a),而改性后的微球形貌(图2b)与原始MAR(图2a)相似,且颗粒表面略粗糙,说明MAR@poly(PA)@CD制备成功。
图3:通过比表面积测定仪测试大孔树脂微球(MAR)和碳点功能化的树脂材料(MAR@poly(PA)@CD)的N2吸脱附曲线(图3a),计算比表面积及孔径分布(图3b)。具体由图3a可知,MAR@poly(PA)@CD相比于原始MAR的表面积下降,并且当相对压力超过0.85时,N2吸收迅速增加,基于此说明MAR@poly(PA)@CD存在大孔,具体由图3b可知,其大孔孔径分布主要在20~60nm之间,且该大孔孔径结构有利于提高传质速率。
图4:以傅里叶变换衰减全反射红外光谱法(ATR-FTIR)对碳点悬浮液(HS-CDs)、大孔树脂微球(MAR)、表面接枝有含炔基的聚合物刷的微球(MAR@poly(PA)微球)、碳点功能化的树脂材料(MAR@poly(PA)@CD)进行表征,如图4所示:
在CDs的光谱中,3135cm-1的特征峰对应为O-H伸缩振动,3447cm-1的特征峰对应为N-H伸缩振动,2610cm-1的特征峰对应为S-H拉伸振动,1207cm-1的特征峰对应为酰胺的C-N伸缩振动,1728cm-1的特征峰对应为C=O伸缩振动;由此表明,CDs含有氨基(-NH2)、巯基(-SH)和羧基(-COOH);
在MAR的光谱中,910cm-1是环氧基团的特征峰,该特征峰在其他光谱中未出现,说明经改性后MAR表面的环氧基团已经耗尽;
在MAR@poly(PA)光谱中,2130cm-1的特征峰对应为乙炔基的特征吸收,由此表明MAR的表面已接枝了一层含炔基的聚合物刷(PA);
在MAR@poly(PA)@CD光谱中,2130cm-1的特征峰消失,由此表面CDs中的巯基(-SH)通过光引发的“巯基-炔”点击化学与乙炔基完成反应,即成功合成了碳点功能化的树脂材料(MAR@poly(PA)@CD)。
图5为XPS光谱图,具体:
在碳点功能化的树脂材料(MAR@poly(PA)@CD)吸附Fe3+前的谱图(5a)中没有Fe的特征峰,在吸附后的谱图(5b)中出现了Fe的特征峰,由此说明该碳点功能化的树脂材料对Fe3+具有吸附能力;
在MAR@poly(PA)@CD 吸附Fe3+后的Fe-2p高分辨率谱图(5c)中,711.0eV和724.6eV的特征峰属于分别属于Fe的3/2p轨道和1/2p轨道,基于此进一步表明MAR@poly(PA)@CD制备成功。
3、金属离子荧光检测
将碳点功能化的树脂材料(MAR@poly(PA)@CD)配置为浓度为0.5mg/mL的悬浮液,然后加入金属离子(100µmol/L)。
通过测定MAR@poly(PA)@CD的荧光强度,获得其荧光选择性。
在典型的定量分析中,在含0.2mg/mL的MAR@poly(PA)@CD悬液中分别加入不同浓度的Fe3+(0~70 nmol/L),平衡5min后记录451nm处的荧光强度。
4、金属离子吸附
等温吸附:将5mg的碳点功能化的树脂材料(MAR@poly(PA)@CD)放入50mL离心管中,加入10mL不同浓度(60、120、180、220、240、300、400µmol/L)的Fe3+溶液;将离心管置于200rpm的恒温振动筛上,充分振荡过2h后用0.22µm的滤膜过滤,在滤液中加入碳点悬浮液(HS-CDs),检测荧光强度。
动力学吸附:将5mg的碳点功能化的树脂材料(MAR@poly(PA)@CD)加入10mL浓度为200µmol/L的Fe3+溶液中,振荡2、10、15、20、25、30、60、90、120min后,0.22µm的滤膜过滤,在滤液中加入碳点悬浮液(HS-CDs),检测荧光强度。
实施例2
碳点功能化的树脂材料的制备
(1)制备碳点悬浮液
将1g的β-环糊精和0.5g的谷胱甘肽溶于50mL的N,N-二甲基甲酰胺中,超声分散5min后转至装有特氟龙的不锈钢高压釜中,升温至180℃并保温反应2h,反应后8000rpm离心15min,取上清液并采用0.22µm的滤膜过滤,得到滤液即为碳点悬浮液(HS-CDs)。
(2)制备表面带有环氧基的大孔树脂微球
将10mL的丙烯酸缩水甘油酯(GA)、10mL的聚二季戊四醇六丙烯酸酯(DPE6A)、10mL的聚乙二醇和0.5g的偶氮二异丁腈(AIBN)超声破碎乳化后与9mL的聚甲基丙烯酸缩水甘油酯种子液混合;
室温反应16h,然后升温至70℃并继续反应16h;
反应后索式提取24h,然后用无水乙醇、去离子水分别洗涤3次,最后60℃真空干燥12h,得到表面带有环氧基的大孔树脂微球(MAR)。
(3)制备表面接枝有含炔基的聚合物刷的微球
取表面带有环氧基的大孔树脂微球(MAR)分散于硫酸溶液中,60℃条件下反应12h,然后将反应后的产物洗涤至中性并真空干燥;
将干燥后的微球溶于二氯甲烷中,然后在冰浴条件下加入三乙胺、2-溴异丁酰溴和4-二甲氨基吡啶,室温反应,反应后依次用二氯甲烷、去离子水和乙醇洗涤,真空干燥得到大分子引发剂;
将500mg的大分子引发剂、25mg的2,2'-联吡啶、0.25mL的丙烯酸丙炔酯(PA)分散于10mL的乙醇中;
循环执行3次冷冻、抽真空和充氮的操作以去除溶剂中的氧气,然后添加12mg的溴化亚铜催化剂;
再循环执行3次冷冻、抽真空和充氮的操作并且在氮气氛围下60℃催化反应6h,反应后依次用乙醇、去离子水和乙二胺四乙酸二钠水溶液洗涤3次,得到表面接枝有含炔基的聚合物刷的微球(MAR@poly(PA)微球)。
(4)制备碳点功能化的树脂材料
将25mg的光引发剂苯偶酰双甲醚溶于5mL的乙醇-去离子水的溶液中,其中乙醇-去离子水的溶液中乙醇/去离子水的体积比为1/1;
加入400mg的MAR@poly(PA)微球并超声分散,然后加入12mL的碳点悬浮液(HS-CDs),在365nm紫外光下照射60min,用乙醇和去离子水分别洗涤3次,室温干燥得到碳点功能化的树脂材料(MAR@poly(PA)@CD)。
以本实施例的碳点功能化的树脂材料(MAR@poly(PA)@CD)进行金属离子荧光检测和金属离子吸附,其操作与实施例1相同。
材料应用
(1)碳点功能化的树脂材料(MAR@poly(PA)@CD)在金属离子荧光检测中的应用
为了研究MAR@poly(PA)@CD对不同金属离子的选择性,测定浓度为0.5mg/mL的MAR@poly(PA)@CD在各种浓度为100µmol/L的金属离子溶液中的荧光强度,结果如图6a及图6b所示:
MAR@poly(PA)@CD在空白溶液中表现出较强的荧光强度;
加入Cd2+水溶液后,荧光强度略有增加;
加入Zr4+、K+和Li+水溶液时,荧光强度没有明显变化;
加入Ca2+、Mg2+、Zn2+、Na+、Co2+、Cr3+、Cu2+和Pb2+水溶液时,荧光强度略有下降,猝灭程度均低于28%;
加入Fe3+水溶液后,荧光强度明显下降,猝灭度达59.3%。
综上表明MAR@poly(PA)@CD在荧光选择性检测中对Fe3+具有良好选择性。
为了进一步研究MAR@poly(PA)@CD对Fe3+的潜在检测能力,在不同浓度的Fe3+下进行了荧光猝灭实验:
如图6c所示,MAR@poly(PA)@CD的荧光强度随着Fe3+浓度(0~70 nmol/L)的增加而逐渐降低。
如图6d所示,荧光强度与Fe3+浓度的线性相关系数(r)为0.9962。利用3σ规则(σ=S0/S,S0为重复测量后空白的标准差,S为校准曲线的斜率),可以计算出Fe3+的检出限为6.6nmol/L。
综上表明,基于MAR@poly(PA)@CD的荧光检测具有良好的灵敏度,因此本发明所提出的碳点功能化的树脂材料(MAR@poly(PA)@CD)可有效用于Fe3+的定量分析和选择性检测中。
(2)碳点功能化的树脂材料(MAR@poly(PA)@CD)在金属离子吸附中的应用
最大吸附量是评价材料吸附性能的关键指标。
为了评价MAR@poly(PA)@CD对金属离子的吸附能力,测试了其对不同浓度的金属离子的吸附能力,并绘制了其等温吸附曲线(图7a)。由图可知:当Fe3+浓度小于220µmol/L时,MAR@poly(PA)@CD的吸附量随Fe3+浓度的增加迅速增加;当Fe3+浓度高于220µmol/L时,吸附等温线达到平台,由此计算出MAR@poly(PA)@CD对Fe3+的最大吸附量为23.8mg/g。
为研究Fe3+在MAR@poly(PA)@CD上的吸附机理,采用Langmuir模型和Freundlich模型拟合吸附等温线,结果如图7b及图7c所示,从图中可以看出,Langmuir模型和Freundlich模型的线性相关系数分别为0.9992和0.9398。显然,MAR@poly(PA)@CD对Fe3+的吸附类型更符合Langmuir模型,为单分子层吸附模式。
材料达到吸附平衡的速度也是研究材料作为吸附剂的一个重要指标,因此对MAR@poly(PA)@CD的动力学吸附过程也进行了研究。如图7d所示,MAR@poly(PA)@CD对Fe3+的吸附量在前25min迅速增加,超过25min后吸附量基本不变,此时即表明材料表面的吸附位点全部被占据,达到吸附平衡。一般来说,准一级模型吸附速率取决于扩散速率,在准二级模型中化学力则对吸附速率起决定性作用。根据吸附曲线拟合出准一级和准二级动力学模型,如图7e及图7f所示:准一阶模型的线性拟合相关系数为0.7628,准二阶模型的线性拟合相关系数为0.9902。显然,拟二级动力学模型更适合描述Fe3+在MAR@poly(PA)@CD上的化学吸附过程。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的范围。

Claims (9)

1.一种碳点功能化的树脂材料的制备方法,其特征在于:
以丙烯酸缩水甘油酯为功能单体,采用种子溶胀法制备表面带有环氧基的大孔树脂微球,具体为:以聚甲基丙烯酸缩水甘油酯为种子、丙烯酸缩水甘油酯为功能单体、聚二季戊四醇六丙烯酸酯为交联剂、聚乙二醇为致孔剂、偶氮二异丁腈为引发剂、利用一步种子溶胀聚合的方式制备表面带有环氧基的大孔树脂微球;
然后利用原子转移自由基聚合技术在所述大孔树脂微球表面接枝带有炔基的聚合物刷,具体为:取表面带有环氧基的大孔树脂微球分散于硫酸溶液中,40~60℃条件下反应10~12h,然后将反应后的产物洗涤至中性并真空干燥,将干燥后的微球溶于二氯甲烷中,然后在冰浴条件下加入三乙胺、2-溴异丁酰溴和4-二甲氨基吡啶,室温反应,反应后依次用二氯甲烷、去离子水和乙醇洗涤,真空干燥得到大分子引发剂,将大分子引发剂、2,2'-联吡啶和丙烯酸丙炔酯分散于乙醇中,其中大分子引发剂:2,2'-联吡啶:丙烯酸丙炔酯:乙醇=(400~600mg):(20~30mg):(0.2~0.3mL):( 8~12mL);通过冷冻、抽真空和充氮的操作去除溶剂中的氧气,向乙醇中添加溴化亚铜催化剂,其中乙醇:溴化亚铜=(8~12mL):(10~15mg),并且在氮气氛围下50~60℃催化反应6~8h,反应后依次用乙醇、去离子水和乙二胺四乙酸二钠水溶液洗涤3~5次,得到表面接枝带有炔基的聚合物刷的大孔树脂微球;
最后通过光引发“巯基-炔”点击化学反应将巯基碳点作为功能基团引入所述大孔树脂微球表面,得到碳点功能化的树脂材料,具体为:以β-环糊精为碳源、谷胱甘肽为功能单体,采用一锅水热法制备得到碳点悬浮液;将光引发剂苯偶酰双甲醚溶于乙醇-去离子水的溶液中,其中乙醇-去离子水的溶液中乙醇/去离子水的体积比为1/1;加入表面接枝带有炔基的聚合物刷的大孔树脂微球并超声分散,然后加入碳点悬浮液;在365nm紫外光下照射60~80min,用乙醇和去离子水分别洗涤3~5次,室温干燥得到碳点功能化的树脂材料;其中,苯偶酰双甲醚、乙醇-去离子水的溶液、表面接枝带有炔基的聚合物刷的大孔树脂微球、碳点悬浮液的混合比例为(20~30mg):(4~6mL):(300~400mg):(10~12mL)。
2.根据权利要求1所述的制备方法,其特征在于:
将聚甲基丙烯酸缩水甘油酯、丙烯酸缩水甘油酯、聚二季戊四醇六丙烯酸酯、聚乙二醇、偶氮二异丁腈混合乳化,其中聚甲基丙烯酸缩水甘油酯:丙烯酸缩水甘油酯:聚二季戊四醇六丙烯酸酯:聚乙二醇:偶氮二异丁腈=(8~10mL):(6~10mL):(6~10mL):(6~10mL):(0.4~0.6g);
室温反应12~18h,然后升温至60~80℃继续反应12~18h;
反应后索式提取24~48h,然后用无水乙醇和去离子水分别洗涤3~5次,最后60℃真空干燥12~24h,得到表面带有环氧基的大孔树脂微球。
3.根据权利要求1所述的制备方法,其特征在于:
将β-环糊精和谷胱甘肽溶于N,N-二甲基甲酰胺中,其中β-环糊精:谷胱甘肽:N,N-二甲基甲酰胺=(0.5~1g):(0.125~0.5g):(25~50mL),超声分散5~10min后转至装有特氟龙的不锈钢高压釜中,升温至180℃并保温反应2~4h,反应后8000~10000rpm离心15min,取上清液并采用0.22μm的滤膜过滤,得到滤液即为碳点悬浮液。
4.一种碳点功能化的树脂材料,其特征在于,由权利要求1-3中任意一项所述的制备方法制备得到。
5.根据权利要求4所述的树脂材料,其特征在于:
所述树脂材料的基质为表面带有环氧基的大孔树脂微球,且微球粒径为5~6μm;所述微球表面接枝带有炔基的聚合物刷,且微球表面还引入有巯基碳点,碳点粒径不超过10nm。
6.一种如权利要求4或5所述的碳点功能化的树脂材料在铁离子检测中的应用。
7.根据权利要求6所述的应用,其特征在于:所述碳点功能化的树脂材料用于水样中的铁离子检测。
8.一种如权利要求4或5所述的碳点功能化的树脂材料在铁离子吸附中的应用。
9.根据权利要求8所述的应用,其特征在于:所述碳点功能化的树脂材料用于水样中的铁离子吸附。
CN202211073614.3A 2022-09-02 2022-09-02 一种碳点功能化的树脂材料及制备方法和应用 Active CN115608333B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211073614.3A CN115608333B (zh) 2022-09-02 2022-09-02 一种碳点功能化的树脂材料及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211073614.3A CN115608333B (zh) 2022-09-02 2022-09-02 一种碳点功能化的树脂材料及制备方法和应用

Publications (2)

Publication Number Publication Date
CN115608333A CN115608333A (zh) 2023-01-17
CN115608333B true CN115608333B (zh) 2024-01-12

Family

ID=84859030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211073614.3A Active CN115608333B (zh) 2022-09-02 2022-09-02 一种碳点功能化的树脂材料及制备方法和应用

Country Status (1)

Country Link
CN (1) CN115608333B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2829987A1 (en) * 2013-10-17 2015-04-17 The Governors Of The University Of Alberta Arsenic sorption with modified feather keratin
WO2021038100A1 (en) * 2019-08-30 2021-03-04 Qustomdot B.V. A method to prepare surface stabilized quantum dots and surface stabilized quantum dots resulting from such method
CN112604657A (zh) * 2020-11-24 2021-04-06 北方民族大学 一种万古霉素磁性硅胶微球固定相及其制备方法和应用
CN114853921A (zh) * 2022-05-06 2022-08-05 广东药科大学 一种改性壳聚糖的制备方法及对铬离子污染物检测的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2829987A1 (en) * 2013-10-17 2015-04-17 The Governors Of The University Of Alberta Arsenic sorption with modified feather keratin
WO2021038100A1 (en) * 2019-08-30 2021-03-04 Qustomdot B.V. A method to prepare surface stabilized quantum dots and surface stabilized quantum dots resulting from such method
CN112604657A (zh) * 2020-11-24 2021-04-06 北方民族大学 一种万古霉素磁性硅胶微球固定相及其制备方法和应用
CN114853921A (zh) * 2022-05-06 2022-08-05 广东药科大学 一种改性壳聚糖的制备方法及对铬离子污染物检测的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Bioinspired honeycomb-like 3D architectures self-assembled from chitosan as dual-functional membrane for effective adsorption and detection of copper ion;Lei Pana,etal.;《Microporous and Mesoporous Materials》;第335卷;第111859(1-10)页 *
Synthesis and characterization of epoxy-chain end(s) functional macromonomer of polystyrene and its use in photoinitiated cationic polymerization;Degirmenci, M,et al.;《IRANIAN POLYMER JOURNAL》;第457-468页 *
高容量亚胺基二乙酸型螯合树脂的制备及吸附性能;董佳斌等;《高等学校化学学报》;第34卷(第3期);第714-719页 *

Also Published As

Publication number Publication date
CN115608333A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
Neolaka et al. A Cr (VI)-imprinted-poly (4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr (VI) ions from electroplating industrial wastewater
Chu et al. Enhanced stripping voltammetric response of Hg2+, Cu2+, Pb2+ and Cd2+ by ZIF-8 and its electrochemical analytical application
Zhang et al. Highly efficient and selective removal of trace lead from aqueous solutions by hollow mesoporous silica loaded with molecularly imprinted polymers
Latorre et al. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review
Zhang et al. Porous carbon nanospheres aerogel based molecularly imprinted polymer for efficient phenol adsorption and removal from wastewater
Zhou et al. Preparation and characterization of modified cellulose for adsorption of Cd (II), Hg (II), and acid fuchsin from aqueous solutions
Zhu et al. Selective solid-phase extraction and analysis of trace-level Cr (III), Fe (III), Pb (II), and Mn (II) Ions in wastewater using diethylenetriamine-functionalized carbon nanotubes dispersed in graphene oxide colloids
Cui et al. Electrochemical sensor based on ZIF-8@ dimethylglyoxime and β-cyclodextrin modified reduced graphene oxide for nickel (II) detection
CN104437415B (zh) 一种壳聚糖修饰氧化石墨磁性纳米吸附剂及其制备和应用
Wang et al. Selective adsorption of thiocyanate anions using straw supported ion imprinted polymer prepared by surface imprinting technique combined with RAFT polymerization
Wei et al. Fe3O4/SiO2/CS surface ion-imprinted polymer modified glassy carbon electrode for highly sensitivity and selectivity detection of toxic metal ions
CN112705170B (zh) 一种高效柚子皮木质素基水凝胶吸附剂及制备方法及应用
Wang et al. A highly sensitive and selective sensor for trace uranyl (VI) ion based on a graphene-coated carbon paste electrode modified with ion imprinted polymer
Li et al. An electrochemical sensor for the sensitive determination of phenylethanolamine A based on a novel composite of reduced graphene oxide and poly (ionic liquid)
Huang et al. Carbon dot-functionalized macroporous adsorption resin for bifunctional ultra-sensitive detection and fast removal of iron (III) ions
Roushani et al. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of mercury in water and food samples employing cold vapor atomic absorption spectrometry
CN109092245A (zh) 一种硅藻土负载碳纳米管吸附剂及其制备方法
CN114832801A (zh) 一种用于吸附水中重金属的氨基化木材气凝胶的制备方法及应用
Wang et al. Fabrication of bifunctional macroporous adsorption resin via grafting carbon dot and application in the detection and adsorption of iron (III) ion
Lin et al. A multifunctional polyacrylamide/chitosan hydrogel for dyes adsorption and metal ions detection in water
CN108459002A (zh) 一种磁性印迹传感器的制备方法与应用
CN115608333B (zh) 一种碳点功能化的树脂材料及制备方法和应用
Zhang et al. Construction of octahedral SERS blotting imprinted sensor for selective detection of 2, 6-dichlorophenol
Yang et al. Multifunctional diphenyl ether-based, cross-linked polyisocyanide for efficient iodine capture and NO2-/SO32-electrochemical probing
Chen et al. Selective extraction and determination of di (2-ethylhexyl) phthalate in aqueous solution by HPLC coupled with molecularly imprinted solid-phase extraction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant