CN115566096A - 一种AlGaN/Nb2C基紫外光电探测器及其制备方法 - Google Patents

一种AlGaN/Nb2C基紫外光电探测器及其制备方法 Download PDF

Info

Publication number
CN115566096A
CN115566096A CN202211064807.2A CN202211064807A CN115566096A CN 115566096 A CN115566096 A CN 115566096A CN 202211064807 A CN202211064807 A CN 202211064807A CN 115566096 A CN115566096 A CN 115566096A
Authority
CN
China
Prior art keywords
algan
contact electrode
photoelectric detector
epitaxial wafer
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211064807.2A
Other languages
English (en)
Inventor
王文樑
李林浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202211064807.2A priority Critical patent/CN115566096A/zh
Publication of CN115566096A publication Critical patent/CN115566096A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种AlGaN/Nb2C基紫外光电探测器及其制备方法,所述AlGaN/Nb2C基紫外光电探测器包括在蓝宝石衬底上依次生长非掺杂Ga极性面AlN缓冲层和非掺杂Ga极性面AlxGa1‑xN层的紫外光电探测器外延片和设置在所述紫外光电探测器外延片上的绝缘层、欧姆接触电极和肖特基接触电极以及利用阵列凸台设计间隔台面,其中,x=0.5~0.8,肖特基接触电极采用二维Nb2C材料制备,绝缘层为Al2O3绝缘层。本发明提供的AlGaN紫外光电探测器,提高了AlGaN紫外光电探测器在紫外日盲波段的响应度和探测率。

Description

一种AlGaN/Nb2C基紫外光电探测器及其制备方法
技术领域
本发明涉及紫外光电探测器技术领域,特别涉及一种AlGaN/Nb2C基紫外光电探测器及其制备方法。
背景技术
紫外光电探测器作为一种在国防预警、气象监测、通信保障等领域有重要作用的光电元器件而备受各界关注。传统的GaN基紫外光电探测器由于材料本身禁带宽度窄、电子饱和迁移率低等缺点,造成响应频段窄、对可见光的过滤弱、器件发热严重、稳定性差等问题,难以满足日益增长的器件小型化、集成化、更短波长的要求,因此急需开发一种能应用于260nm波长深紫外光工作条件下并同时满足器件小型化、集成化应用需求的新一代紫外光电器件,以AlGaN为代表的III族氮化物多元化合物紫外光电探测器的研究由此兴起,因此探索日盲AlGaN紫外光电探测器及其实现方法具有开创性的革命意义与社会应用价值。
发明内容
为了解决上述现有技术的不足,本发明提供了一种AlGaN/Nb2C基紫外光电探测器及其制备方法,该紫外光电探测器通过将新型Nb2C二维材料与非掺杂Ga极性面AlxGa1-xN层(功能层)结合形成高效肖特基接触;并通过采用Al2O3绝缘层,阻止了电极和功能层形成欧姆接触以提高肖特基接触效率,从而提高了在紫外日盲波段的响应度和探测率。本发明提供的制备方法具有与现有生产手段匹配性高且易于实现的优点。
本发明的第一个目的在于提供一种AlGaN/Nb2C基紫外光电探测器。
本发明的第二个目的在于提供一种AlGaN/Nb2C基紫外光电探测器的制备方法。
本发明的第一个目的可以通过采取如下技术方案达到:
一种AlGaN/Nb2C基紫外光电探测器,包括紫外光电探测器外延片和设置在所述紫外光电探测器外延片上的绝缘层、欧姆接触电极和肖特基接触电极,其中:
所述紫外光电探测器外延片包括在蓝宝石衬底上依次生长的非掺杂Ga极性面AlN缓冲层和非掺杂Ga极性面AlxGa1-xN层,其中,x=0.5~0.8;
所述绝缘层设置在所述非掺杂Ga极性面AlxGa1-xN层上表面的一侧;所述欧姆接触电极设置在所述绝缘层上;所述肖特基接触电极设置在所述欧姆接触电极上,以及设置在所述绝缘层、欧姆接触电极的内侧面和所述非掺杂Ga极性面AlxGa1-xN层上,所述欧姆接触电极还设置在所述非掺杂Ga极性面AlxGa1-xN层上表面的另一侧;
所述肖特基接触电极采用二维Nb2C材料制备,所述绝缘层为Al2O3绝缘层。
进一步的,所述非掺杂Ga极性面AlN缓冲层的厚度为350~500nm。
进一步的,所述非掺杂Ga极性面AlxGa1-xN层的厚度为300~450nm。
进一步的,所述绝缘层的厚度为100~200nm。
进一步的,所述欧姆接触电极采用Ti/Al/Ni/Au蒸镀制得,厚度为100~150nm。
进一步的,所述非掺杂Ga极性面AlN缓冲层和非掺杂Ga极性面AlxGa1-xN层均以(0001)为外延方向。
本发明的第二个目的可以通过采取如下技术方案达到:
一种AlGaN/Nb2C基紫外光电探测器的制备方法,所述方法包括:
在蓝宝石衬底上依次生长非掺杂Ga极性面AlN缓冲层和非掺杂Ga极性面AlxGa1-xN层,得到紫外光电探测器外延片并进行处理;其中,x=0.5~0.8;
对处理后的紫外光电探测器外延片进行光刻,得到隔离图案;对光刻后的紫外光电探测器外延片进行刻蚀,沿隔离图案刻蚀出凹槽;
通过掩模版对准,在所述非掺杂Ga极性面AlxGa1-xN层上的一侧进行光刻,在所述非掺杂Ga极性面AlxGa1-xN层上制备绝缘层图案;将制备有绝缘层图案的紫外光电探测器外延片置于电子束蒸发设备中,蒸镀绝缘层,得到绝缘层,对制备有绝缘层的紫外光电探测器外延片进行处理;
通过掩模版对准,在所述绝缘层上和所述非掺杂Gs极性面AlxGa1-xN层上的另一侧分别进行光刻,得到欧姆接触电极图案;将制备有欧姆接触电极图案的紫外光电探测器外延片置于电子束蒸发设备中,蒸镀欧姆接触电极金属,得到欧姆接触电极金属,对制备有欧姆接触电极金属的紫外光电探测器外延片进行处理;
通过掩模版对准,在所述绝缘层一侧的欧姆接触电极金属上,以及所述绝缘层、欧姆接触电极的内侧面和所述非掺杂Ga极性面AlxGa1-xN层上,进行光刻,得到肖特基接触电极图案;将肖特基接触电极材料充分均匀地覆盖在所述肖特基接触电极图案上,加热放置定型后,得到AlGaN/Nb2C基紫外光电探测器,其中,加热温度为50~70℃;
其中,所述肖特基接触电极材料采用二维Nb2C材料,所述绝缘层为Al2O3绝缘层。
进一步的,所述将肖特基接触电极材料充分均匀地覆盖在所述肖特基接触电极图案上,加热放置定型后,得到AlGaN/Nb2C基紫外光电探测器,包括:
将制备出肖特基接触电极图案的AlGaN整流器外延片置于载玻片上,将Nb2CTx液滴在AlGaN整流器外延片的表面上,并使其均匀地覆盖,加热放置定型后,得到肖特基接触电极,从而制得AlGaN/Nb2C基紫外光电探测器,其中,Nb2CTx液滴的浓度为0.05~0.1g/mL。
进一步的,所述欧姆接触电极采用Ti/Al/Ni/Au蒸镀制得,厚度为100~150nm。
进一步的,所述非掺杂Ga极性面AlN缓冲层和非掺杂Ga极性面AlxGa1-xN层均以(0001)为外延方向。
本发明相对于现有技术具有如下的有益效果:
1、本发明提供的制备方法,在肖特基接触电极结构设计时,采用新型二维Nb2C材料,通过改善电子迁移率,增大了光电流。
2、本发明使用以AlGaN为代表的III族氮化物作为紫外光电探测器的基础材料,III族氮化物相比传统的Si芯片有更加优异的材料性能,能更好地实现器件在更短波长应用上的小型化和集成化。
3、本发明以Ga极性面III族氮化物作为器件基底材料,外延材料表面形貌更优良,能够很好地改善金属电极的接触质量和肖特基电极与外延材料之间的界面质量。
4、本发明设计了Al2O3绝缘层结构,有效克服二维Nb2C在高温制备电极过程中易氧化的缺点,并使得二维Nb2C作为肖特基电极,修饰AlGaN基紫外光电探测器。
5、本发明选用透明的蓝宝石衬底材料作为器件外延衬底,便于光信号的收集和传输。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明实施例的AlGaN/Nb2C基紫外光电探测器的结构示意图。
图2为本发明实施例2的Ga极性AlGaN基器件外延片的AFM表征图。
图3为本发明实施例2的AlGaN/Nb2C基紫外光电探测器的IV曲线测试图。
图1中:
1-蓝宝石衬底、2-非掺杂Ga极性面AlN缓冲层、3-非掺杂Ga极性面AlxGa1-xN层、4-绝缘层、5-欧姆接触电极、6-肖特基接触电极。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。应当理解,描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
实施例1:
本实施例提供了一种AlGaN/Nb2C基紫外光电探测器的制备方法,包括以下步骤:
(1)如图1所示,在蓝宝石衬底1上依次生长非掺杂Ga极性面AlN缓冲层2和非掺杂Ga极性面AlxGa1-xN层(薄膜)3,得到紫外光电探测器外延片;
(2)将步骤(1)所得AlGaN紫外光电探测器外延片依次置于丙酮、去离子水、无水乙醇中超声处理,拿出后经去离子水清洗再用热高纯氮气吹干;
(3)台面隔离图案制备:对步骤(2)得到的AlGaN整流器外延片进行绝缘台面隔离图案光刻制备:通过旋涂匀胶在步骤(2)所得AlGaN整流器外延片上均匀涂抹光刻胶,将涂有光刻胶的AlGaN整流器外延片进行预烘,随后放入光刻机中进行曝光,最后将曝光后的外延片浸入显影液中进行光刻显影并清洗;
(4)台面隔离:对光刻后AlGaN紫外光电探测器外延片进行反应离子刻蚀,在AlGaN紫外光电探测器外延片中,沿凸台图案刻蚀出凹槽,得到分离绝缘的凸台并清洗;
(5)对步骤(4)得到的AlGaN整流器外延片进行绝缘层电极图案光刻制备:通过掩膜板中的对准标记,对AlGaN外延片进行对准,重复(3)工艺;
(6)对AlGaN整流器外延片进行绝缘层制备,将步骤(5)所得光刻显影出绝缘层图案的AlGaN紫外光电探测器外延片置于电子束蒸发设备中,对蒸发腔体抽真空,随后蒸镀Al2O3绝缘层4;
(7)将AlGaN紫外光电探测器外延片浸入去胶液后去除,使用去离子水冲洗并使用丙酮对AlGaN紫外光电探测器外延片表面残留的光刻胶与蒸镀金属进行超声处理去除,超声后再经去离子水清洗,再用热高纯氮气吹干;
(8)通过掩膜板中的对准标记,对AlGaN整流器外延片进行对准,重复步骤(3)工艺,在相应位置上光刻显影,制备器件欧姆接触电极图案并清洗;
(9)对AlGaN整流器外延片进行欧姆接触电极制备:将步骤(8)所得光刻显影出欧姆接触电极图案的AlGaN整流器外延片放入电子束蒸发设备中,重复步骤(6)工艺,在AlGaN紫外光电探测器外延片上蒸镀欧姆接触电极金属5;
(10)重复步骤(7)工艺,通过去胶液浸泡与超声清洗去除AlGaN外延片表面残留的光刻胶与蒸镀金属;
(11)将蒸镀好金属电极的AlGaN外延片放入快速退火装置,在流动N2氛围中进行快速退火;
(12)将退火处理之后的器件放入食人鱼洗液中,浸泡5min,该食人鱼洗液用浓硫酸和30%过氧化氢以7:3的比例混合制成;
(13)通过掩膜板中的对准标记,对AlGaN整流器外延片进行对准,重复步骤(3)工艺,在相应位置上光刻显影,制备器件肖特基接触电极图案并清洗;
(14)对AlGaN整流器外延片进行肖特基接触电极制备:将步骤(12)所得光刻显影出肖特基接触电极图案的AlGaN整流器外延片置于载玻片上,滴上Nb2CTx液滴,使得Nb2C胶体充分均匀地覆盖AlGaN紫外光电探测器外延片表面。待均匀覆盖之后加热放置定型,得到肖特基接触电极6,从而制得AlGaN/Nb2C基紫外光电探测器。
其中:
步骤(1)所述的非掺杂Ga极性面AlN缓冲层和非掺杂Ga极性面AlxGa1-xN薄膜均以(0001)为外延方向;
步骤(2)和步骤(7)所述的超声处理时间均为3~5min;
步骤(3)所述的光刻胶的厚度为0.5μm,烘干时间为90s,所述曝光时间为5~15s,所述显影时间为50s;
步骤(4)所述的凹槽的深度为1~2.5μm;
步骤(6)所述的真空度均为1~5×10-5Pa;
步骤(11)所述的退火的温度为400℃~600℃,所述退火时间为3-5min。
实施例2:
本实施例提供了一种AlGaN/Nb2C基紫外光电探测器的制备方法,具体包括:
(1)如图1所示,采用金属有机物化学气相沉积法技术在蓝宝石衬底上生长AlGaN紫外光电探测器外延片,包括在蓝宝石衬底1上生长的Ga极性AlN缓冲层2,生长在Ga极性面AlN缓冲层2上的非掺杂Ga极性面AlGaN层3;其中,所述AlN缓冲层的厚度为450nm;所述非掺杂Ga极性AlGaN层的厚度为400nm;
(2)将AlGaN紫外光电探测器外延片依次置于丙酮、去离子水、无水乙醇中各自超声3min,去除后经去离子水冲洗,冲洗后的AlGaN再用热高纯氮气吹干;
(3)台面隔离图案的制备:对清洗后的AlGaN紫外光电探测器外延片旋涂正性光刻胶,型号为RZJ304,光刻胶厚度为0.5μm,将涂有光刻胶的外延片置于热台上预烘90s,随后将涂有光刻胶的外延片放入光刻机中通过掩膜板对准标记对准,显影区域尺寸为2mm×1mm;随后进行曝光,曝光时间为10s,再将曝光之后的外延片浸泡入正性显影液中,显影液型号为RZX3038,浸泡时间为50s,最后将显影完成的外延片取出,用去离子水冲洗,并用热高纯氮气吹干,置于热台上烘烤坚膜,烘烤时间为90s;
(4)台面隔离图形刻蚀:将光刻后的AlGaN紫外光电探测器外延片置于反应离子刻蚀机中对光刻暴露出来的隔离层图案进行反应离子刻蚀,刻蚀出对应图案的凹槽,凹槽深度为2μm,刻蚀完毕后使用去离子水冲洗外延片表面并用热氮气吹干;
(5)绝缘层图案的制备:通过掩膜版的对准标记,对AlGaN紫外光电探测器外延片进行对准,重复步骤(3)光刻工艺,在相应位置上进行光刻显影,制备AlGaN紫外光电探测器外延片上暴露出器件绝缘层图案区域,尺寸大小为0.3mm×1mm;
(6)对光刻后的AlGaN紫外光电探测器外延片进行绝缘层制备:将制备有绝缘层图案的AlGaN紫外光电探测器外延片放入电子束蒸发设备中,将腔体真空度抽至3×10-5Pa,随后蒸镀绝缘层物质Al2O34,厚度为150nm;
(7)将制备好绝缘层的AlGaN紫外光电探测器外延片浸入去胶液中浸泡10min,捞出后用去离子水冲洗并置于丙酮中超声15min,拿出后经去离子水冲洗并用热氮气吹干;
(8)欧姆接触电极图案制备:通过掩膜板中的对准标记,对AlGaN紫外光电探测器外延片进行对准,重复步骤(3)光刻工艺,在相应位置上光刻显影,制备AlGaN紫外光电探测器外延片上暴露出器件欧姆接触电极图案区域,尺寸大小为2×0.2mm×1mm,分别位于刻蚀台面的左右两侧;
(9)对光刻后的AlGaN紫外光电探测器外延片进行欧姆接触电极制备:将制备有器件欧姆接触图案的AlGaN紫外光电探测器外延片放入电子束蒸发设备中,将腔体真空度抽至1×10-5Pa,随后依次蒸镀欧姆接触电极物质Ti/Al/Ni/Au,厚度为125nm;
(10)重复步骤(7)工艺,通过去胶液浸泡与超声清洗去除AlGaN外延片表面残留的光刻胶与蒸镀金属;
(11)将蒸镀好金属电极的AlGaN外延片放入快速退火装置,在流动N2氛围中进行快速退火,退火温度为500℃,时间为4min。
(12)将退火处理之后的器件放入食人鱼洗液中,浸泡5min,该食人鱼洗液用浓硫酸和30%过氧化氢以7:3的比例混合制成。
(13)肖特基接触电极图案制备:通过掩膜板中的对准标记,对AlGaN紫外光电探测器外延片进行对准,重复步骤(3)光刻工艺,在绝缘层图案侧对应位置上光刻显影,制备AlGaN紫外光电探测器外延片上暴露出器件肖特基接触电极图案区域,尺寸大小为1.6mm×1mm;
(14)对光刻后的AlGaN紫外光电探测器外延片进行肖特基接触电极制备:将制备了肖特基接触电极图案的AlGaN紫外光电探测器外延片粘贴在载玻片上,使用针管吸取少量Nb2CTx试样(浓度为0.1g/mL),滴在外延片表面。放入真空烘箱,烘干AlGaN紫外光电探测器外延片,使Nb2C定型,最后将AlGaN外延片置于丙酮中浸泡50s,去除AlGaN外延片表面残留的光刻胶和Nb2C,从而制得AlGaN/Nb2C基紫外光电探测器。
本实施例制得的日盲AlGaN紫外光电探测器的结构如图1所示,AlGaN外延材料的表面AFM表征测试结果如图2所示,表面粗糙度均方根为5.2nm,晶体质量十分良好,而AlGaN/Nb2C基紫外光电探测器器件的性能测试结果如图3所示,相比传统的MSM型金属光电探测器件,偏压响应特性提升300%,并且显示出具有独特的自供电响应特性。
实施例3:
本实施例提供了一种AlGaN/Nb2C基紫外光电探测器的制备方法,具体包括:
(1)如图1所示,采用金属有机物化学气相沉积法技术在蓝宝石衬底上生长AlGaN紫外光电探测器外延片,包括在蓝宝石衬底1上生长的Ga极性AlN缓冲层2,生长在Ga极性面AlN缓冲层2上的非掺杂Ga极性面AlGaN层3;所述AlN缓冲层厚度为500nm;所述非掺杂Ga极性AlGaN层厚度为450nm;
(2)将AlGaN紫外光电探测器外延片依次置于丙酮、去离子水、无水乙醇中各自超声3min,去除后经去离子水冲洗,冲洗后的AlGaN再用热高纯氮气吹干;
(3)台面隔离图案的制备:对清洗后的AlGaN紫外光电探测器外延片旋涂正性光刻胶,型号为RZJ304,光刻胶厚度为0.3μm,将涂有光刻胶的外延片置于热台上预烘90s,随后将涂有光刻胶的外延片放入光刻机中通过掩膜板对准标记对准,显影区域尺寸为2mm×1mm;随后进行曝光,曝光时间为15s,再将曝光之后的外延片浸泡入正性显影液中,显影液型号为RZX3038,浸泡时间为50s,最后将显影完成的外延片取出,用去离子水冲洗,并用热高纯氮气吹干,置于热台上烘烤坚膜,烘烤时间为90s;
(4)台面隔离图形刻蚀:将光刻后的AlGaN紫外光电探测器外延片置于反应离子刻蚀机中对光刻暴露出来的隔离层图案进行反应离子刻蚀,刻蚀出对应图案的凹槽,凹槽深度为2.5μm,刻蚀完毕后使用去离子水冲洗外延片表面并用热氮气吹干;
(5)绝缘层图案的制备:通过掩膜版的对准标记,对AlGaN紫外光电探测器外延片进行对准,重复步骤(3)光刻工艺,在相应位置上进行光刻显影,制备AlGaN紫外光电探测器外延片上暴露出器件绝缘层图案区域,尺寸大小为0.3mm×1mm;
(6)对光刻后的AlGaN紫外光电探测器外延片进行绝缘层制备:将制备有绝缘层图案的AlGaN紫外光电探测器外延片放入电子束蒸发设备中,将腔体真空度抽至5×10-5Pa,随后蒸镀绝缘层4物质Al2O3,厚度为200nm;
(7)将制备好绝缘层的AlGaN紫外光电探测器外延片浸入去胶液中浸泡5min,捞出后用去离子水冲洗并置于丙酮中超声10min,拿出后经去离子水冲洗并用热氮气吹干;
(8)欧姆接触电极图案制备:通过掩膜板中的对准标记,对AlGaN紫外光电探测器外延片进行对准,重复步骤(3)光刻工艺,在相应位置上光刻显影,制备AlGaN紫外光电探测器外延片上暴露出器件欧姆接触电极图案区域,尺寸大小为2×0.2mm×1mm,分别位于刻蚀台面的左右两侧;
(9)对光刻后的AlGaN紫外光电探测器外延片进行欧姆接触电极5制备:将制备有器件欧姆接触图案的AlGaN紫外光电探测器外延片放入电子束蒸发设备中,将腔体真空度抽至1×10-5Pa,随后依次蒸镀欧姆接触电极物质Ti/Al/Ni/Au,厚度为150nm;
(10)重复步骤(9)工艺,通过去胶液浸泡与超声清洗去除AlGaN外延片表面残留的光刻胶与蒸镀金属;
(11)将蒸镀好金属电极的AlGaN外延片放入快速退火装置,在流动N2氛围中进行快速退火,退火温度为600℃,时间为3min。
(12)将退火处理之后的器件放入食人鱼洗液中,浸泡5min,该食人鱼洗液用浓硫酸和30%过氧化氢以7:3的比例混合制成。
(13)肖特基接触电极图案制备:通过掩膜板中的对准标记,对AlGaN紫外光电探测器外延片进行对准,重复步骤(3)光刻工艺,在绝缘层图案侧对应位置上光刻显影,制备AlGaN紫外光电探测器外延片上暴露出器件肖特基接触电极图案区域,尺寸大小为1.6mm×1mm;
(14)对光刻后的AlGaN紫外光电探测器外延片进行肖特基接触电极6制备:将制备了肖特基接触电极图案的AlGaN紫外光电探测器外延片粘贴在载玻片上,使用针管吸取少量Nb2CTx(浓度为0.05g/mL)试样,滴在外延片表面。放入真空烘箱,烘干AlGaN紫外光电探测器外延片,使Nb2C定型,最后将AlGaN外延片置于丙酮中浸泡50s,去除AlGaN外延片表面残留的光刻胶和Nb2CTx。最后制得AlGaN/Nb2C基紫外光电探测器。
本实施例制得的AlGaN/Nb2C基紫外光电探测器测试结果与实施例2类似,在此不再赘述。
综上所述,本发明公开了在蓝宝石衬底上依次生长非掺杂Ga极性面AlN缓冲层和非掺杂Ga极性面AlxGa1-xN层,得到紫外光电探测器外延片;在紫外光电探测器外延片上制备隔离层图案凹槽;制备绝缘层图案,并沉积绝缘Al2O3层;制备欧姆接触电极图案,并在Al2O3层和外延片层上面沉积欧姆接触电极;随后在绝缘层一侧的欧姆接触电极和外延片层上面制备肖特基接触电极图案,并在绝缘层一侧电极和外延片上面制备二维超薄Nb2C肖特基接触电极,以及利用阵列凸台设计间隔台面。本发明实现了高性能AlGaN紫外光电探测器的制备,提高AlGaN紫外光电探测器在紫外日盲波段的响应度和探测率。本发明提供的AlGaN/Nb2C基紫外光电探测器,由于二维Nb2C的引入,一方面与AlGaN形成肖特基接触,并形成肖特基异质结;另一方面,二维Nb2C具有较高的电子迁移率和稳定性赋予了AlGaN紫外光电探测器更好的光电子传输能力和光生电子空穴对的分离和光电子收集能力。此外,在工艺上利用阵列凸台设计间隔台面,通过在晶圆级别的薄膜上进行阵列设计,以隔绝单独器件之间,避免形成短路影响。这些特性赋予了AlGaN基紫外光电探测器在更短波长下日盲光电探测器应用领域更广阔的应用前景与性能稳定性。
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明构思加以等同替换或改变,都属于本发明专利的保护范围。

Claims (10)

1.一种AlGaN/Nb2C基紫外光电探测器,其特征在于,包括紫外光电探测器外延片和设置在所述紫外光电探测器外延片上的绝缘层、欧姆接触电极和肖特基接触电极,其中:
所述紫外光电探测器外延片包括在蓝宝石衬底上依次生长的非掺杂Ga极性面AlN缓冲层和非掺杂Ga极性面AlxGa1-xN层,其中,x=0.5~0.8;
所述绝缘层设置在所述非掺杂Ga极性面AlxGa1-xN层上表面的一侧;所述欧姆接触电极设置在所述绝缘层上;所述肖特基接触电极设置在所述欧姆接触电极上,以及设置在所述绝缘层、欧姆接触电极的内侧面和所述非掺杂Ga极性面AlxGa1-xN层上,所述欧姆接触电极还设置在所述非掺杂Ga极性面AlxGa1-xN层上表面的另一侧;
所述肖特基接触电极采用二维Nb2C材料制备,所述绝缘层为Al2O3绝缘层。
2.根据权利要求1所述的AlGaN/Nb2C基紫外光电探测器,其特征在于,所述非掺杂Ga极性面AlN缓冲层的厚度为350~500nm。
3.根据权利要求1所述的AlGaN/Nb2C基紫外光电探测器,其特征在于,所述非掺杂Ga极性面AlxGa1-xN层的厚度为300~450nm。
4.根据权利要求1所述的AlGaN/Nb2C基紫外光电探测器,其特征在于,所述绝缘层的厚度为100~200nm。
5.根据权利要求1所述的AlGaN/Nb2C基紫外光电探测器,其特征在于,所述欧姆接触电极采用Ti/Al/Ni/Au蒸镀制得,厚度为100~150nm。
6.根据权利要求1~5任一项所述的AlGaN/Nb2C基紫外光电探测器,其特征在于,所述非掺杂Ga极性面AlN缓冲层和非掺杂Ga极性面AlxGa1-xN层均以(0001)为外延方向。
7.一种AlGaN/Nb2C基紫外光电探测器的制备方法,其特征在于,所述方法包括:
在蓝宝石衬底上依次生长非掺杂Ga极性面AlN缓冲层和非掺杂Ga极性面AlxGa1-xN层,得到紫外光电探测器外延片并进行处理;其中,x=0.5~0.8;
对处理后的紫外光电探测器外延片进行光刻,得到隔离图案;对光刻后的紫外光电探测器外延片进行刻蚀,沿隔离图案刻蚀出凹槽;
通过掩模版对准,在所述非掺杂Ga极性面AlxGa1-xN层上的一侧进行光刻,在所述非掺杂Ga极性面AlxGa1-xN层上制备绝缘层图案;将制备有绝缘层图案的紫外光电探测器外延片置于电子束蒸发设备中,蒸镀绝缘层,得到绝缘层,对制备有绝缘层的紫外光电探测器外延片进行处理;
通过掩模版对准,在所述绝缘层上和所述非掺杂Gs极性面AlxGa1-xN层上的另一侧分别进行光刻,得到欧姆接触电极图案;将制备有欧姆接触电极图案的紫外光电探测器外延片置于电子束蒸发设备中,蒸镀欧姆接触电极金属,得到欧姆接触电极金属,对制备有欧姆接触电极金属的紫外光电探测器外延片进行处理;
通过掩模版对准,在所述绝缘层一侧的欧姆接触电极金属上,以及所述绝缘层、欧姆接触电极的内侧面和所述非掺杂Ga极性面AlxGa1-xN层上,进行光刻,得到肖特基接触电极图案;将肖特基接触电极材料充分均匀地覆盖在所述肖特基接触电极图案上,加热放置定型后,得到AlGaN/Nb2C基紫外光电探测器,其中,加热温度为50~70℃;
其中,所述肖特基接触电极材料采用二维Nb2C材料,所述绝缘层为Al2O3绝缘层。
8.根据权利要求7所述的AlGaN/Nb2C基紫外光电探测器,其特征在于,所述将肖特基接触电极材料充分均匀地覆盖在所述肖特基接触电极图案上,加热放置定型后,得到AlGaN/Nb2C基紫外光电探测器,包括:
将制备出肖特基接触电极图案的AlGaN整流器外延片置于载玻片上,将Nb2CTx液滴在AlGaN整流器外延片的表面上,并使其均匀地覆盖,加热放置定型后,得到肖特基接触电极,从而制得AlGaN/Nb2C基紫外光电探测器,其中,Nb2CTx液滴的浓度为0.05~0.1g/mL。
9.根据权利要求7所述的AlGaN/Nb2C基紫外光电探测器,其特征在于,所述欧姆接触电极采用Ti/Al/Ni/Au蒸镀制得,厚度为100~150nm。
10.根据权利要求7~9任一项所述的制备方法,其特征在于,所述非掺杂Ga极性面AlN缓冲层和非掺杂Ga极性面AlxGa1-xN层均以(0001)为外延方向。
CN202211064807.2A 2022-09-01 2022-09-01 一种AlGaN/Nb2C基紫外光电探测器及其制备方法 Pending CN115566096A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211064807.2A CN115566096A (zh) 2022-09-01 2022-09-01 一种AlGaN/Nb2C基紫外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211064807.2A CN115566096A (zh) 2022-09-01 2022-09-01 一种AlGaN/Nb2C基紫外光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN115566096A true CN115566096A (zh) 2023-01-03

Family

ID=84738460

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211064807.2A Pending CN115566096A (zh) 2022-09-01 2022-09-01 一种AlGaN/Nb2C基紫外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN115566096A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117790301A (zh) * 2024-02-26 2024-03-29 河源市众拓光电科技有限公司 一种具有二维ReS2电极的整流芯片及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117790301A (zh) * 2024-02-26 2024-03-29 河源市众拓光电科技有限公司 一种具有二维ReS2电极的整流芯片及其制备方法
CN117790301B (zh) * 2024-02-26 2024-05-28 河源市众拓光电科技有限公司 一种具有二维ReS2电极的整流芯片及其制备方法

Similar Documents

Publication Publication Date Title
CN103646997B (zh) 倏逝波耦合型高速高功率光电探测器的制作方法
JP5127252B2 (ja) 光電変換素子の製造方法
CN105470320A (zh) 一种二硫化钼/半导体异质结光电探测器及其制造方法
WO2018082251A1 (zh) 一种带有GaN纳米线阵列的紫外探测器及其制作方法
CN115566096A (zh) 一种AlGaN/Nb2C基紫外光电探测器及其制备方法
CN113224198A (zh) 一种2DWS2/InGaN II型异质结自驱动蓝光探测器及其制备方法与应用
RU2419918C1 (ru) Способ получения чипов солнечных фотоэлементов
CN114242800B (zh) 日盲AlGaN紫外光电探测器及其制备方法
CN110611010B (zh) 一种硅纳米晶/石墨烯宽光谱光电探测器及其制备方法
CN112234117A (zh) 基于n-GaN/p-GaSe/石墨烯异质结的自驱动超宽光谱光电探测器及制备方法
CN107507882A (zh) 一种台面式硅掺砷阻挡杂质带探测器及其制备方法
CN204118109U (zh) 一种新型复合透明电极的led芯片
CN114530519B (zh) 一种自驱动msm紫外探测器及其制备方法
CN110335904A (zh) 一种插入AlInGaN势垒层结构的InGaN/GaN多量子阱太阳能电池
CN109698250A (zh) 栅极调控AlGaN基金属-半导体-金属紫外探测器及制备方法
CN111081886B (zh) 基于氧化镓钙钛矿多层堆叠结构的pin二极管及其制备方法
CN111341874B (zh) 基于Si微米孔/CuO垂直结构异质结的自驱动宽带光电探测器及其制备方法
CN210607284U (zh) 一种多量子阱蓝光探测器
RU2575974C1 (ru) Способ изготовления гетероструктурного солнечного элемента
CN107452833A (zh) 微孔负电极结构的阻挡杂质带探测器的制备方法及探测器
CN117712216A (zh) 一种Pd等离激元-Nb2C混合胶体溶液的制备方法及AlGaN基紫外光电探测器
CN111524973A (zh) 叉指状p-GaN栅结构HEMT型紫外探测器及其制备方法
CN101924160B (zh) In2O3/PbTe异质结中红外光伏型探测器及其制备方法
CN110504334A (zh) 一种高In组分的InGaN/GaN多量子阱太阳能电池
CN110137294A (zh) 一种氮化物多结太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination