CN115577616A - Method and device for seismic characterization of carbonate fracture-caves based on deep learning - Google Patents

Method and device for seismic characterization of carbonate fracture-caves based on deep learning Download PDF

Info

Publication number
CN115577616A
CN115577616A CN202211125190.0A CN202211125190A CN115577616A CN 115577616 A CN115577616 A CN 115577616A CN 202211125190 A CN202211125190 A CN 202211125190A CN 115577616 A CN115577616 A CN 115577616A
Authority
CN
China
Prior art keywords
seismic
data volume
learning
post
fracture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211125190.0A
Other languages
Chinese (zh)
Inventor
李建海
邱文霜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuisheng Chengdu Technology Co ltd
Original Assignee
Furuisheng Chengdu Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuisheng Chengdu Technology Co ltd filed Critical Furuisheng Chengdu Technology Co ltd
Priority to CN202211125190.0A priority Critical patent/CN115577616A/en
Publication of CN115577616A publication Critical patent/CN115577616A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Geometry (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

The invention discloses a carbonatite fracture hole seismic characterization method and device based on deep learning, and belongs to the technical field of oil and gas exploration and development. The method comprises the following steps: acquiring seismic data; horizontally stacking the seismic data to obtain a post-stack migration seismic data volume; extracting a root-mean-square amplitude data volume and a seismic sweet-spot attribute data volume based on the post-stack migration seismic data volume; picking up learning points on a seismic section obtained by horizontally stacking seismic data; inputting training samples and learning targets into a learning vector machine for training to obtain a deep learning network, wherein the training samples are a post-stack migration seismic data body, square root amplitude data and seismic dessert attributes, and the learning targets are learning points; and obtaining a fracture-cave characteristic attribute data volume by utilizing a deep learning network based on the post-stack migration seismic data volume, the square root amplitude data and the seismic dessert attribute. The method of the invention not only can well predict the fracture and the hole, but also has good prediction effect on the underground corrosion hole.

Description

基于深度学习的碳酸岩缝洞地震刻画方法及装置Method and device for seismic characterization of carbonate fracture-caves based on deep learning

技术领域technical field

本发明属于油气勘探开发技术领域,特别是涉及一种基于深度学习的碳酸岩缝洞地震刻画方法及装置。The invention belongs to the technical field of oil and gas exploration and development, and in particular relates to a method and device for seismic characterization of carbonate fracture-caves based on deep learning.

背景技术Background technique

碳酸岩油气藏是我国主要的油气藏类型之一,碳酸盐岩储层形成主要受后期岩溶改造和断裂作用的影响,形成次生的溶蚀孔洞和裂缝,储集空间为次生的溶蚀孔洞和裂缝构成的缝洞体系。我国油气田缝洞型储层具有以下特征:古岩溶垂向分带明显,表层岩溶带、垂直渗流带和水平潜流带发育齐全;储集空间主要由岩溶作用形成的半充填或未充填残余大型溶洞和溶蚀孔洞缝组成,优质储层类型以裂缝-溶蚀孔洞-大型溶洞为主,为各大油气田高产、稳产最重要的储层和主力产层;储层明显受古岩溶地貌和断层裂缝控制,岩溶斜坡和断裂发育区是储层发育的最有利地区;埋藏有机溶蚀作用形成的次生孔隙也是重要的有效孔隙,其发育与烃类形成、演化和运聚相匹配;表生岩溶和埋藏有机溶蚀作用的多期次叠加、改造,是古岩溶储层及油气藏形成的最佳组合模式。Carbonate oil and gas reservoirs are one of the main types of oil and gas reservoirs in my country. The formation of carbonate rock reservoirs is mainly affected by karst reformation and faulting in the later stage, forming secondary dissolved pores and fractures, and the storage space is secondary dissolved pores and caves. A system of fractures and cracks. Fracture-vuggy reservoirs in my country's oil and gas fields have the following characteristics: paleokarst has obvious vertical zoning, surface karst zone, vertical vadose zone and horizontal underflow zone are well developed; the reservoir space is mainly semi-filled or unfilled residual large karst caves formed by karstification Composed of dissolved pores, caves and fractures, the high-quality reservoir types are mainly fractures-dissolved pores-large karst caves, which are the most important reservoirs and main production layers for high and stable production in major oil and gas fields; the reservoirs are obviously controlled by paleokarst landforms and fault fractures, Karst slopes and fault development areas are the most favorable areas for reservoir development; secondary pores formed by buried organic dissolution are also important effective pores, and their development matches the formation, evolution, and migration and accumulation of hydrocarbons; supergene karst and buried organic The multi-stage superimposition and transformation of dissolution is the best combination mode for the formation of paleokarst reservoirs and oil and gas reservoirs.

目前利用地震资料预测碳酸岩缝洞主要采用以下技术进行预测识别:一是采用各向异性裂缝预测方法对缝洞发育带进行预测,该预测技术需要宽方位采集地震资料才能克服噪音对反演结果的不利影响,而常规地震资料往往不够详细,导致缝洞发育带的预测难以满足开发生产的需求,预测不准确、时间长,存在较多缝洞体系预测与实钻生产不符的情况;二是碳酸盐岩断缝洞结构地震表征方法,该方法的特点主要是利用地震资料的横向不连续的特征,在断裂、裂缝预测的基础上进行碳酸岩发育区域及规模进行预测,该方法的优点是对于与断裂、裂缝发育有关的缝洞预测效果较好,其缺点是对于地下径流及地下水的溶蚀作用所形成的碳酸岩溶洞预测效果不佳;三是井周裂缝密度估算的方法,该方法主要是利用成像测井技术(成像测井主要用于裂缝预测)与地震属性建立训练集和测试集,从而预测裂缝发育区。该技术同样对裂缝预测效果明显,但对于溶蚀性孔洞预测效果不佳。At present, using seismic data to predict carbonatite fractures and caves mainly adopts the following technologies for prediction and identification: First, the anisotropic fracture prediction method is used to predict the development zone of fractures and caves. This prediction technology needs to collect seismic data in wide azimuths to overcome the impact of noise on the inversion results. However, the conventional seismic data are often not detailed enough, which makes the prediction of the fracture-cavity development zone difficult to meet the needs of development and production. The prediction is inaccurate and takes a long time, and there are many situations where the prediction of the fracture-vug system does not match the actual drilling production; Seismic characterization method of fractured-cavern structures in carbonate rocks. The feature of this method is mainly to use the lateral discontinuity characteristics of seismic data to predict the development area and scale of carbonate rocks on the basis of fault and fracture prediction. The advantages of this method It is better for the prediction of fractures and caves related to the development of fractures and fractures, but its disadvantage is that it is not good for the prediction of carbonatite caves formed by the dissolution of underground runoff and groundwater; the third is the method of estimating the fracture density around the well. It mainly uses imaging logging technology (imaging logging is mainly used for fracture prediction) and seismic attributes to establish training sets and test sets to predict fracture development areas. This technique is also effective in predicting fractures, but it is not effective in predicting dissolution pores.

总体来看,目前碳酸岩盐缝洞预测技术对断缝洞预测效果较好,但是对于溶蚀型孔洞预测效果不佳。但在我国碳酸岩油气勘探中溶蚀孔洞也是一个广泛发育的、勘探效果较好的领域之一,因此碳酸岩溶蚀孔洞预测技术能很好的解决碳酸岩溶蚀孔洞油气勘探难题。Generally speaking, the current carbonatite-salt fracture-cavity prediction technology has a good prediction effect on fault fractures and caves, but the prediction effect on dissolution-type pores is not good. However, in my country's carbonate rock oil and gas exploration, dissolution vugs are also one of the fields that are widely developed and have good exploration results. Therefore, the prediction technology of carbonate rock dissolution vugs can well solve the problem of carbonate rock dissolution vug oil and gas exploration.

发明内容Contents of the invention

本发明的目的在于克服现有技术的不足,提供一种基于深度学习的碳酸岩缝洞地震刻画方法及装置。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a method and device for seismic characterization of carbonate fracture-caves based on deep learning.

本发明的目的是通过以下技术方案来实现的:The purpose of the present invention is achieved through the following technical solutions:

根据本发明的第一方面,基于深度学习的碳酸岩缝洞地震刻画方法,包括:According to the first aspect of the present invention, the carbonate fracture-vuggy seismic characterization method based on deep learning includes:

获取地震资料;Obtain seismic data;

对所述地震资料进行水平叠加得到叠后偏移地震数据体;performing horizontal stacking on the seismic data to obtain a post-stack migration seismic data volume;

基于所述叠后偏移地震数据体,提取均方根振幅数据体和地震甜点属性数据体;Extracting a root mean square amplitude data volume and a seismic sweet spot attribute data volume based on the post-stack migration seismic data volume;

在对所述地震资料进行水平叠加得到的地震剖面上拾取学习点;Picking learning points on the seismic section obtained by horizontally stacking the seismic data;

将训练样本和学习目标输入学习向量机进行训练得到深度学习网络,所述训练样本为叠后偏移地震数据体、方根振幅数据和地震甜点属性,所述学习目标为所述学习点;The training sample and the learning target are input into the learning vector machine for training to obtain a deep learning network, the training sample is post-stack migration seismic data body, square root amplitude data and seismic sweet spot attribute, and the learning target is the learning point;

基于所述叠后偏移地震数据体、方根振幅数据和地震甜点属性,利用所述深度学习网络得到缝洞特征属性数据体。Based on the post-stack migration seismic data volume, square root amplitude data, and seismic sweet spot attributes, the fracture-vug characteristic attribute data volume is obtained by using the deep learning network.

进一步地,所述碳酸岩缝洞地震刻画方法,包括:Further, the carbonate fracture-cavity seismic characterization method includes:

基于所述缝洞特征属性数据体,以剖面、平面或三维空间的显示方式展示碳酸岩缝洞的空间分布特征。Based on the characteristic attribute data volume of fractures and caves, the spatial distribution characteristics of carbonate fractures and caves are displayed in the display mode of section, plane or three-dimensional space.

进一步地,所述均方根振幅数据体的提取方法为:Further, the extraction method of the root mean square amplitude data volume is:

基于所述叠后偏移地震数据体,利用paradigm软件中的属性提取工具提取叠后偏移地震数的均方根振幅数据体。Based on the post-stack migration seismic data volume, the root-mean-square amplitude data volume of post-stack migration seismic numbers is extracted by using the attribute extraction tool in the paradigm software.

进一步地,所述地震甜点属性数据体的提取方法为:Further, the extraction method of the seismic sweet spot attribute data body is:

基于所述叠后偏移地震数据体,利用paradigm软件中的属性提取工具提取叠后偏移地震数的甜点属性数据体。Based on the post-stack migration seismic data volume, the sweet spot attribute data volume of the post-stack migration seismic data is extracted by using the attribute extraction tool in the paradigm software.

进一步地,所述学习点的指定方法为:Further, the specified method of the learning point is:

采用鼠标拾取的方式在地震剖面上拾取学习点。Use the mouse to pick up learning points on the seismic section.

根据本发明的第二方面,基于深度学习的碳酸岩缝洞地震刻画装置,包括:According to the second aspect of the present invention, the carbonate fracture-cavity seismic characterization device based on deep learning includes:

数据获取模块,用于获取地震资料;A data acquisition module for acquiring seismic data;

数据叠加模块,用于对所述地震资料进行水平叠加得到叠后偏移地震数据体;A data stacking module, configured to horizontally stack the seismic data to obtain a post-stack migration seismic data volume;

数据提取模块,用于基于所述叠后偏移地震数据体,提取均方根振幅数据体和地震甜点属性数据体;A data extraction module, configured to extract the RMS amplitude data volume and the seismic sweet spot attribute data volume based on the post-stack migration seismic data volume;

学习点拾取模块,用于在地震剖面上拾取学习点;Learning point picking module, used to pick up learning points on the seismic profile;

学习网络构建模块,用于将训练样本和学习目标输入学习向量机进行训练得到深度学习网络,所述训练样本为叠后偏移地震数据体、方根振幅数据和地震甜点属性,所述学习目标为所述学习点;The learning network construction module is used to input training samples and learning targets into the learning vector machine to train to obtain a deep learning network, the training samples are post-stack migration seismic data volume, square root amplitude data and seismic sweet spot attributes, and the learning targets for said learning point;

缝洞刻画模块,用于基于所述叠后偏移地震数据体、方根振幅数据和地震甜点属性,利用所述深度学习网络得到缝洞特征属性数据体。The fracture-vug characterization module is configured to use the deep learning network to obtain a fracture-vug characteristic attribute data volume based on the post-stack migration seismic data volume, square root amplitude data, and seismic sweet spot attributes.

进一步地,所述碳酸岩缝洞地震刻画装置还包括:Further, the carbonate fracture-cavity seismic characterization device also includes:

显示模块,用于基于所述缝洞特征属性数据体,以剖面、平面或三维空间的显示方式展示碳酸岩缝洞的空间分布特征。The display module is used to display the spatial distribution characteristics of carbonatite fractures and caves in a section, plane or three-dimensional display manner based on the fracture-cavity characteristic attribute data volume.

进一步地,所述数据提取模块具体用于基于所述叠后偏移地震数据体,利用paradigm软件中的属性提取工具提取叠后偏移地震数的均方根振幅数据体和甜点属性数据体。Further, the data extraction module is specifically configured to use the attribute extraction tool in the paradigm software to extract the RMS amplitude data volume and sweet spot attribute data volume of post-stack migration seismic data based on the post-stack migration seismic data volume.

进一步地,所述学习点拾取模块具体用于采用鼠标拾取的方式在地震剖面上拾取学习点。Further, the learning point picking module is specifically configured to pick up learning points on the seismic section by means of mouse picking.

本发明的有益效果是:本发明有机的将叠后偏移地震数据体、均方根振幅数据体和甜点属性数据体结合起来建立深度学习网络,然后运用机器学习的方法将碳酸岩缝洞直观地刻画出来,有效地预测出了碳酸岩缝洞空间展布特征及平面分布规律。与已公开的预测技术相比,本发明的方法不仅能很好的预测断缝性缝洞,而且对于地下溶蚀性孔洞也有很好的预测效果,利用该方法预测的碳酸岩溶蚀型孔洞分布与井上吻合度较高。The beneficial effects of the present invention are: the present invention organically combines the post-stack migration seismic data volume, the root mean square amplitude data volume and the sweet spot attribute data volume to establish a deep learning network, and then uses the method of machine learning to visualize carbonate rock fractures and caves The spatial distribution characteristics and planar distribution rules of carbonatite fractures and caves are effectively predicted. Compared with the published prediction technology, the method of the present invention can not only predict fractured fractures and caves well, but also has a good prediction effect on underground dissolution pores and caves. The distribution of carbonate rock dissolution-type pores predicted by this method is consistent with Inoue has a high degree of agreement.

附图说明Description of drawings

图1为本发明中碳酸岩缝洞地震刻画方法的一个实施例的流程图;Fig. 1 is the flow chart of an embodiment of the carbonate fracture-cavity seismic description method in the present invention;

图2为一个实施例中叠后偏移地震数据体的示意图;Figure 2 is a schematic diagram of a post-stack migration seismic data volume in one embodiment;

图3为一个实施例中均方根振幅数据体的示意图;Figure 3 is a schematic diagram of an RMS amplitude data volume in one embodiment;

图4为一个实施例中甜点属性数据体的示意图;Fig. 4 is a schematic diagram of a dessert attribute data body in an embodiment;

图5为一个实施例中学习点的示意图;Fig. 5 is a schematic diagram of a learning point in an embodiment;

图6为一个实施例中深度学习得到的碳酸盐缝洞剖面特征;Fig. 6 is the profile feature of the carbonate fracture-vug obtained by deep learning in one embodiment;

图7为一个实施例中深度学习得到的碳酸盐缝洞平面特征;Fig. 7 is the plane feature of carbonate fracture-cavity obtained by deep learning in one embodiment;

图8为一个实施例中深度学习得到的碳酸盐缝洞三维空间特征;Fig. 8 is the three-dimensional spatial characteristics of carbonate fractures and caves obtained by deep learning in one embodiment;

图9为本发明中碳酸岩缝洞地震刻画装置的一个实施例的组成框图。Fig. 9 is a composition block diagram of an embodiment of the carbonate fracture-cavity seismic characterization device in the present invention.

具体实施方式detailed description

下面将结合实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with the embodiments. Apparently, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without making creative efforts belong to the protection scope of the present invention.

参阅图1-图9,本发明提供一种基于深度学习的碳酸岩缝洞地震刻画方法及装置:Referring to Fig. 1-Fig. 9, the present invention provides a method and device for seismic characterization of carbonate fracture-caves based on deep learning:

本发明的第一方面提供了一种基于深度学习的碳酸岩缝洞地震刻画方法,如图1所示,所述碳酸岩缝洞地震刻画方法包括步骤S100~步骤S600,以下详细说明。The first aspect of the present invention provides a method for seismic characterization of carbonate fracture-caves based on deep learning. As shown in FIG. 1 , the method for seismic characterization of carbonate fracture-caves includes steps S100 to S600, which will be described in detail below.

S100.获取地震资料。S100. Acquiring seismic data.

S200.对所述地震资料进行水平叠加得到叠后偏移地震数据体。S200. Perform horizontal stacking on the seismic data to obtain a post-stack migration seismic data volume.

如图2所示,根据叠后偏移地震数据体可知:碳酸岩缝洞系统一般在地震剖面上表现为“串珠状”特征。地震剖面上缝洞发育区地震振幅增强、杂乱反射、强反射、串珠状反射。As shown in Fig. 2, according to the post-stack migration seismic data volume, it can be known that the carbonate fracture-vuggy system generally presents a “string of beads” feature on the seismic section. Seismic amplitude enhancement, chaotic reflections, strong reflections, and beaded reflections in fracture-vug development areas on the seismic section.

一般的,地震资料经过水平叠加以后输出成果是时间剖面。在一些实施例中,在有限差分法和克希霍夫积分法偏移原理的基础上,借助Vista软件对地质模型资料进行叠后偏移处理与分析;分析结果表明,对地质条件相对简单且信噪比较低的地震记录来说,采用叠后偏移处理的效果优于叠前偏移处理,因此叠后偏移在一定范围内仍有其优势。Generally, the output result after horizontal stacking of seismic data is time section. In some embodiments, on the basis of the migration principle of the finite difference method and the Kirchhoff integral method, post-stack migration processing and analysis are performed on the geological model data with the help of Vista software; the analysis results show that the geological conditions are relatively simple and For seismic records with low signal-to-noise ratio, the effect of post-stack migration processing is better than that of pre-stack migration processing, so post-stack migration still has its advantages within a certain range.

S300.基于所述叠后偏移地震数据体,提取均方根振幅数据体和地震甜点属性数据体。S300. Based on the post-stack migration seismic data volume, extract a root mean square amplitude data volume and a seismic sweet spot attribute data volume.

在一些实施例中,基于所述叠后偏移地震数据体,利用paradigm软件中的属性提取工具提取叠后偏移地震数的均方根振幅数据体。In some embodiments, based on the post-stack migration seismic data volume, an RMS amplitude data volume of post-stack migration seismic numbers is extracted using an attribute extraction tool in the paradigm software.

在一些实施例中,基于所述叠后偏移地震数据体,利用paradigm软件中的属性提取工具提取叠后偏移地震数的甜点属性数据体。In some embodiments, based on the post-stack migration seismic data volume, a sweet spot attribute data volume of post-stack migration seismic data is extracted using an attribute extraction tool in the paradigm software.

即,在一些实施例中,利用paradigm软件中的属性提取工具从所述叠后偏移地震数据体中提取均方根振幅数据体和地震甜点属性数据体。本实施例中,通过从所述叠后偏移地震数据体中提取均方根振幅数据体和地震甜点属性数据体,增加了学习样本的数量,有利于提高深度学习网络的精度。That is, in some embodiments, the RMS amplitude data volume and the seismic sweet spot attribute data volume are extracted from the post-stack migration seismic data volume by using the attribute extraction tool in the paradigm software. In this embodiment, by extracting the root mean square amplitude data volume and the seismic sweet spot attribute data volume from the post-stack migration seismic data volume, the number of learning samples is increased, which is beneficial to improve the accuracy of the deep learning network.

S400.在对所述地震资料进行水平叠加得到的地震剖面上拾取学习点。S400. Pick learning points on the seismic section obtained by horizontally stacking the seismic data.

在一些实施例中,采用鼠标拾取的方式在地震剖面上拾取学习点,所述学习点在地震上具有振幅增强、强反射、串珠状反射、低速度的特点。In some embodiments, the learning point is picked on the seismic section by mouse picking, and the learning point has the characteristics of enhanced amplitude, strong reflection, beaded reflection, and low velocity on the seismic.

S500.将训练样本和学习目标输入学习向量机进行训练得到深度学习网络,所述训练样本为叠后偏移地震数据体、方根振幅数据和地震甜点属性,所述学习目标为所述学习点。S500. Input the training sample and learning target into the learning vector machine for training to obtain a deep learning network, the training sample is post-stack migration seismic data volume, square root amplitude data and seismic sweet spot attribute, and the learning target is the learning point .

具体的,以叠后偏移地震数据体、方根振幅数据和地震甜点属性为训练样本,所述学习点为学习目标,将训练样本和学习目标输入学习向量机,通迭代更新的方式确定深度学习网络;如果迭代后相关关系差,则返回重新迭代直至达到预设的效果。Specifically, the post-stack migration seismic data volume, square root amplitude data, and seismic sweet spot attributes are used as training samples, and the learning point is the learning target. The training samples and learning targets are input into the learning vector machine, and the depth is determined through iterative updating. Learning network; if the correlation is poor after iteration, return to iterate again until the preset effect is achieved.

S600.基于所述叠后偏移地震数据体、方根振幅数据和地震甜点属性,利用所述深度学习网络得到缝洞特征属性数据体。S600. Based on the post-stack migration seismic data volume, square root amplitude data, and seismic sweet spot attributes, use the deep learning network to obtain a fracture-vug feature attribute data volume.

具体的,将所述叠后偏移地震数据体、方根振幅数据和地震甜点属性输入深度学习网络,在训练模型约束下,通迭代更新的方式进行刻画得到缝洞特征属性数据体。Specifically, the post-stack migration seismic data volume, square root amplitude data, and seismic sweet spot attributes are input into the deep learning network, and under the constraints of the training model, the fracture-vug feature attribute data volume is obtained through iterative updating.

在一些实施例中,基于所述缝洞特征属性数据体,以剖面、平面或三维空间的显示方式展示碳酸岩缝洞的空间分布特征。In some embodiments, based on the characteristic attribute data volume of fractures and caves, the spatial distribution characteristics of carbonate fractures and caves are displayed in a section, plane or three-dimensional display.

下面以一个案例对本实施的方法进行说明。获取地震资料;对获取到的地震资料进行水平叠加得到的叠后偏移地震数据体如图2所示;在叠后偏移地震数据体中提取得到的均方根振幅数据体如图3所示,在叠后偏移地震数据体中提取得到的地震甜点属性数据体如图4所示;在地震剖面上拾取的学习点如图5所示;将训练样本和学习目标输入学习向量机进行训练得到深度学习网络,所述训练样本为叠后偏移地震数据体、方根振幅数据和地震甜点属性,所述学习目标为所述学习点;基于所述叠后偏移地震数据体、方根振幅数据和地震甜点属性,利用所述深度学习网络得到缝洞特征属性数据体;基于所述缝洞特征属性数据体,以剖面的显示方式展示碳酸岩缝洞的空间分布特征,如图6所示;基于所述缝洞特征属性数据体,以平面的显示方式展示碳酸岩缝洞的空间分布特征,如图7所示;基于所述缝洞特征属性数据体,以三维空间的显示方式展示碳酸岩缝洞的空间分布特征,如图8所示。Hereinafter, a case is used to illustrate the implementation method. Obtain seismic data; the post-stack migration seismic data volume obtained by horizontal stacking of the acquired seismic data is shown in Figure 2; the root mean square amplitude data volume extracted from the post-stack migration seismic data volume is shown in Figure 3 Figure 4 shows the seismic sweet spot attribute data volume extracted from the post-stack migration seismic data volume; Figure 5 shows the learning points picked up on the seismic section; input the training samples and learning targets into the learning vector machine for The deep learning network is obtained through training, the training samples are post-stack migration seismic data volume, square root amplitude data and seismic sweet spot attribute, and the learning target is the learning point; based on the post-stack migration seismic data volume, square root Based on the amplitude data and the seismic sweet spot attributes, the deep learning network is used to obtain the fracture-cavity characteristic attribute data body; based on the fracture-cavity characteristic attribute data body, the spatial distribution characteristics of carbonate fracture-caves are displayed in a section display mode, as shown in Figure 6 As shown; based on the fracture-cavity characteristic attribute data body, the spatial distribution characteristics of carbonatite fracture-caves are displayed in a planar display mode, as shown in Figure 7; based on the fracture-cavity characteristic attribute data body, the display mode in three-dimensional space The spatial distribution characteristics of carbonatite fractures and caves are displayed, as shown in Fig. 8.

本发明的第二方面提供了一种基于深度学习的碳酸岩缝洞地震刻画装置,如图9所示,所述碳酸岩缝洞地震刻画装置包括数据获取模块、数据叠加模块、数据提取模块、学习点拾取模块、学习网络构建模块和缝洞刻画模块。The second aspect of the present invention provides a carbonatite fracture-cavity seismic characterization device based on deep learning. As shown in FIG. Learning point picking module, learning network building module and seam characterization module.

数据获取模块,用于获取地震资料。本实施例中,所述数据获取模块可用于执行图1所示的步骤S100,关于所述数据获取模块的具体描述可参对所述步骤S100的描述。The data acquisition module is used for acquiring seismic data. In this embodiment, the data acquisition module can be used to execute step S100 shown in FIG. 1 , and for a specific description of the data acquisition module, refer to the description of step S100 .

数据叠加模块,用于对所述地震资料进行水平叠加得到叠后偏移地震数据体。本实施例中,所述数据叠加模块可用于执行图1所示的步骤S200,关于所述数据叠加模块的具体描述可参对所述步骤S200的描述。The data stacking module is used to horizontally stack the seismic data to obtain a post-stack migration seismic data volume. In this embodiment, the data superposition module can be used to execute step S200 shown in FIG. 1 , and for a specific description of the data superposition module, refer to the description of step S200 .

数据提取模块,用于基于所述叠后偏移地震数据体,提取均方根振幅数据体和地震甜点属性数据体。本实施例中,所述数据提取模块可用于执行图1所示的步骤S300,关于所述数据提取模块的具体描述可参对所述步骤S300的描述。The data extraction module is used to extract the root mean square amplitude data volume and the seismic sweet spot attribute data volume based on the post-stack migration seismic data volume. In this embodiment, the data extraction module can be used to execute step S300 shown in FIG. 1 , and for a specific description of the data extraction module, refer to the description of step S300 .

学习点拾取模块,用于在地震剖面上拾取学习点。本实施例中,所述学习点拾取模块可用于执行图1所示的步骤S400,关于所述学习点拾取模块的具体描述可参对所述步骤S400的描述。The learning point picking module is used to pick learning points on the seismic profile. In this embodiment, the learning point picking module can be used to execute step S400 shown in FIG. 1 , and for a specific description of the learning point picking module, refer to the description of step S400 .

学习网络构建模块,用于将训练样本和学习目标输入学习向量机进行训练得到深度学习网络,所述训练样本为叠后偏移地震数据体、方根振幅数据和地震甜点属性,所述学习目标为所述学习点。本实施例中,所述学习网络构建模块可用于执行图1所示的步骤S500,关于所述学习网络构建模块的具体描述可参对所述步骤S500的描述。The learning network construction module is used to input training samples and learning targets into the learning vector machine to train to obtain a deep learning network, the training samples are post-stack migration seismic data volume, square root amplitude data and seismic sweet spot attributes, and the learning targets For the learning point. In this embodiment, the learning network construction module can be used to execute step S500 shown in FIG. 1 , and for a specific description of the learning network construction module, refer to the description of step S500 .

缝洞刻画模块,用于基于所述叠后偏移地震数据体、方根振幅数据和地震甜点属性,利用所述深度学习网络得到缝洞特征属性数据体。本实施例中,所述缝洞刻画模块可用于执行图1所示的步骤S600,关于所述缝洞刻画模块的具体描述可参对所述步骤S600的描述。The fracture-vug characterization module is configured to use the deep learning network to obtain a fracture-vug characteristic attribute data volume based on the post-stack migration seismic data volume, square root amplitude data, and seismic sweet spot attributes. In this embodiment, the crack and hole drawing module can be used to execute step S600 shown in FIG. 1 , and for a specific description of the crack and hole drawing module, refer to the description of step S600 .

以上所述仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。The above descriptions are only preferred embodiments of the present invention, and it should be understood that the present invention is not limited to the forms disclosed herein, and should not be regarded as excluding other embodiments, but can be used in various other combinations, modifications and environments, and Modifications can be made within the scope of the ideas described herein, by virtue of the above teachings or skill or knowledge in the relevant art. However, changes and changes made by those skilled in the art do not depart from the spirit and scope of the present invention, and should all be within the protection scope of the appended claims of the present invention.

Claims (9)

1.基于深度学习的碳酸岩缝洞地震刻画方法,其特征在于,包括:1. The carbonate fracture-cavity seismic characterization method based on deep learning, characterized in that it includes: 获取地震资料;Obtain seismic data; 对所述地震资料进行水平叠加得到叠后偏移地震数据体;performing horizontal stacking on the seismic data to obtain a post-stack migration seismic data volume; 基于所述叠后偏移地震数据体,提取均方根振幅数据体和地震甜点属性数据体;Extracting a root mean square amplitude data volume and a seismic sweet spot attribute data volume based on the post-stack migration seismic data volume; 在对所述地震资料进行水平叠加得到的地震剖面上拾取学习点;Picking learning points on the seismic section obtained by horizontally stacking the seismic data; 将训练样本和学习目标输入学习向量机进行训练得到深度学习网络,所述训练样本为叠后偏移地震数据体、方根振幅数据和地震甜点属性,所述学习目标为所述学习点;The training sample and the learning target are input into the learning vector machine for training to obtain a deep learning network, the training sample is post-stack migration seismic data body, square root amplitude data and seismic sweet spot attribute, and the learning target is the learning point; 基于所述叠后偏移地震数据体、方根振幅数据和地震甜点属性,利用所述深度学习网络得到缝洞特征属性数据体。Based on the post-stack migration seismic data volume, square root amplitude data, and seismic sweet spot attributes, the fracture-vug characteristic attribute data volume is obtained by using the deep learning network. 2.根据权利要求1所述的基于深度学习的碳酸岩缝洞地震刻画方法,其特征在于,所述碳酸岩缝洞地震刻画方法,包括:2. the carbonate fracture-cavity seismic characterization method based on deep learning according to claim 1, is characterized in that, the carbonate fracture-cavity seismic characterization method comprises: 基于所述缝洞特征属性数据体,以剖面、平面或三维空间的显示方式展示碳酸岩缝洞的空间分布特征。Based on the characteristic attribute data volume of fractures and caves, the spatial distribution characteristics of carbonate fractures and caves are displayed in the display mode of section, plane or three-dimensional space. 3.根据权利要求1所述的基于深度学习的碳酸岩缝洞地震刻画方法,其特征在于,所述均方根振幅数据体的提取方法为:3. the carbonate fracture-cavity seismic description method based on deep learning according to claim 1, is characterized in that, the extracting method of described root mean square amplitude data body is: 基于所述叠后偏移地震数据体,利用paradigm软件中的属性提取工具提取叠后偏移地震数的均方根振幅数据体。Based on the post-stack migration seismic data volume, the root-mean-square amplitude data volume of post-stack migration seismic numbers is extracted by using the attribute extraction tool in the paradigm software. 4.根据权利要求1所述的基于深度学习的碳酸岩缝洞地震刻画方法,其特征在于,所述地震甜点属性数据体的提取方法为:4. the carbonate fracture-cavity seismic description method based on deep learning according to claim 1, is characterized in that, the extraction method of described seismic sweet spot attribute data body is: 基于所述叠后偏移地震数据体,利用paradigm软件中的属性提取工具提取叠后偏移地震数的甜点属性数据体。Based on the post-stack migration seismic data volume, the sweet spot attribute data volume of the post-stack migration seismic data is extracted by using the attribute extraction tool in the paradigm software. 5.根据权利要求1所述的基于深度学习的碳酸岩缝洞地震刻画方法,其特征在于,所述学习点的指定方法为:5. the carbonate fracture-cavity seismic description method based on deep learning according to claim 1, is characterized in that, the appointed method of described learning point is: 采用鼠标拾取的方式在地震剖面上拾取学习点。Use the mouse to pick up learning points on the seismic section. 6.基于深度学习的碳酸岩缝洞地震刻画装置,其特征在于,包括:6. The carbonate fracture-cavity seismic characterization device based on deep learning, characterized in that it includes: 数据获取模块,用于获取地震资料;A data acquisition module for acquiring seismic data; 数据叠加模块,用于对所述地震资料进行水平叠加得到叠后偏移地震数据体;A data stacking module, configured to horizontally stack the seismic data to obtain a post-stack migration seismic data volume; 数据提取模块,用于基于所述叠后偏移地震数据体,提取均方根振幅数据体和地震甜点属性数据体;A data extraction module, configured to extract the RMS amplitude data volume and the seismic sweet spot attribute data volume based on the post-stack migration seismic data volume; 学习点拾取模块,用于在地震剖面上拾取学习点;Learning point picking module, used to pick up learning points on the seismic profile; 学习网络构建模块,用于将训练样本和学习目标输入学习向量机进行训练得到深度学习网络,所述训练样本为叠后偏移地震数据体、方根振幅数据和地震甜点属性,所述学习目标为所述学习点;The learning network construction module is used to input training samples and learning targets into the learning vector machine to train to obtain a deep learning network. The training samples are post-stack migration seismic data bodies, square root amplitude data and seismic sweet spot attributes, and the learning targets are for said learning point; 缝洞刻画模块,用于基于所述叠后偏移地震数据体、方根振幅数据和地震甜点属性,利用所述深度学习网络得到缝洞特征属性数据体。The fracture-vug characterization module is configured to use the deep learning network to obtain a fracture-vug feature attribute data volume based on the post-stack migration seismic data volume, square root amplitude data, and seismic sweet spot attributes. 7.根据权利要求6所述的基于深度学习的碳酸岩缝洞地震刻画装置,其特征在于,所述碳酸岩缝洞地震刻画装置还包括:7. The carbonate fracture-cavity seismic characterization device based on deep learning according to claim 6, wherein the carbonate fracture-cavity seismic characterization device also includes: 显示模块,用于基于所述缝洞特征属性数据体,以剖面、平面或三维空间的显示方式展示碳酸岩缝洞的空间分布特征。The display module is used to display the spatial distribution characteristics of carbonatite fractures and caves in a section, plane or three-dimensional display manner based on the fracture-cavity characteristic attribute data volume. 8.根据权利要求6所述的基于深度学习的碳酸岩缝洞地震刻画装置,其特征在于,所述数据提取模块具体用于基于所述叠后偏移地震数据体,利用paradigm软件中的属性提取工具提取叠后偏移地震数的均方根振幅数据体和甜点属性数据体。8. The carbonate fracture-cavity seismic characterization device based on deep learning according to claim 6, wherein the data extraction module is specifically used to utilize the attributes in the paradigm software based on the post-stack migration seismic data body The extraction tool extracts the RMS amplitude data volume and sweet spot attribute data volume of post-stack migration seismic numbers. 9.根据权利要求6所述的基于深度学习的碳酸岩缝洞地震刻画装置,其特征在于,所述学习点拾取模块具体用于采用鼠标拾取的方式在地震剖面上拾取学习点。9. The deep learning-based seismic characterization device for carbonate rock fractures and caves according to claim 6, wherein the learning point picking module is specifically used to pick up learning points on the seismic section by means of mouse picking.
CN202211125190.0A 2022-09-15 2022-09-15 Method and device for seismic characterization of carbonate fracture-caves based on deep learning Pending CN115577616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211125190.0A CN115577616A (en) 2022-09-15 2022-09-15 Method and device for seismic characterization of carbonate fracture-caves based on deep learning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211125190.0A CN115577616A (en) 2022-09-15 2022-09-15 Method and device for seismic characterization of carbonate fracture-caves based on deep learning

Publications (1)

Publication Number Publication Date
CN115577616A true CN115577616A (en) 2023-01-06

Family

ID=84580939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211125190.0A Pending CN115577616A (en) 2022-09-15 2022-09-15 Method and device for seismic characterization of carbonate fracture-caves based on deep learning

Country Status (1)

Country Link
CN (1) CN115577616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116299706A (en) * 2023-03-23 2023-06-23 福瑞升(成都)科技有限公司 Mixed Impedance Sand Body Identification Method Based on Prestack Pseudo-shear Wave Reflectivity Attributes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101487898A (en) * 2009-02-27 2009-07-22 中国石油集团川庆钻探工程有限公司 Method for identifying oil, gas and water by longitudinal wave seismic exploration post-stack data
CN104977618A (en) * 2014-04-09 2015-10-14 中国石油集团东方地球物理勘探有限责任公司 Method for evaluating shale gas reservoir and finding dessert area
CN110568494A (en) * 2019-09-12 2019-12-13 电子科技大学 Prestack Non-Gaussian AVO Inversion Method Based on Generalized Extreme Value Distribution
CN111580181A (en) * 2020-04-22 2020-08-25 中国矿业大学(北京) Water guide collapse column identification method based on multi-field multi-feature information fusion
CN113687424A (en) * 2021-09-03 2021-11-23 中国石油大学(华东) Carbonate rock fracture-cave structure seismic characterization method based on deep learning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101487898A (en) * 2009-02-27 2009-07-22 中国石油集团川庆钻探工程有限公司 Method for identifying oil, gas and water by longitudinal wave seismic exploration post-stack data
CN104977618A (en) * 2014-04-09 2015-10-14 中国石油集团东方地球物理勘探有限责任公司 Method for evaluating shale gas reservoir and finding dessert area
CN110568494A (en) * 2019-09-12 2019-12-13 电子科技大学 Prestack Non-Gaussian AVO Inversion Method Based on Generalized Extreme Value Distribution
CN111580181A (en) * 2020-04-22 2020-08-25 中国矿业大学(北京) Water guide collapse column identification method based on multi-field multi-feature information fusion
CN113687424A (en) * 2021-09-03 2021-11-23 中国石油大学(华东) Carbonate rock fracture-cave structure seismic characterization method based on deep learning

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李楠;刘志峰;杨东升;朱石磊;陈少平;张莹;: "地震属性综合分析技术在河道精细刻画中的应用", 中国海上油气, no. 01 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116299706A (en) * 2023-03-23 2023-06-23 福瑞升(成都)科技有限公司 Mixed Impedance Sand Body Identification Method Based on Prestack Pseudo-shear Wave Reflectivity Attributes

Similar Documents

Publication Publication Date Title
CN102759745B (en) Method for forecasting carbonate reservoir based on forward modeling of digital geological outcrop model
CN103135131B (en) Device for interpreting fractured reservoir prediction
CN103345001B (en) A kind of method of measuring the fossil lake pool depth of water
CN108804728B (en) Horizontal well stratum reservoir classification analysis method and computer readable storage medium
CN109541685B (en) River channel sand body identification method
CN107748399B (en) Method for identifying deep tectonic layer of mountain front zone by utilizing gravity interface inversion
CN103403768A (en) Methods and systems regarding models of underground formations
CN108345719A (en) A kind of high angle hole/horizontal well is with boring inversion method after electromagnetic wave logging data is bored
CN103399345B (en) The investigation method of a kind of buried hill fissure distribution and device
CN115577616A (en) Method and device for seismic characterization of carbonate fracture-caves based on deep learning
CN116047602A (en) Prediction method of type II hydrate saturation based on numerical simulation of hydrocarbon generation
CN114428356A (en) Method and electronic equipment for phase-controlled inversion depicting internal structure of carbonate rock broken solution
CN112505752B (en) A post-stack fractured reservoir characterization method based on the shear-fracture conjugate criterion
CN108572392B (en) Method for depicting carbonate rock fracture-cave communicating body
CN110088647A (en) Improved structural modeling
CN111239823A (en) A method for identifying the distribution of intrusive rocks
CN113420456B (en) Geophysical prospecting geological database merging method based on inversion resistivity section
CN113236345B (en) Design method of drilling fracture visualization system
CN110133719B (en) Glutenite period sub-division method based on 90-degree phase shift data volume and seed point tracking
CN111520125B (en) Quantitative analysis method for orientation steering of existing ground stress in wrinkle development area
CN112180463A (en) A Prediction Method of Sandstone Distribution in Transition Intervals
CN115407407A (en) A 3D Geological Model Construction Method for Carbonate Paleokarst Caves and Their Filling
CN114510808A (en) Method for finely characterizing seam-following hole-finding acid fracturing numerical simulation seam hole attribute parameters
CN113970784B (en) Method and system for updating seismic anisotropy parameters
CN108761535A (en) A kind of recognition methods of intrusive rock distribution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20230106

RJ01 Rejection of invention patent application after publication