CN115579249A - 一种超级电容器电极材料CNT@M-Ni-OH及其制备方法和应用 - Google Patents

一种超级电容器电极材料CNT@M-Ni-OH及其制备方法和应用 Download PDF

Info

Publication number
CN115579249A
CN115579249A CN202210466524.4A CN202210466524A CN115579249A CN 115579249 A CN115579249 A CN 115579249A CN 202210466524 A CN202210466524 A CN 202210466524A CN 115579249 A CN115579249 A CN 115579249A
Authority
CN
China
Prior art keywords
cnt
electrode material
mofs
nano tube
carbon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210466524.4A
Other languages
English (en)
Inventor
刘辉
何应
李亮
何清
张宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN202210466524.4A priority Critical patent/CN115579249A/zh
Publication of CN115579249A publication Critical patent/CN115579249A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种超级电容器电极材料CNT@M‑Ni‑OH及其制备方法和应用,包括以下步骤:(1)采用改性剂对碳纳米管进行改性,得到改性碳纳米管;(2)采用溶剂热或水热法将微孔MOFs生长在改性碳纳米管上,得到碳纳米管@MOFs复合材料;(3)将碳纳米管@MOFs复合材料配制成分散液,与镍盐溶液混合进行水热反应,制备电极材料CNT@M‑Ni‑OH,M为MOFs中的金属离子。本发明材料是由大量的纳米片状氢氧化物包覆在CNT周围形成核‑壳结构,可提供更多与电解质接触的面积,促进离子扩散,同时CNT可以有效提高电极材料的导电性,提高电化学性能。

Description

一种超级电容器电极材料CNT@M-Ni-OH及其制备方法和应用
技术领域
本发明属于超级电容器电极材料领域,尤其涉及一种超级电容器电极材料CNT@M-Ni-OH及其制备方法和应用。
背景技术
随着自然化石资源的迅速枯竭和生态环境的急剧恶化,对清洁、高效、可持续的能源储存设备的需求日益迫切。因此,研究与开发能源储存设备具有重要的意义。在众多储能设备中,超级电容器由于具有快速储能和高功率输出被认为是一个非常有前景的储能设备。一般而言,超级电容器中的核心部分是电极材料,对超级电容器的研究主要集中在具有高电容性的新型电极材料的合成与开发上。
镍基氢氧化物具有理论容量高、成本低的特点受到研究者的关注,然而单纯的镍基氢氧化物通常由于易团聚、导电率低、循环稳定性差等缺点限制了其实际应用。通过引入其他金属离子(如Zn,Al,Cr,Mn和Co)到Ni(OH)2上,可以有效提高电极的稳定性和电化学活性。同时也可以将导电性优良的碳材料与Ni(OH)2复合提高电极材料的导电性,从而提高电化学活性。如Chang(Chang,Y.;Yang,J.;Zhao,C;et al.Nanohybrids from NiCoAl-LDHcoupled with carbon for pseudocapacitors:understanding the role of nano-structured carbon[J].Nanoscale.2014,6(6),3097~3104.)等通过共沉淀法合成NiCoAl-LDH,然后再与碳纳米管复合,这种三元复合材料综合了三者的优点,比电容高、比表面积大、循环稳定性和导电性能比二元复合材料具有更加显著的电化学作用。
金属有机骨架(MOFs)具有高孔隙率、高比表面积及结构可调等特点,在传感、气体吸附、分离及催化等领域具有很强的应用。同时MOFs具有的高孔隙率、优异的比表面积和低密度等特点被认为是制备具有较大表面积和孔隙率的功能壳或空心结构材料的模板。以MOFs为模板制备具有内部空穴或者功能壳的微纳米材料时,MOFs既可以作为牺牲模板又可以为材料提供金属离子,是一种双功能材料。同时,基于MOFs为模板制备的材料同样会继承MOFs的一些特征,具有比表面积高及形貌可调性高等特点,因此可以利用MOFs来制备电化学性能优异的超级电容器材料。如jiang等人(Jiang,Z.;Li,Z.;Qin,Z.;et al.LDHnanocages synthesized with MOF templates and their high performance assupercapacitors[J].Nanoscale.2013,5(23),11770~11775.)制备了基于ZIF-67的空心层状双氢氧化物(LDHs)多面体。Yilmaz等(Yilmaz,G.;Yam,K.M.;Zhang,C.;et al.In situtra nsformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance[J].Advanced Materials.2017,29(26),1606814.)报道了由MOFs衍生的NiCo-LDH/Co9S8具有较高的比电容。但是这些技术存在纳米M-Ni-OH不易均匀分散和易团聚的缺陷,不利于M-Ni-OH电极材料的电化学活性提升。
发明内容
本发明的目的在于克服上述技术不足,提供一种超级电容器电极材料CNT@M-Ni-OH及其制备方法和应用,解决现有技术中M-Ni-OH不易均匀分散和易团聚导致电化学活性低的技术问题。
为达到上述技术目的,本发明制备方法的技术方案是:
包括以下步骤:
(1)采用改性剂对碳纳米管进行改性,得到改性碳纳米管;
(2)采用溶剂热或水热法将微孔MOFs生长在改性碳纳米管上,得到碳纳米管@MOFs复合材料;
(3)将碳纳米管@MOFs复合材料配制成分散液,与镍盐溶液混合进行水热反应,制备电极材料CNT@M-Ni-OH,其中碳纳米管@MOFs复合材料和镍盐的质量比为1:(2~5),M为MOFs中的金属离子。
进一步地,步骤(1)中改性剂为多巴胺或硅烷偶联剂,改性是在pH值为8~9的酸性溶液中进行的;改性剂和碳纳米管之间的质量比为1:(1~2),改性时间为2~24h。
进一步地,酸性溶液为盐酸溶液、醋酸溶液、硫酸溶液或TRIS溶液;硅烷偶联剂的型号为KH-540或KH-550或KH-560。
进一步地,步骤(2)中微孔MOFs的原料包括配位金属和配体,改性碳纳米管和配位金属的质量摩尔比为40mg:(0.5~2)mmol;配位金属和配体的摩尔比为1:(5~20);配位金属为Co(NO3)2·6H2O和Zn(NO3)2·6H2O中的一种或两种,配体包括咪唑类配体和乙烯基酰胺类配体。
进一步地,步骤(2)中,溶剂热或水热法的反应温度均为80~140℃,时间均为12~36h。
进一步地,步骤(3)中,碳纳米管@MOFs复合材料分散液的浓度为2~5mg/mL,碳纳米管@MOFs复合材料分散液的溶剂为水、乙醇、甲醇和DMF中的一种或多种。
进一步地,步骤(3)中,镍盐采用Ni(NO3)2·6H2O,Ni(NO3)2·6H2O溶液的浓度为16~25mg/mL,Ni(NO3)2·6H2O溶液的溶剂为水。
进一步地,步骤(3)中,水热反应条件为:90~120℃下加热12~36h。
如上制备方法制得的超级电容器电极材料CNT@M-Ni-OH。
如上超级电容器电极材料CNT@M-Ni-OH在超级电容器中的应用。
与现有技术相比,本发明的有益效果包括:
本发明提供的一种以MOFs为模板制备超级电容器的电极材料CNT@M-Ni-OH的制备方法,该方法先对碳纳米管进行表面改性,然后在碳纳米管上均匀生长微孔MOFs制备CNT@MOFs复合材料,然后CNT@MOFs与镍盐进行水解反应生成CNT@M-Ni-OH复合电极材料。该方法制备的CNT@M-Ni-OH的结构是由大量的纳米片状氢氧化物包覆在CNT周围形成核-壳结构,这种可提供更多与电解质接触的面积,促进离子扩散,同时CNT可以有效提高电极材料的导电性,从而进一步提高电化学性能,本发明材料在电流密度为1A/g时比电容可达1664.70~2039.63F/g,1000次循环后电容保持率达到85.4%~99.0%。
附图说明
图1为本发明的制备方法的流程框图;
图2(a)为本发明中CNT@NiCoZn-OH的SEM图;
图2(b)为本发明中CNT@NiCo-OH的SEM图;
图2(c)为本发明中CNT@NiZn-OH的SEM图;
图3(a)为本发明中CNT@NiCoZn-OH的CV图;
图3(b)为本发明中CNT@NiCo-OH的CV图;
图3(c)为本发明中CNT@NiZn-OH的CV图;
图4(a)为本发明中CNT@NiCoZn-OH的GCD图;
图4(b)为本发明中CNT@NiCo-OH的GCD图;
图4(c)为本发明中CNT@NiZn-OH的GCD图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种以MOFs为模板制备超级电容器的电极材料CNT@M-Ni-OH的制备方法,旨在解决纳米M-Ni-OH不易均匀分散于CNT中和易团聚的缺陷,这有利于提高M-Ni-OH电极材料的电化学活性,同时碳纳米管的引入可以增强复合材料的导电性,以提高电极材料的电子迁移速率,从而提高电极材料的电容性和稳定性。
参见图1,本发明方法包括以下步骤:
A、在酸性溶液中以多巴胺或硅烷偶联剂对碳纳米管进行改性,以便微孔MOFs在碳纳米管上生长,多巴胺或硅烷偶联剂、碳纳米管和酸性溶液的比例1g:(1~2)g:(100~500)mL,改性时间为2~24h;
B、采用溶剂热或水热反应方法将微孔MOFs生长在碳纳米管的外表面上制备出碳纳米管@MOFs复合材料:改性碳纳米管和溶剂总量的比例为40mg:(30~60)mL;生长时间为12~36h;生长温度为80~140℃。
C、通过水热法将碳纳米管@MOFs复合材料与硝酸镍进行反应制备CNT@M-Ni-OH。其中,碳纳米管@MOFs复合材料分散液的浓度为2~5mg/mL;Ni(NO3)2·6H2O水溶液的浓度为16~25mg/mL;碳纳米管@MOFs复合材料和Ni(NO3)2·6H2O的质量比为1:(2~5)mg。水热反应条件为:90~120℃下加热12~36h。
优选的,酸性溶液为稀盐酸溶液、稀醋酸溶液、稀硫酸溶液及TRIS溶液,pH值为8.5。
优选的,MOFs为ZIF-5、ZIF-7、ZIF-8、ZIF-11、ZIF-20、ZIF-67、ZIF-68及各种ZIF混合物。
本发明步骤B)中MOFs材料的原料包括配位金属和配体,其中配位金属为Co(NO3)2·6H2O和Zn(NO3)2·6H2O中的一种或两种,配体包括咪唑类配体和乙烯基酰胺类配体,咪唑类配体优选为2-甲基咪唑,乙烯基酰胺类配体优选为聚乙烯吡咯烷酮。
其中,改性碳纳米管和配位金属之间的比例为40mg:(0.5~2)mmol;配位金属中Co(NO3)2·6H2O和Zn(NO3)2·6H2O的摩尔比为(0~1):(0~1),两者不同时为零,且摩尔比优选为1:1。
金属源和配体的理论摩尔比为1:1,为了保证金属源的充分反应,采用过量的配体,优选金属源5~20倍摩尔量的配体,由于所采用的金属源和配体均溶于水等溶剂,产物不溶,因此可以得到纯度高的MOFs材料;本发明可以根据MOFs的具体型号选择金属源以及对应的配体。
配体中2-甲基咪唑和聚乙烯吡咯烷酮的摩尔比优选为(3~4):(1~2)。
优选的,有机硅烷偶联剂为KH-540或KH-550或KH-560。
优选的,溶剂热中溶剂为水、乙醇、甲醇及DMF中的一种或多种的混合物。
下面通过具体的实施例对本发明做进一步详细说明。
实施例1
(1)取0.3g三羟基氨基甲烷溶于250mL水中,用盐酸调pH至8.5,配置成0.5mmol/L的Tris缓冲溶液;将0.5g碳纳米管置于195mL Tris缓冲溶液中搅拌15min,然后超声15min,使碳纳米管在Tris缓冲溶液中分散均匀;将0.5g多巴胺溶于10mL Tris缓冲溶液后倒入上述溶液中,磁力搅拌2h。最后用丙酮、去离子水依次抽滤洗涤2次,于60℃烘箱中24h烘干,得到产物CNT@PDA。
(2)40mg CNT@PDA在超声条件下分散于20mL甲醇中,持续10min使其分散均匀。将0.25mmol Co(NO3)2·6H2O和0.25mmol Zn(NO3)2·6H2O溶入10mL甲醇后倒入上述溶液中,磁力搅拌。然后,将含有328mg(4mmol)2-甲基咪唑和187.5mg(1.7mmol)聚乙烯吡咯烷酮的10mL甲醇溶液滴入上述溶液中。持续搅拌反应12h后,过滤得到CNT@CoZn-ZIFs(ZIFs是MOFs类中的一种)。其中,改性碳纳米管和配位金属的质量摩尔比为40mg:0.5mmol;配位金属和配体的摩尔比为1:10.4。
(3)80mg CNT@CoZn-ZIFs超声分散于40mL乙醇和二甲基甲酰胺(DMF)的混合溶剂中(体积比1:1)。其后,将包括含有160mg Ni(NO3)2·6H2O的10mL水倒入上述溶液。经充分混合后,溶液在90℃下加热12h,经过滤、水洗、干燥得产物CNT@NiCoZn-OH。
实施例2
40mg实施例1相同的CNT@PDA在超声条件下分散于20mL甲醇中,持续10min使其分散均匀。将0.5mmol Co(NO3)2·6H2O溶入10mL甲醇后倒入上述溶液中,磁力搅拌。然后,将含有328mg 2-甲基咪唑和187.5mg聚乙烯吡咯烷酮的10mL甲醇溶液滴入上述溶液中。持续搅拌反应12h后,过滤得到CNT@Co-ZIFs。
80mg CNT@Co-ZIFs超声分散于40mL乙醇和二甲基甲酰胺(DMF)的混合溶剂中(体积比1:1)。其后,将包括含有160mg Ni(NO3)2·6H2O的10mL水倒入上述溶液。经充分混合后,溶液在90℃下加热12h,经过滤、水洗、干燥得产物CNT@NiCo-OH。
实施例3
40mg实施例1相同的CNT@PDA在超声条件下分散于20mL甲醇中,持续10min使其分散均匀。将0.5mmol Zn(NO3)2·6H2O溶入10mL甲醇后倒入上述溶液中,磁力搅拌。然后,将含有328mg 2-甲基咪唑和187.5mg聚乙烯吡咯烷酮的10mL甲醇溶液滴入上述溶液中。持续搅拌反应12h后,过滤得到CNT@Zn-ZIFs。
80mg CNT@Zn-ZIFs超声分散于40mL乙醇和二甲基甲酰胺(DMF)的混合溶剂中(体积比1:1)。其后,将包括含有160mg Ni(NO3)2·6H2O的10mL水倒入上述溶液。经充分混合后,溶液在90℃下加热12h,经过滤、水洗、干燥得产物CNT@NiZn-OH。
电化学性能的测试采用的是科斯特电化学工作站,对上述制得的材料进行了循环伏安测试(CV),恒流充放电测试(GCD),交流阻抗谱测试(EIS)和循环稳定性测试。电解液为3mol/L的KOH,在室温下使用三电极体系进行测试,其中以复合材料制成的电极片作为工作电极,铂丝为对电极,银电极为参比电极。
GCD中我们可以得到复合材料在不同电流密度下的放电时间,在根据公式:
Cs=(I*Δt)/(m*ΔV) (1)
可以算出比电容。其中,Cs代表电极材料的比电容(F/g);I代表放电电流(A);Δt代表放电时间(s),m代表电极中活性物质的质量(g);ΔV代表测试体系的电压范围。
图2(a)至图2(c)分别显示的是CNT@NiCoZn-OH、CNT@NiZn-OH、CNT@NiCo-OH的SEM图,从图中可以明显看出三种材料都具有CNT连接着外层交错的纳米片并构成一个整体的结构特点,CNT和外层交错的纳米片提供了更多的电解质接触面积,从而实现了离子的快速扩散。
图3(a)至图3(c)所示的是CNT@NiCoZn-OH、CNT@NiZn-OH、CNT@NiCo-OH的CV图,从图中可以看出三种材料的CV曲线呈现出明显的氧化还原峰,而非近似矩形形状,这说明三种材料电极主要是由法拉第赝电容构成,且电化学反应中电极材料必然发生了法拉第反应。这些峰是由于电极表面上的金属离子在电化学过程中发生氧化还原化学引起的。
图4(a)至图4(c)是三种材料的GCD曲线图,从图中可以看出恒流充放电曲线高度对称,说明CNT@NiCoZn-OH复合材料具有良好的导电性能和库伦效率。通过公式(1)计算出CNT@NiCoZn-OH、CNT@NiZn-OH、CNT@NiCo-OH电极在1A/g电流密度下的比容量以及循环性能如下表1所示。
表1实施例1至3制得的三种产物作为电极材料的电化学性能
Figure BDA0003624441000000071
由表1可知,本发明制得的三种材料在电流密度为1A/g时比电容分别是2039.63F/g,1930.01F/g及1664.70F/g。1000次循环后三种材料的电容保持率分别达到97.7%,99.0%和85.4%,因此CNT@NiCoZn-OH复合材料综合性能最优。
实施例4
(1)取pH值为8.5的盐酸溶液;将1g碳纳米管置于170mL盐酸溶液中搅拌15min,然后超声15min,使碳纳米管在盐酸溶液中分散均匀;将0.5g的KH-540硅烷偶联剂溶于10mL盐酸溶液后倒入上述溶液中,磁力搅拌3h。最后用丙酮、去离子水依次抽滤洗涤2次,于60℃烘箱中24h烘干,得到产物改性碳纳米管。
(2)40mg改性碳纳米管在超声条件下分散于20mL甲醇中,持续10min使其分散均匀。将0.3mmol Co(NO3)2·6H2O和0.3mmol Zn(NO3)2·6H2O溶入10mL甲醇后倒入上述溶液中,磁力搅拌。然后,将含有3.6mmol的2-甲基咪唑和1.2mmol的聚乙烯吡咯烷酮的10mL甲醇溶液滴入上述溶液中。持续搅拌反应24h后,过滤得到CNT@CoZn-ZIFs。
(3)80mg CNT@CoZn-ZIFs超声分散于20mL乙醇和二甲基甲酰胺(DMF)的混合溶剂中(体积比1:1)。其后,将包括含有240mg Ni(NO3)2·6H2O的10mL水倒入上述溶液。经充分混合后,溶液在100℃下加热12h,经过滤、水洗、干燥得产物CNT@NiCoZn-OH,该产物CNT@NiCoZn-OH在电流密度为1A/g时比电容是1997.32F/g,1000次循环后电容保持率在97.2%。
实施例5
(1)取pH值为8.5的硫酸溶液;将0.75g碳纳米管置于210mL硫酸溶液中搅拌15min,然后超声15min,使碳纳米管在硫酸溶液中分散均匀;将0.5g的KH-560硅烷偶联剂溶于10mL硫酸溶液后倒入上述溶液中,磁力搅拌5h。最后用丙酮、去离子水依次抽滤洗涤2次,于60℃烘箱中24h烘干,得到产物改性碳纳米管。
(2)40mg改性碳纳米管在超声条件下分散于20mL甲醇中,持续10min使其分散均匀。将0.4mmol Co(NO3)2·6H2O和0.4mmol Zn(NO3)2·6H2O溶入10mL甲醇后倒入上述溶液中,磁力搅拌。然后,将含有4mmol的2-甲基咪唑和1.6mmol聚乙烯吡咯烷酮的10mL甲醇溶液滴入上述溶液中。持续搅拌反应36h后,过滤得到CNT@CoZn-ZIFs。
(3)80mg CNT@CoZn-ZIFs超声分散于30mL水中。其后,将包括含有400mg Ni(NO3)2·6H2O的20mL水倒入上述溶液。经充分混合后,溶液在120℃下加热12h,经过滤、水洗、干燥得产物CNT@NiCoZn-OH,该产物CNT@NiCoZn-OH在电流密度为1A/g时比电容是2013.58F/g,1000次循环后电容保持率在97.5%。
对比例1
去掉步骤(1)中的改性过程,采用碳纳米管替换步骤(2)中的改性碳纳米管,其他步骤同实施例4。
所得产物在电流密度为1A/g时比电容是1102F/g,1000次循环后电容保持率在70.5%,这是由于未改性的碳纳米管不利于MOFs生长,导致活性位点降低,所得材料的电化学性能下降。
本发明提供的一种以MOFs为模板制备超级电容器的电极材料CNT@M-Ni-OH的制备方法,该方法首先以多巴胺或硅烷偶联剂对碳纳米管(CNT)进行表面修饰以便在碳纳米管上生长MOFs,然后以硝酸盐作为金属源与有机配体一起和修饰后的碳纳米管合成CNT@MOFs材料,再通过水热法与硝酸镍进行反应制备CNT@M-Ni-OH。该复合材料中的层状氢氧化物分散在碳纳米管周围形成均匀的核壳结构,这种结构可提供比表面积,有利于促进离子扩散,从而有效地提高电化学性能。
以上所述本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所做出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。

Claims (10)

1.一种超级电容器电极材料CNT@M-Ni-OH的制备方法,其特征在于,包括以下步骤:
(1)采用改性剂对碳纳米管进行改性,得到改性碳纳米管;
(2)采用溶剂热或水热法将微孔MOFs生长在改性碳纳米管上,得到碳纳米管@MOFs复合材料;
(3)将碳纳米管@MOFs复合材料配制成分散液,与镍盐溶液混合进行水热反应,制备电极材料CNT@M-Ni-OH,其中碳纳米管@MOFs复合材料和镍盐的质量比为1:(2~5),M为MOFs中的金属离子。
2.根据权利要求1所述的超级电容器电极材料CNT@M-Ni-OH的制备方法,其特征在于,步骤(1)中改性剂为多巴胺或硅烷偶联剂,改性是在pH值为8~9的酸性溶液中进行的;改性剂和碳纳米管之间的质量比为1:(1~2),改性时间为2~24h。
3.根据权利要求2所述的超级电容器电极材料CNT@M-Ni-OH的制备方法,其特征在于,酸性溶液为盐酸溶液、醋酸溶液、硫酸溶液或TRIS溶液;硅烷偶联剂的型号为KH-540或KH-550或KH-560。
4.根据权利要求1所述的超级电容器电极材料CNT@M-Ni-OH的制备方法,其特征在于,步骤(2)中微孔MOFs的原料包括配位金属和配体,改性碳纳米管和配位金属的质量摩尔比为40mg:(0.5~2)mmol;配位金属和配体的摩尔比为1:(5~20);配位金属为Co(NO3)2·6H2O和Zn(NO3)2·6H2O中的一种或两种,配体包括咪唑类配体和乙烯基酰胺类配体。
5.根据权利要求1所述的超级电容器电极材料CNT@M-Ni-OH的制备方法,其特征在于,步骤(2)中,溶剂热或水热法的反应温度均为80~140℃,时间均为12~36h。
6.根据权利要求1所述的超级电容器电极材料CNT@M-Ni-OH的制备方法,其特征在于,步骤(3)中,碳纳米管@MOFs复合材料分散液的浓度为2~5mg/mL,碳纳米管@MOFs复合材料分散液的溶剂为水、乙醇、甲醇和DMF中的一种或多种。
7.根据权利要求1所述的超级电容器电极材料CNT@M-Ni-OH的制备方法,其特征在于,步骤(3)中,镍盐采用Ni(NO3)2·6H2O,Ni(NO3)2·6H2O溶液的浓度为16~25mg/mL,Ni(NO3)2·6H2O溶液的溶剂为水。
8.根据权利要求1所述的超级电容器电极材料CNT@M-Ni-OH的制备方法,其特征在于,步骤(3)中,水热反应条件为:90~120℃下加热12~36h。
9.如权利要求1-8任意一项所述制备方法制得的超级电容器电极材料CNT@M-Ni-OH。
10.如权利要求9所述超级电容器电极材料CNT@M-Ni-OH在超级电容器中的应用。
CN202210466524.4A 2022-04-29 2022-04-29 一种超级电容器电极材料CNT@M-Ni-OH及其制备方法和应用 Pending CN115579249A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210466524.4A CN115579249A (zh) 2022-04-29 2022-04-29 一种超级电容器电极材料CNT@M-Ni-OH及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210466524.4A CN115579249A (zh) 2022-04-29 2022-04-29 一种超级电容器电极材料CNT@M-Ni-OH及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN115579249A true CN115579249A (zh) 2023-01-06

Family

ID=84578916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210466524.4A Pending CN115579249A (zh) 2022-04-29 2022-04-29 一种超级电容器电极材料CNT@M-Ni-OH及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115579249A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116885198A (zh) * 2023-09-08 2023-10-13 浙江帕瓦新能源股份有限公司 前驱体及制备方法、正极材料、钠离子电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116885198A (zh) * 2023-09-08 2023-10-13 浙江帕瓦新能源股份有限公司 前驱体及制备方法、正极材料、钠离子电池
CN116885198B (zh) * 2023-09-08 2023-12-08 浙江帕瓦新能源股份有限公司 前驱体及制备方法、正极材料、钠离子电池

Similar Documents

Publication Publication Date Title
Kang et al. Metal-organic framework derived hollow rod-like NiCoMn ternary metal sulfide for high-performance asymmetric supercapacitors
Sun et al. A review on the synthesis of CuCo2O4-based electrode materials and their applications in supercapacitors
Yue et al. Ni/Co-MOF@ aminated MXene hierarchical electrodes for high-stability supercapacitors
He et al. Asymmetric supercapacitors based on hierarchically nanoporous carbon and ZnCo2O4 from a single biometallic metal-organic frameworks (Zn/Co-MOF)
Sun et al. CoO-Co3O4 heterostructure nanoribbon/RGO sandwich-like composites as anode materials for high performance lithium-ion batteries
CN107359054B (zh) 一种复合电极材料、其制备方法及应用
CN105529192B (zh) 一种应用于超级电容器的铜量子点/活性炭复合材料的制备方法
Xiao et al. Balancing crystallinity and specific surface area of metal-organic framework derived nickel hydroxide for high-performance supercapacitor
CN104973596A (zh) 一种杂原子掺杂空心球石墨烯复合材料及制备方法与应用
CN110581264B (zh) 一种高性能镍锌电池负极活性材料及其制备方法
Tian et al. A high-performance asymmetric supercapacitor-based (CuCo) Se 2/GA cathode and FeSe 2/GA anode with enhanced kinetics matching
Li et al. Hetero-structured NiS2/CoS2 nanospheres embedded on N/S co-doped carbon nanocages with ultra-thin nanosheets for hybrid supercapacitors
CN109411736B (zh) 一种磷化钴/石墨烯/n掺杂碳复合材料及其制备方法
Chai et al. In-situ growth of NiAl layered double hydroxides on Ni-based metal-organic framework derived hierarchical carbon as high performance material for Zn-ion batteries
Zhang et al. NiCo-MOF directed NiCoP and coconut shell derived porous carbon as high-performance supercapacitor electrodes
Ershadi et al. Facile synthesis of amino-functionalized mesoporous Fe3O4/rGO 3D nanocomposite by diamine compounds as Li-ion battery anodes
CN106960730A (zh) 一种高稳定性镍钴双氢氧化物电极材料及其制备方法
Yang et al. Co 3 O 4 nanocrystals derived from a zeolitic imidazolate framework on Ni foam as high-performance supercapacitor electrode material
Hu et al. Design and syntheses of Ni (OH) 2@ Co/C nanocomposite as electrode material for supercapacitor
Wang et al. CoS/Nitrogen-doped carbon composites derived from Zeolitic imidazolate frameworks-67 as advanced electrodes for supercapacitors
CN115579249A (zh) 一种超级电容器电极材料CNT@M-Ni-OH及其制备方法和应用
Pang et al. MOF derived hierarchical carbon-enhanced MCo2S4 for high-performance hybrid supercapacitors
Manyani et al. Study of electrochemical behaviour of binder-free nickel metal-organic framework derived by benzene-1, 3, 5-tricarboxylic acid for supercapacitor electrode
CN113716550A (zh) 一种过渡金属层状双金属氢氧化物碳纳米管复合材料制备及其在电池中的应用
Ji et al. Reconstruction of Co/Ni metal-organic-framework based electrode materials with excellent conductivity and integral stability via extended hydrothermal treatment toward improved performance of supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination