CN115582145A - Zif-67填充二茂铁衍生物纳米复合燃速催化剂 - Google Patents

Zif-67填充二茂铁衍生物纳米复合燃速催化剂 Download PDF

Info

Publication number
CN115582145A
CN115582145A CN202211195524.1A CN202211195524A CN115582145A CN 115582145 A CN115582145 A CN 115582145A CN 202211195524 A CN202211195524 A CN 202211195524A CN 115582145 A CN115582145 A CN 115582145A
Authority
CN
China
Prior art keywords
zif
ferrocene
rate catalyst
filled
burning rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211195524.1A
Other languages
English (en)
Other versions
CN115582145B (zh
Inventor
张国防
米之元
郭慧敏
杨蕗菲
许锐哲
何倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN202211195524.1A priority Critical patent/CN115582145B/zh
Publication of CN115582145A publication Critical patent/CN115582145A/zh
Application granted granted Critical
Publication of CN115582145B publication Critical patent/CN115582145B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/007Ballistic modifiers, burning rate catalysts, burning rate depressing agents, e.g. for gas generating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种ZIF‑67填充二茂铁衍生物纳米复合燃速催化剂,其是利用超声处理使卡托辛、正丁基二茂铁、叔丁基二茂铁及正辛基二茂铁等液体二茂铁衍生物填充到ZIF‑67孔道中所得。本发明将二茂铁基燃速催化剂填充进ZIF‑67极细的孔道中,利用这种纳米级孔道的束缚作用,使二茂铁基燃速催化剂得以稳定地被约束在孔道中,大大降低了二茂铁基燃速催化剂迁移性,有效的解决了二茂铁基燃速催化剂迁移性强的问题。本发明制备方法操作简单,产率高,且可大量制备,所得纳米复合燃速催化剂对高氯酸铵的燃烧催化效果优异,具有催化效果好、迁移性低、比表面积大的优点。

Description

ZIF-67填充二茂铁衍生物纳米复合燃速催化剂
技术领域
本发明属于固体推进剂技术领域,具体涉及一系列ZIF-67填充二茂铁衍生物纳米复合燃速催化剂。
背景技术
固体推进剂是一种为导弹、火箭、太空飞行装置等提供动力的特殊含能材料,由(改性)双基推进剂和(改性)复合固体推进剂组成。其中,复合推进剂因其制作加工工艺较为简单,装药直径调整设计较为自由,在火箭及导弹等各类武器中占据重要地位。其是一种由粘合剂、氧化剂、高能燃烧剂、燃烧性能调节剂、增塑剂、安定剂/防老剂、键合剂等多种组份配制而成的含能材料。燃烧性能调节剂是指通过物理或化学作用来调节推进剂燃速和压力指数的一种添加剂,燃烧性能调节剂又称为燃速催化剂。燃速催化剂的添加可以提高或降低固体推进剂的燃烧速率,降低其压力指数,提高其燃烧稳定性。燃速催化剂的加入量一般为推进剂质量分数的1%~5%,作为推进剂中不可或缺的重要组份,近年来关于燃速催化剂的研究一直在不断进行。
1951年,Kealy T J和Pauson P L(Kealy T J,Pauson P L.A New Type ofOrgano-Iron Compound[J].Nature,1951,168(4285):1039-1040)首次于Nature上发表了一种具有独特的夹心结构的化合物,后将其命名为二茂铁,此发现成为了有机金属化学发展史上的关键点。因其在空间上独特的层状结构,二茂铁极其稳定且具有良好的理化性质,因此很快被应用于各个领域。早在20世纪60年代,二茂铁(Fc)及其短链烷基二茂铁衍生物,如正丁基二茂铁(NBF)和叔丁基二茂铁(TBF),因其优良的催化活性和良好的相容性而被作为燃速催化剂广泛应用于复合固体推进剂中。但它们在推进剂固化过程中易迁移、易挥发,且在长时间储存时容易向推进剂药柱的表面和界面移动,导致推进剂不均匀燃烧,且存储过程中的安全危险性增大。为克服其弊端,研究者们又设计合成了高分子量、低迁移的双核二茂铁基衍生物,其中包括2,2-二(乙基二茂铁基)丙烷和二乙基二茂铁基甲烷等。然而研究发现,这类双核二茂铁基衍生物在推进剂的长期贮存过程中,仍然存在较明显的迁移现象。
近年来,人们提出了各种方法来解决二茂铁基燃速催化剂的迁移问题。如提高二茂铁衍生物的相对分子质量、将离子液体概念引入二茂铁基燃速催化剂中、在端羟基聚丁二烯(HTPB)骨架上接枝二茂铁基团等。到目前为止,许多新型二茂铁基燃速催化剂已经被设计合成,并对其抗迁移性能和催化性能进行了评价。T.Jana等人(Dhara M,Giri N,Rao BN,et al.Effect of segmental compatibility imposed over metal basedpolybutadiene polyurethane[J].European Polymer Journal,2019,122:109380)在HTPB的末端碳原子接枝二茂铁基团,将这种新型丁二烯预聚体复合物用作复合固体推进剂中燃速催化剂,既降低了其迁移性,同时也保留了原始HTPB的粘结剂性能。除此之外,Yang等(Yang Y,Bai Y,Zhao F,et al.Effects of metal organic framework Fe-BTC on thethermal decomposition of ammonium perchlorate[J].RSC Advances,2016,6(71):67308-67314)将商品化二茂铁填充进碳纳米管内,有效的降低了二茂铁类燃速催化剂的迁移性,且研究结果表明碳纳米管管径越小,所制备的纳米复合材料的催化效果越好,且制备方法简单有效,为降低商品化二茂铁基燃速催化剂的迁移性研究指明了新方向。
金属-有机框架材料(Metal-Organic Frameworks,MOFs)是一类由金属节点(金属离子或金属-氧团簇)和有机配体通过配位作用形成的具有周期性网络结构的晶态材料。有研究者尝试将MOFs材料直接用作燃速催化剂,如李海涛等(李海涛.纳米ZIF-67、ZnO及其复合材料的合成、结构调控和促进AP热分解的性能研究[D].武汉:华中科技大学,2017)将ZIF-67与ZnO相结合,基于异质形核原理合成了ZIF-67纳米颗粒/ZnO分级结构微球复合催化剂,使AP的高温分解温度降低到290℃。也有将MOFs与其他材料复合,如Wang等(Wang S,Ye B,An C,et al.Synergistic effects between Cu metal-organic framework(Cu-MOF)and carbon nanomaterials for the catalyzation of the thermaldecomposition of ammonium perchlorate(AP)[J].Journal of Materials Science,2019,54:4928-4941)将一种Cu-MOF与多种碳基材料进行复合,分别得到Cu-MOF@GO、Cu-MOF@rGO、Cu-MOF@CNT和Cu-MOF@CNT-rGO四种复合结构燃速催化剂,由于协同催化作用,其对AP的热分解起到良好的催化作用。
近期,我们课题组把一些商品化的二茂铁燃速催化剂利用超声技术成功的填充在氧化碳纳米管的空腔中,发现氧化碳纳米管空腔的限域效应不但极大地降低了这些二茂铁衍生物的迁移率,而且二茂铁衍生物与碳纳米管之间的协同效应提高了复合材料对AP热分解的催化效果(Yang L,Xu R,et al.Enhanced Anti-Migration Performance of CarbonNanotubes Confined Ferrocenyl Compounds and Their Catalytic Activity on theThermal Decomposition of Ammonium Perchlorate[J]Materials Today Chemistry,2022,2,101168)。另外发现,氧化碳纳米管管径越小,所制备的纳米复合材料的催化效果越好。目前常用的碳纳米管的最小内径为2~3nm,而常见的MOFs材料的孔道为微孔(<2nm),而且很多MOF材料是AP热分解的良好催化剂,我们将商业化的一些二茂铁燃速催化剂与具有微孔孔道的MOF材料复合,不但可以降低二茂铁燃速催化剂的迁移性和挥发性,而且更小的孔道有助于进一步提高复合物对AP热分解的催化性能。因此,我们将商业化的一些二茂铁燃速催化剂与ZIF-8或ZIF-67复合,合成了相应的复合材料。
发明内容
本发明的目的是提供一种制备简单、可大量生产,具有良好催化作用且能极大程度降低迁移性的ZIF-67填充二茂铁衍生物纳米复合燃速催化剂。
针对上述目的,本发明采用的ZIF-67填充二茂铁衍生物纳米复合燃速催化剂是:将ZIF-67置于液体二茂铁衍生物中,超声处理使二茂铁衍生物填充到ZIF-67的孔道中,然后用无水乙醚离心洗涤至乙醚无色,所得沉淀进行真空干燥,得到所述纳米复合燃速催化剂。
上述液体二茂铁衍生物优选卡托辛、正丁基二茂铁、叔丁基二茂铁、正辛基二茂铁等中任意一种。
上述ZIF-67的颗粒尺寸为50~100nm,内部孔道直径为1~5nm,呈菱形十二面体结构,且在填充二茂铁衍生物后仍然保留良好菱形十二面体结构。
上述纳米复合燃速催化剂中,优选ZIF-67与二茂铁衍生物的质量-体积比为1g:150~300mL。
上述超声处理时间的温度为20~40℃、时间为8~12小时、超声功率为400~800W。
上述离心的转速为7000~9000rpm、时间为3~6分钟。
上述真空干燥的温度为50~70℃、时间为4~8小时。
本发明的有益效果如下:
1、本发明将二茂铁基燃速催化剂填充进ZIF-67极细的孔道中,利用这种纳米级孔道的束缚作用,使二茂铁基燃速催化剂得以稳定地被约束在孔道中,将二茂铁基燃速催化剂的颗粒尺寸进一步从微米级减小到纳米级,并且二茂铁基燃速催化剂与ZIF-67的催化性能互补,从而产生强的“协同效应”,使其催化性能显著提高。与此同时,被稳定约束在孔道中的二茂铁基燃速催化剂迁移性大大下降,有效的解决了二茂铁基燃速催化剂迁移性强的问题;
2、本发明制备方法操作简单,产率高,且可大量制备,所得ZIF-67填充二茂铁衍生物纳米复合燃速催化剂对高氯酸铵的燃烧催化效果优异,具有催化效果好、迁移性低、比表面积大的优点。
附图说明
图1是卡托辛和实施例1~4制备的ZIF-67填充二茂铁衍生物纳米复合燃速催化剂的迁移性实验柱状图。
图2是实施例1制备的ZIF-67填充二茂铁衍生物纳米复合燃速催化剂的透射电子显微镜图像。
图3是实施例2制备的ZIF-67填充二茂铁衍生物纳米复合燃速催化剂的透射电子显微镜图像。
图4是实施例3制备的ZIF-67填充二茂铁衍生物纳米复合燃速催化剂的透射电子显微镜图像。
图5是实施例4制备的ZIF-67填充二茂铁衍生物纳米复合燃速催化剂的透射电子显微镜图像。
图6是高氯酸铵和高氯酸铵中分别添加5wt.%卡托辛、5wt.%ZIF-8和5wt.%实施例1制备的ZIF-67填充二茂铁衍生物纳米复合燃速催化剂的差示扫描量热仪测试结果。
图7是高氯酸铵和高氯酸铵中分别添加5wt.%实施例1~4制备的ZIF-67填充二茂铁衍生物纳米复合燃速催化剂的差示扫描量热仪测试结果。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
下面实施例中所采用的ZIF-67的颗粒尺寸为50~100nm,内部孔道直径为1~5nm,呈菱形十二面体结构,参考文献方法(Qian J.,Sun F.,Qin L.Hydrothermal synthesisof zeolitic imidazolate framework-67(ZIF-67)nanocrystals[J].Mater Lett,2012,82(220-223))制备而成。
实施例1
将0.05g ZIF-67加入10mL纯卡托辛溶液中,置于超声波清洗器中,在温度为30℃、功率为600W下超声10小时,使卡托辛填充到ZIF-67的孔道中,然后将所得深紫色粘性溶液用无水乙醚离心洗涤,离心的转速为8000rpm,每次离心时间为5分钟,直至所得上清液为无色透明后,将深紫色固体沉淀置于真空干燥箱中60℃干燥6小时后取出,所得深紫色粉末为ZIF-67填充卡托辛纳米复合燃速催化剂。
实施例2
将0.05g ZIF-67加入10mL纯正丁基二茂铁溶液中,置于超声波清洗器中,在温度为30℃、功率为600W下超声10小时,使正丁基二茂铁填充到ZIF-67的孔道中,然后将所得深紫色粘性溶液用无水乙醚离心洗涤,离心的转速为8000rpm,每次离心时间为5分钟,直至所得上清液为无色透明后,将深紫色固体沉淀置于真空干燥箱中60℃干燥6小时后取出,所得深紫色粉末为ZIF-67填充正丁基二茂铁纳米复合燃速催化剂。
实施例3
将0.05g ZIF-67加入10mL纯叔丁基二茂铁溶液中,置于超声波清洗器中,在温度为30℃、功率为600W下超声10小时,使叔丁基二茂铁填充到ZIF-67的孔道中,然后将所得深紫色粘性溶液用无水乙醚离心洗涤,离心的转速为8000rpm,每次离心时间为5分钟,直至所得上清液为无色透明后,将深紫色固体沉淀置于真空干燥箱中60℃干燥6小时后取出,所得深紫色粉末为ZIF-67填充叔丁基二茂铁纳米复合燃速催化剂。
实施例4
将0.05g ZIF-67加入10mL纯正辛基二茂铁溶液中,置于超声波清洗器中,在温度为30℃、功率为600W下超声10小时,使正辛基二茂铁填充到ZIF-67的孔道中,然后将所得深紫色粘性溶液用无水乙醚离心洗涤,离心的转速为8000rpm,每次离心时间为5分钟,直至所得上清液为无色透明后,将深紫色固体沉淀置于真空干燥箱中60℃干燥6小时后取出,所得深紫色粉末为ZIF-67填充正辛基二茂铁纳米复合燃速催化剂。
分别对上述实施例1~4制备的纳米复合燃速催化剂进行迁移性能测试,将卡托辛四周的迁移距离同四种制备的纳米复合燃速催化剂四周的迁移距离分别进行对比,结果见图1。从图1可以看出,本发明所得ZIF-67内部填充有卡托辛、正丁基二茂铁、叔丁基二茂铁、正辛基二茂铁的纳米复合燃速催化剂只有微弱的迁移现象。模拟实际固体推进剂的配方含量,将卡托辛和实施例1~4制备的纳米复合燃速催化剂分别与推进剂中其他各组分按比例混匀装入玻璃管中,在50℃的真空干燥箱中存放四周,每隔七天取出样品,测量混合物的迁移距离。可以明显发现实施例1~4制备的纳米复合燃速催化剂抗迁移性能明显优于纯卡托辛的抗迁移性能,说明此方法已解决了传统商品化二茂铁燃速催化剂卡托辛的迁移问题。从图2~5中可以看出,本发明制备的四种纳米复合燃速催化剂,均可以观察到有填充物存在。
分别在高氯酸铵(AP)中添加5wt.%实施例1~4制备的纳米复合燃速催化剂进行燃烧催化性能测试,同时与纯高氯酸铵以及高氯酸铵中分别添加5wt.%卡托辛和5%ZIF-67的燃烧催化性能进行对比,结果见图6~7。
从图6中可以看出,纯AP的热分解过程分为三个阶段,第一阶段是AP的晶型转变,晶体从低温的斜方晶型转变为高温的立方晶型,图中纯AP的晶型转变在246.7℃;第二阶段是AP的低温分解阶段,图中AP低温分解的起始温度为267.2℃,低温分解峰峰温为292.5℃,低温分解阶段是放热过程,包括解离和升华两个过程,AP的低温分解主要是气-固多相反应;第三阶段是AP的高温分解阶段,从345.8℃到424.3℃为AP的高温分解阶段,高温分解峰峰温为406.6℃,这段过程是主要的分解阶段,此阶段AP完全分解为HCl、H2O、Cl2、O2、NO、N2O和NO2等挥发性产物。由图6还可以看出,实施例1制备的纳米复合燃速催化剂对AP热分解的促进作用明显优于5wt.%ZIF-67以及5wt.%卡托辛对AP热分解的促进作用。与实施例1制备的纳米复合燃速催化剂相比,另外两组对照组的AP表观分解热分别降低了546.41J/g和321.91J/g,AP分解阶段的峰温也有不同程度的升高。并且加入实施例1制备的纳米复合燃速催化剂后,AP的低温分解峰也出现了后移,这使得AP的放热更加集中,有利于提升AP的燃烧性能。
从图7中可以看出,在整个过程中AP的放热并不明显。相同条件下,当在固体推进剂主组分AP中添加5wt.%实施例1~4制备的纳米复合燃速催化剂作为催化剂后,AP高温分解阶段的峰温从409.3℃分别降低至299.6℃、306.9℃、304.9℃、304.0℃,分别降低了109.7℃、102.4℃、104.4℃、105.3℃,明显高于AP本身测试结果,说明实施例1~4制备的纳米复合燃速催化剂对AP热分解的促进作用更加明显;另外AP的表观分解热分别增加1048.68J/g、1270.26J/g、1035.70J/g和1178.09J/g,由此可见,与纯AP在高温分解阶段相比,加入实施例1~4制备的纳米复合燃速催化剂后,AP的高温分解阶段呈现集中放热现象,AP热分解的高温分解峰温明显的降低,并且体系放出的热量较纯AP增大很多,说明本发明制备的纳米复合燃速催化剂对AP的热分解具有良好的燃烧催化作用,其中实施例1制备的纳米复合燃速催化剂对AP热分解催化效果最好。

Claims (7)

1.一种ZIF-67填充二茂铁衍生物纳米复合燃速催化剂,其特征在于:将ZIF-67置于液体二茂铁衍生物中,超声处理使二茂铁衍生物填充到ZIF-67的孔道中,然后用无水乙醚离心洗涤至乙醚无色,所得沉淀进行真空干燥,得到所述纳米复合燃速催化剂。
2.根据权利要求1所述的ZIF-67填充二茂铁衍生物纳米复合燃速催化剂,其特征在于:所述二茂铁衍生物为卡托辛、正丁基二茂铁、叔丁基二茂铁、正辛基二茂铁中任意一种。
3.根据权利要求1所述的ZIF-67填充二茂铁衍生物纳米复合燃速催化剂,其特征在于:所述ZIF-67的颗粒尺寸为50~100nm,内部孔道直径为1~5nm,呈菱形十二面体结构,且在填充二茂铁衍生物后仍然保留良好菱形十二面体结构。
4.根据权利要求1所述的ZIF-67填充二茂铁衍生物纳米复合燃速催化剂,其特征在于:所述纳米复合燃速催化剂中ZIF-67与二茂铁衍生物的质量-体积比为1g:150~300mL。
5.根据权利要求1所述的ZIF-67填充二茂铁衍生物纳米复合燃速催化剂,其特征在于:所述超声处理时间的温度为20~40℃、时间为8~12小时、超声功率为400~800W。
6.根据权利要求1所述的ZIF-67填充二茂铁衍生物纳米复合燃速催化剂,其特征在于:所述离心的转速为7000~9000rpm、时间为3~6分钟。
7.根据权利要求1所述的ZIF-67填充二茂铁衍生物纳米复合燃速催化剂,其特征在于:所述真空干燥的温度为50~70℃、时间为4~8小时。
CN202211195524.1A 2022-09-28 2022-09-28 Zif-67填充二茂铁衍生物纳米复合燃速催化剂 Active CN115582145B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211195524.1A CN115582145B (zh) 2022-09-28 2022-09-28 Zif-67填充二茂铁衍生物纳米复合燃速催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211195524.1A CN115582145B (zh) 2022-09-28 2022-09-28 Zif-67填充二茂铁衍生物纳米复合燃速催化剂

Publications (2)

Publication Number Publication Date
CN115582145A true CN115582145A (zh) 2023-01-10
CN115582145B CN115582145B (zh) 2024-02-02

Family

ID=84778915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211195524.1A Active CN115582145B (zh) 2022-09-28 2022-09-28 Zif-67填充二茂铁衍生物纳米复合燃速催化剂

Country Status (1)

Country Link
CN (1) CN115582145B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115739185A (zh) * 2022-09-28 2023-03-07 陕西师范大学 一种zif-8复合二茂铁纳米燃速催化剂
CN116640032A (zh) * 2023-06-28 2023-08-25 南京理工大学 含有金属的燃速催化剂及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112675918A (zh) * 2021-01-08 2021-04-20 陕西师范大学 一种降低二茂铁燃速催化剂迁移性的方法
CN112940273A (zh) * 2021-02-05 2021-06-11 西安近代化学研究所 一种石墨烯基含能MOFs及其制备方法
US20210247350A1 (en) * 2019-11-07 2021-08-12 Qingdao University Method for preparing dual-functional hybrid thin-film for self-calibration detection of tumor-derived exosomes
CN113548932A (zh) * 2021-07-27 2021-10-26 陕西师范大学 碳纳米管填充铜金属配合物纳米复合燃速催化剂
CN114768873A (zh) * 2022-04-15 2022-07-22 西北大学 Fe基金属有机框架材料作为燃烧催化剂的应用
CN115069304A (zh) * 2022-06-15 2022-09-20 西安近代化学研究所 Co-ZIF-L材料作为火药燃烧催化剂的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210247350A1 (en) * 2019-11-07 2021-08-12 Qingdao University Method for preparing dual-functional hybrid thin-film for self-calibration detection of tumor-derived exosomes
CN112675918A (zh) * 2021-01-08 2021-04-20 陕西师范大学 一种降低二茂铁燃速催化剂迁移性的方法
CN112940273A (zh) * 2021-02-05 2021-06-11 西安近代化学研究所 一种石墨烯基含能MOFs及其制备方法
CN113548932A (zh) * 2021-07-27 2021-10-26 陕西师范大学 碳纳米管填充铜金属配合物纳米复合燃速催化剂
CN114768873A (zh) * 2022-04-15 2022-07-22 西北大学 Fe基金属有机框架材料作为燃烧催化剂的应用
CN115069304A (zh) * 2022-06-15 2022-09-20 西安近代化学研究所 Co-ZIF-L材料作为火药燃烧催化剂的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINPENG WANG ET AL.: ""ZIF-8 with Ferrocene Encapsulated: A Promising Precursor to Single-Atom Fe Embedded Nitrogen-Doped Carbon as Highly Efficient Catalyst for Oxygen Electroreduction"", 《SMALL》, vol. 14, pages 1 - 7 *
李柱石: ""ZIF-8 衍生铁/钴基氮掺杂碳催化剂的制备及氧还原性能研究"", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技I辑》, no. 3, pages 3 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115739185A (zh) * 2022-09-28 2023-03-07 陕西师范大学 一种zif-8复合二茂铁纳米燃速催化剂
CN115739185B (zh) * 2022-09-28 2024-03-15 陕西师范大学 一种zif-8复合二茂铁纳米燃速催化剂
CN116640032A (zh) * 2023-06-28 2023-08-25 南京理工大学 含有金属的燃速催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN115582145B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
CN115582145B (zh) Zif-67填充二茂铁衍生物纳米复合燃速催化剂
He et al. Metastable energetic nanocomposites of MOF-activated aluminum featured with multi-level energy releases
Chen et al. The construction of hierarchical hollow Double-Shelled Co3O4 for the enhanced thermal decomposition of Ammonium perchlorate
CN112675918A (zh) 一种降低二茂铁燃速催化剂迁移性的方法
Hao et al. Novel energetic metal–organic frameworks assembled from the energetic combination of furazan and tetrazole
CN115069304B (zh) Co-ZIF-L材料作为火药燃烧催化剂的应用
Li et al. Thermal decomposition reaction mechanism and combustion performance of AlH3/AP energetic composite
CN111499479B (zh) 一种碳基氧化锌复合推进剂用燃速调节剂及其低温制备方法
CN112266312A (zh) 一种石墨烯增韧二维高氮材料掺杂硝胺氧化剂及制备方法
CN103274949A (zh) 富勒烯乙二胺硝酸盐及其制备方法和用途
KR102575548B1 (ko) 고체 추진제용 보론비드 복합체, 이의 제조방법, 및 상기 보론비드 복합체를 포함하는 고체 추진제
Zhao et al. Studies on thermokinetic and reactive mechanism of graphdiyne-based NC composite via multi isoconversional methods and model reconstruction
CN111036302B (zh) 一种石墨烯-没食子酸铁燃烧催化剂及其合成方法
Zhang et al. Multi-scale modified nitramine crystals with conjugated structure intercalation and thin-layer catalyst coating for well-controlled energy release rate
CN112898103A (zh) 一种g-C3N4基复合含能材料的制备方法
CN115739185B (zh) 一种zif-8复合二茂铁纳米燃速催化剂
Li et al. In situ growth of copper-based energetic complexes on GO and an MXene to synergistically promote the thermal decomposition of ammonium perchlorate
Zhao et al. Fe2O3/ZIF-8 architectures with enhanced thermocatalytic performance for efficient degradation of nitrocellulose
Hu et al. The catalytic thermal decomposition of ammonium perchlorate on CuMxOy (M= Fe, Ni, Co and Zn) catalysts and their applications in solid propellant
CN114958450B (zh) 一种低迁移二茂铁基缩水甘油醚类燃速催化剂及其制备方法
Ye et al. Efficient Construction of MXene/V2O5 Nanocomposites for Optimizing the Combustion of Ammonium Perchlorate-Based Composite Solid Propellants
CN108786883A (zh) 一种负载型高氯酸铵/氧化石墨烯三维含能材料的制备方法
Ma et al. Graphene oxide induced nanoscale energetic coordination polymer with self-sustaining combustion ability
Feng et al. Microflower-like Fe-Co-MOF with enhanced catalytic performance for decomposition of ammonium perchlorate and combustion of ammonium perchlorate-based composite propellants
CN113150440A (zh) 一种阻燃性聚丙烯的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant