CN115549504A - 一种三电平储能变流器的控制方法 - Google Patents

一种三电平储能变流器的控制方法 Download PDF

Info

Publication number
CN115549504A
CN115549504A CN202211533473.9A CN202211533473A CN115549504A CN 115549504 A CN115549504 A CN 115549504A CN 202211533473 A CN202211533473 A CN 202211533473A CN 115549504 A CN115549504 A CN 115549504A
Authority
CN
China
Prior art keywords
energy storage
voltage
storage converter
capacitor
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211533473.9A
Other languages
English (en)
Other versions
CN115549504B (zh
Inventor
孙鹏
韩鹏
李佳勇
帅智康
许加柱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN202211533473.9A priority Critical patent/CN115549504B/zh
Publication of CN115549504A publication Critical patent/CN115549504A/zh
Application granted granted Critical
Publication of CN115549504B publication Critical patent/CN115549504B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

一种三电平储能变流器的控制方法,先对储能变流器工作参数采样;再将储能变流器电压空间矢量
Figure 522228DEST_PATH_IMAGE001
、输出电压
Figure 419777DEST_PATH_IMAGE002
、输出电流
Figure 258289DEST_PATH_IMAGE003
、电感电流
Figure 710130DEST_PATH_IMAGE004
输入输出电压预测模型中,计算储能变流器输出电压预测值;接着设计下垂控制策略,生成模型预测控制电压参考值;然后将直流侧上下电容的电压差
Figure 59334DEST_PATH_IMAGE005
和两电容中点O流过的电流i Co输入直流侧电容中点电压预测模型中,计算直流侧电容中点电压偏差预测值;最后将控制电压参考值、输出电压和中点电位偏差的预测值代入价值函数中,采用滚动优化方式选出不同开关组合下使价值函数值最小的电压空间矢量,生成对应开关信号作用至储能变流器。本发明能改善储能系统的动态响应性能,提高系统鲁棒性。

Description

一种三电平储能变流器的控制方法
技术领域
本发明涉及分布式发电技术领域,尤其指一种三电平储能变流器的控制方法。
背景技术
储能技术是将电能等能源(主要指电能)以特定形式存储,在有需求时再将能量释放的技术,通过储能技术的应用,能够有效提高新能源利用率。储能变流器是储能系统的外接口,针对不同场景下的储能系统,储能变流器的功能不同。储能变流器可以分为两电平结构和多电平结构,在多电平结构中,三电平结构因其较小的输出电压谐波含量和较为简单的拓扑结构得到广泛的应用。当储能变流器离网运行时,常采用下垂控制实现电压支撑和功率均分。传统下垂控制由下垂控制环、电压环、电流环组成,结构较为复杂。由于电压电流内环带宽有限,系统动态响应缓慢,另外,电压电流控制器对于主电路较为敏感,不利于参数设计。
发明内容
为解决现有技术中系统动态响应缓慢和控制器对于主电路较为敏感的问题,本发明提供一种三电平储能变流器的控制方法。
为了解决上述技术问题,本发明采用如下技术方法:一种三电平储能变流器的控制方法,包括:
步骤一:实时采样三电平储能变流器的电气信号,并对其进行3/2变换,得到不同 开关组合下两相静止坐标系下的输出电压
Figure 917880DEST_PATH_IMAGE001
、输出电流
Figure 927294DEST_PATH_IMAGE002
、电感电流
Figure 132010DEST_PATH_IMAGE003
、以及直流侧上 电容和下电容的电压差
Figure 753747DEST_PATH_IMAGE004
步骤二:根据储能变流器不同开关组合方式,将储能变流器的相电压进行3/2变换 后得到不同开关组合下的电压空间矢量
Figure 360308DEST_PATH_IMAGE005
,将该电压空间矢量
Figure 540623DEST_PATH_IMAGE006
与步骤一得到的输出 电压
Figure 232635DEST_PATH_IMAGE007
、输出电流
Figure 917783DEST_PATH_IMAGE008
、电感电流
Figure 175589DEST_PATH_IMAGE009
一起输入至输出电压预测模型中,得到不同开关组合 下的储能变流器输出电压预测值;
步骤三:将步骤一得到的输出电压
Figure 526804DEST_PATH_IMAGE010
、输出电流
Figure 440534DEST_PATH_IMAGE011
分别输入至下垂控制器中, 所述下垂控制器先计算储能变流器的有功功率和无功功率,再进行下垂控制,得到储能变 流器输出的角频率,接着加入虚拟阻抗,计算不同组合开关下的模型预测控制电压参考值;
步骤四:计算直流侧上电容和下电容中点
Figure 669652DEST_PATH_IMAGE012
流过的电流i Co,将其与步骤一得到的 直流侧上电容和下电容的电压差
Figure 985227DEST_PATH_IMAGE013
一起输入至直流侧电容中点电压预测模型中,得到不 同组合开关下的直流侧电容中点电压偏差预测值;
步骤五:将得到的不同组合开关下的储能交流器输出电压预测值、模型预测控制电压参考值、以及直流侧电容中点电压偏差预测值依次带入价值函数中,计算出不同组合开关下的价值函数值,选取使价值函数值最小的电压空间矢量,生成对应的开关信号作用至储能变流器。
进一步地,所述输出电压预测模型为采用零阶保持的方法将LC滤波器在s域上的数学模型进行离散化所得,其表达式为:
Figure 772923DEST_PATH_IMAGE014
(1)
式中,
Figure 970686DEST_PATH_IMAGE015
t=k时刻储能变流器电压空间矢量;
Figure 252763DEST_PATH_IMAGE016
t=k时刻储能变流器输 出电流;
Figure 173577DEST_PATH_IMAGE017
t=k时刻电感电流;
Figure 617328DEST_PATH_IMAGE018
t=k+1时刻电感电流预测值;
Figure 551654DEST_PATH_IMAGE019
t=k时 刻储能变流器输出电压;
Figure 371843DEST_PATH_IMAGE020
t=k+1时刻储能变流器输出电压预测值;
Figure 412742DEST_PATH_IMAGE021
Figure 27394DEST_PATH_IMAGE022
均为2 阶矩阵,表达式如下:
Figure 199750DEST_PATH_IMAGE023
(2) 。
进一步地,所述步骤三中,将步骤一得到的输出电压
Figure 72897DEST_PATH_IMAGE024
、输出电流
Figure 217570DEST_PATH_IMAGE025
分别输入至 下垂控制器中,所述下垂控制器先计算储能变流器的有功功率和无功功率,再利用式(3)进 行下垂控制,得到储能变流器输出角频率,接着加入虚拟阻抗,利用式(4)计算不同组合开 关下的模型预测控制电压参考值
Figure 37013DEST_PATH_IMAGE026
Figure 899927DEST_PATH_IMAGE027
(3)
式中,
Figure 311186DEST_PATH_IMAGE028
为储能变流器输出角频率;
Figure 310366DEST_PATH_IMAGE029
为额定角频率;
Figure 17553DEST_PATH_IMAGE030
为储能变流器输出 有功;
Figure 164501DEST_PATH_IMAGE031
为储能变流器输出电压;V 0为额定电压;
Figure 379450DEST_PATH_IMAGE032
为储能变流器输出无功;
Figure 233137DEST_PATH_IMAGE033
Figure 642383DEST_PATH_IMAGE034
是 有功和无功下垂系数;
Figure 948731DEST_PATH_IMAGE035
Figure 701792DEST_PATH_IMAGE036
分别是有功和无功的微分系数;
Figure 941144DEST_PATH_IMAGE037
(4)
式中,
Figure 301718DEST_PATH_IMAGE038
Z v为虚拟阻抗,表达式为
Figure 111673DEST_PATH_IMAGE039
R vL v为虚拟电阻和电感。
更进一步地,所述直流侧电容中点电压预测模型为采用欧拉离散方法对直流电容动态模型离散化所得,其表达式为:
Figure 871688DEST_PATH_IMAGE040
(5)
式中,i C1(k)和i C2(k)分别为t=k时刻直流侧上电容和下电容流过的电流,v C1(k)和v C2(k)分别为t=k时刻直流侧上电容电压和下电容电压;i C1(k+1)和i C2(k+1)分别为t=k+1时刻直流侧上电容和下电容流过的电流预测值,v C1(k+1)和v C2(k+1)分别为t=k+1时刻直流侧上电容电压预测值和下电容电压预测值;T s 为储能变流器电气信号采样周期;C为直流侧上电容和下电容的电容值;
进一步得到:
Figure 762283DEST_PATH_IMAGE041
(6)
式中,
Figure 231442DEST_PATH_IMAGE042
t=k时刻直流侧上电容和下电容的电压差,
Figure 522834DEST_PATH_IMAGE043
t=k+1时 刻直流侧电容中点电压偏差预测值,
Figure 165168DEST_PATH_IMAGE044
t=k时刻直流侧上电容和下电容中点
Figure 362800DEST_PATH_IMAGE045
流过 的电流。
更进一步地,所述三电平储能变流器的开关包括a相上半桥开关S1、S2和下半桥开关S3、S4;b相上半桥开关S5、S6和下半桥开关S7、S8;以及c相上半桥开关S9、S10和下半桥开关S11、S12;所述三电平储能变流器开关模型的表达式为:
Figure 2860DEST_PATH_IMAGE046
(7)
Figure 787407DEST_PATH_IMAGE047
(8)
Figure 233432DEST_PATH_IMAGE048
(9)
式中,Sa为a相开关变量,Sb为b相开关变量,Sc为c相开关变量;
结合式(7)-(9),得到三电平储能变流器有27种开关组合方式;
定义储能变流器的极电压为:
Figure 36303DEST_PATH_IMAGE049
(10)
进而可以得到储能变流器的相电压为:
Figure 362111DEST_PATH_IMAGE050
(11)
根据储能变流器的27种不同开关组合方式,将式(15)的储能变流器的相电压进行 3/2变换后可以得到27种不同开关组合下电压空间矢量
Figure 617643DEST_PATH_IMAGE051
再进一步地,所述LC滤波器在s域上的数学模型的表达式为:
Figure 821353DEST_PATH_IMAGE052
(12)
式中,输出电压
Figure 478731DEST_PATH_IMAGE053
;电感电流
Figure 975440DEST_PATH_IMAGE054
;储能变流器电压空间矢量
Figure 780585DEST_PATH_IMAGE055
;输出电流
Figure 522407DEST_PATH_IMAGE056
再进一步地,所述直流电容动态模型的表达式为:
Figure 299870DEST_PATH_IMAGE057
(13)
式中,i C1i C2分别为直流侧上电容和下电容流过的电流,v C1v C2分别为直流侧上电容电压和下电容电压。
更进一步地,所述步骤四中,根据如下公式计算直流侧上电容和下电容中点
Figure 967481DEST_PATH_IMAGE058
流 过的电流
Figure 197605DEST_PATH_IMAGE059
Figure 523544DEST_PATH_IMAGE060
(14)
式中,|S a|、|S b|、|S c|是三相开关变量的绝对值;
Figure 900387DEST_PATH_IMAGE061
Figure 755211DEST_PATH_IMAGE062
Figure 456319DEST_PATH_IMAGE063
t=k时刻 三相电感电流。
更进一步地,所述价值函数为:
Figure 789212DEST_PATH_IMAGE064
(15)
式中,
Figure 88737DEST_PATH_IMAGE065
为价值函数值,λ为权重系数,优选为0.5。
与传统的下垂控制方法不同,本发明提供的三电平储能变流器的控制方法,其下垂控制采用了基于预测模型的下垂控制内环,预测模型分为输出电压预测模型和直流侧电容中点电压预测模型,结构均较简单,能有效提高系统动态响应,且该预测模型工作时对于主电路参数不敏感,可提高系统的鲁棒性。另外,本发明在下垂控制内环中加入虚拟阻抗,有效减少了有功和无功的耦合,使得生成的控制电压参考值更加准确,有利于下垂控制实现电压支撑和功率均分;且本发明还在下垂控制外环中添加了有功和无功的微分系数,新增一个控制维度,从而进一步改善下垂控制的功率动态过程。
附图说明
图1为本发明中三电平储能变流器的控制方法流程图;
图2为本发明中三电平储能变流器的电路原理图;
图3为本发明中三电平储能变流器电压空间矢量图;
图4为本发明中LC滤波器在s域上的数学模型结构框图;
图5为本发明基于模型预测的下垂控制结构框图;
图6为本发明中滚动优化流程图;
图7为本发明实施方式中储能变流器功率响应曲线图(其中,图a为本发明基于模型预测的下垂控制功率响应曲线图,图b为传统下垂控制策略功率响应曲线图);
图8为本发明实施方式中直流侧电容电压变化曲线图;
图9为本发明实施方式中电路参数变化下的三相电压响应波形图。
具体实施方式
为了便于本领域技术人员的理解,下面结合实施例与附图对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。
在阐述本发明之前,先介绍一下三电平储能变流器的结构,如图2所示,储能变流器接口电压为v av bv c;储能变流器输出电压为v oav obv oc;母线电压为v bav bbv bc;电感电流为i 1ai 1bi 1c;电容电流为i cai cbi cc;储能变流器输出电流为i oai obi ocV dc为直流侧电压;R L为直流侧电池内阻;C 1C 2为直流侧电容; L f为交流滤波电感;R为寄生电阻;C f为交流滤波电容;R cL c分别是线路电感和电阻。
本发明提供一种如上三电平储能变流器的控制方法,如图1所示,该控制方法主要由五大部分组成,具体如下。
第一部分:参数采样及处理。
1)实时采样三电平储能变流器的电气信号,包括储能变流器27种不同开关组合下 的输出电压、输出电流、电感电流、直流侧上电容和下电容的电压差;将这些参数进行3/2变 换,得到对应开关组合下两相静止坐标系下的输出电压
Figure 848883DEST_PATH_IMAGE066
、输出电流
Figure 37287DEST_PATH_IMAGE067
、电感电流
Figure 173871DEST_PATH_IMAGE068
、以 及直流侧上电容和下电容的电压差
Figure 577170DEST_PATH_IMAGE069
第二部分:储能变流器输出电压预测。
1)构建储能变流器开关模型
由图2可知三电平储能变流器的开关包括a相上半桥开关S1、S2和下半桥开关S3、S4;b相上半桥开关S5、S6和下半桥开关S7、S8;以及c相上半桥开关S9、S10和下半桥开关S11、S12;由此特点,储能变流器开关模型的表达式可为:
Figure 258949DEST_PATH_IMAGE070
(7)
Figure 685383DEST_PATH_IMAGE071
(8)
Figure 406083DEST_PATH_IMAGE072
(9)
式中,Sa为a相开关变量,Sb为b相开关变量,Sc为c相开关变量。
结合式(7)-(9),将开关变量Sa、Sb、Sc随机组合,可得到三电平储能变流器有27种开关组合方式。
定义储能变流器的极电压为:
Figure 867151DEST_PATH_IMAGE073
(10)
进而可以得到储能变流器的相电压为:
Figure 985411DEST_PATH_IMAGE074
(11)
根据三电平储能变流器的27种开关组合方式,将式(15)的储能变流器的相电压进 行3/2变换后可以得到27种开关组合下的电压空间矢量
Figure 164720DEST_PATH_IMAGE075
,如图3所示。
2)构建输出电压预测模型
如图4所示LC滤波器在s域上的数学模型,将其表示成矩阵形式,表达式为:
Figure 361215DEST_PATH_IMAGE076
(12)
式中,输出电压
Figure 942369DEST_PATH_IMAGE077
;电感电流
Figure 960091DEST_PATH_IMAGE078
;储能变流器电压空间矢量
Figure 423434DEST_PATH_IMAGE079
;输出电流
Figure 439931DEST_PATH_IMAGE080
根据式(12),并采用零阶保持的方法将LC滤波器模型进行离散化,可得到输出电压预测模型,该输出电压预测模型的表达式如下:
Figure 124859DEST_PATH_IMAGE081
(1)
式中,
Figure 834189DEST_PATH_IMAGE082
t=k时刻储能变流器电压空间矢量;
Figure 473243DEST_PATH_IMAGE083
t=k时刻储能变流器 输出电流;
Figure 293432DEST_PATH_IMAGE084
t=k时刻电感电流;
Figure 567287DEST_PATH_IMAGE085
)是t=k+1时刻电感电流预测值;
Figure 447518DEST_PATH_IMAGE086
t =k时刻储能变流器输出电压;
Figure 370606DEST_PATH_IMAGE087
t=k+1时刻储能变流器输出电压预测值;
Figure 463327DEST_PATH_IMAGE088
Figure 122847DEST_PATH_IMAGE089
均为2阶矩阵,表达式为:
Figure 970718DEST_PATH_IMAGE090
(2)
2)将前述得到的电压空间矢量
Figure 568052DEST_PATH_IMAGE091
、输出电压
Figure 480776DEST_PATH_IMAGE092
、输出电流
Figure 276694DEST_PATH_IMAGE093
、电感电流
Figure 482416DEST_PATH_IMAGE094
一起 输入至输出电压预测模型中,得到27种不同组合开关下的储能变流器输出电压预测值。
第三部分:下垂控制
1)设计下垂控制策略
如图5所示,本发明所采取的下垂控制表达式为:
Figure 832626DEST_PATH_IMAGE095
(3)
式中,
Figure 595045DEST_PATH_IMAGE096
为储能变流器输出角频率;
Figure 482622DEST_PATH_IMAGE097
为额定角频率;
Figure 609978DEST_PATH_IMAGE098
为储能变流器输出 有功;
Figure 431172DEST_PATH_IMAGE099
为储能变流器输出电压;V 0为额定电压;Q为储能变流器输出无功;
Figure 200545DEST_PATH_IMAGE100
Figure 925049DEST_PATH_IMAGE101
是 有功和无功下垂系数;
Figure 223307DEST_PATH_IMAGE102
Figure 797376DEST_PATH_IMAGE103
分别是有功和无功的微分系数,用来改善功率调节的动 态过程,增强系统稳定性。
在下垂控制中加入虚拟阻抗,减少有功和无功之间的耦合,得到模型预测控制电压参考值:
Figure 104861DEST_PATH_IMAGE104
(4)
式中,
Figure 949451DEST_PATH_IMAGE105
Figure 418610DEST_PATH_IMAGE106
为虚拟阻抗,表达式为
Figure 214397DEST_PATH_IMAGE107
R vL v为虚拟电阻和电感。
2)生成模型预测控制电压参考值
将前述得到的27种组合开关下两相静止坐标系下的储能变流器输出电压
Figure 325572DEST_PATH_IMAGE108
、输 出电流
Figure 821407DEST_PATH_IMAGE109
分别输入至下垂控制器中,下垂控制器先计算储能变流器的有功功率和无功功 率,再利用式(3)进行下垂控制,得到储能变流器输出的角频率,接着加入虚拟阻抗,利用式 (4)计算27种不同组合开关下的模型预测控制电压参考值
Figure 930308DEST_PATH_IMAGE110
第四部分:直流侧电容中点电压偏差预测
1)构建直流侧电容中点电压预测模型
三电平储能变流器要考虑直流侧中点电压平衡,直流电容动态模型的表达式为:
Figure 10128DEST_PATH_IMAGE111
(13)
式中,i C1i C2分别为直流侧上电容和下电容流过的电流,v C1v C2分别为直流侧上电容电压和下电容电压;C为直流侧上电容和下电容的电容值。
采用欧拉离散方法对直流电容动态模型离散化,可以得到直流侧电容中点电压预测模型,其表达式为:
Figure 393836DEST_PATH_IMAGE112
(5)
式中,i C1(k)和i C2(k)分别为t=k时刻直流侧上电容和下电容流过的电流,v C1(k)和v C2(k)分别为t=k时刻直流侧上电容电压和下电容电压;i C1(k+1)和i C2(k+1)分别为t=k+1时 刻直流侧上电容和下电容流过的电流预测值,v C1(k+1)和v C2(k+1)分别为t=k+1时刻直流侧 上电容电压预测值和下电容电压预测值;
Figure 993445DEST_PATH_IMAGE113
为储能变流器电气信号采样周期。
进一步得到:
Figure 814858DEST_PATH_IMAGE114
(6)
式中,
Figure 335970DEST_PATH_IMAGE115
t=k时刻直流侧上电容和下电容的电压差
Figure 975898DEST_PATH_IMAGE116
t=k+1时刻 直流侧电容中点电压偏差预测值,
Figure 695593DEST_PATH_IMAGE117
t=k时刻直流侧上电容和下电容中点
Figure 693767DEST_PATH_IMAGE118
流过的 电流,其采用如下公式进行计算:
Figure 702174DEST_PATH_IMAGE119
(14)
式中,|S a|、|S b|、|S c|是三相开关变量的绝对值;
Figure 942531DEST_PATH_IMAGE120
Figure 454415DEST_PATH_IMAGE121
Figure 623491DEST_PATH_IMAGE122
t=k时刻 三相电感电流。
2)将前述得到的27种开关组合下两相静止坐标系下的直流侧上电容和下电容的 电压差
Figure 853615DEST_PATH_IMAGE123
以及计算得到的两电容中点
Figure 694401DEST_PATH_IMAGE124
流过的电流i Co输入至直流侧电容中点电压预测 模型中,得到27种不同组合开关下的直流侧电容中点电压偏差预测值。
第五部分:计算价值函数值,选择最优矢量。
1)设计价值函数
三电平储能变流器需要考虑其中点电压的平衡,根据如式(1)的输出电压预测模型以及如式(5)的直流侧电容中点电压预测模型,设计价值函数控制目标应包含输出电压控制和直流侧中点电压的控制,具体表达式为:
Figure 326370DEST_PATH_IMAGE125
(15)
式中,
Figure 666347DEST_PATH_IMAGE126
为价值函数值,λ为权重系数,优选为0.5。
2)如图6所示,采用滚动优化方式选择最优矢量,图中gmin表示价值函数的最小值,i表示开关组合序号,i∈[1,2……27]。具体而言,预设gmin=∞,将第i种组合开关下的储能 交流器输出电压预测值
Figure 649347DEST_PATH_IMAGE127
、模型预测控制电压参考值
Figure 965927DEST_PATH_IMAGE128
、以及直流侧电容中点电压 偏差预测值
Figure 452403DEST_PATH_IMAGE129
带入如式(13)的价值函数中,接着判断当前计算出的价值函数值g cf 是否小于预设的gmin,若是,则更新价值函数最小值,令当前g cf=gmin,紧接着进入下一步;若 不是,则直接进入下一步,
表1 储能变流器工作参数
Figure 223001DEST_PATH_IMAGE130
初始情况下,储能变流器带有2.5kW的负载, t=0.3s时,负载增加到7.5kW。本发明基于模型预测的下垂控制功率响应如图7(a)所示,传统下垂控制策略功率响应如图7(b)所示,通过图7(a)和7(b)可以得到,基于模型预测的下垂控制策略功率动态调节时间要小于传统下垂控制策略功率动态调节时间,证明了本发明所涉基于模型预测的下垂控制具有优越的动态特性。
图8是权重系数变化时直流侧两电容电压的变化情况。初始状态下设置60V的上下电容电压差,通过图8可以看出,权重系数λ逐渐增加时,电容电压差的收敛速度也会增大。但是过大的λ会降低储能变流器输出电压质量,因此,权重系数的设计需折中考虑。
图9是主电路参数变化时,储能变流器三相电压响应图。通过图9可以得到,当滤波电感和电容参数变化时,储能变流器电压波形保持良好的正弦度并且系统正常运行,这验证了本发明所涉基于模型预测的下垂控制策略对主电路参数变化不敏感,系统具有强鲁棒性。
上述实施例为本发明较佳的实现方案,除此之外,本发明还可以其它方式实现,在不脱离本技术方案构思的前提下任何显而易见的替换均在本发明的保护范围之内。
为了让本领域普通技术人员更方便地理解本发明相对于现有技术的改进之处,本发明的一些附图和描述已经被简化,并且为了清楚起见,本申请文件还省略了一些其他元素,本领域普通技术人员应该意识到这些省略的元素也可构成本发明的内容。

Claims (10)

1.一种三电平储能变流器的控制方法,其特征在于,包括:
步骤一:实时采样三电平储能变流器的电气信号,并对其进行3/2变换,得到不同开关 组合下两相静止坐标系下的输出电压
Figure 811302DEST_PATH_IMAGE001
、输出电流
Figure 838033DEST_PATH_IMAGE002
、电感电流
Figure 256376DEST_PATH_IMAGE003
、以及直流侧上电容和 下电容的电压差
Figure 768391DEST_PATH_IMAGE004
步骤二:根据储能变流器不同开关组合方式,将储能变流器的相电压进行3/2变换后得 到不同开关组合下的电压空间矢量
Figure 32013DEST_PATH_IMAGE005
,将该电压空间矢量
Figure 913250DEST_PATH_IMAGE006
与步骤一得到的输出电压
Figure 768074DEST_PATH_IMAGE007
、 输出电流
Figure 236226DEST_PATH_IMAGE008
、电感电流
Figure 569119DEST_PATH_IMAGE009
一起输入至输出电压预测模型中,得到不同开关组合下的储能变 流器输出电压预测值;
步骤三:将步骤一得到的输出电压
Figure 570442DEST_PATH_IMAGE010
、输出电流
Figure 189642DEST_PATH_IMAGE008
分别输入至下垂控制器中,所述下 垂控制器先计算储能变流器的有功功率和无功功率,再进行下垂控制,得到储能变流器输 出的角频率,接着加入虚拟阻抗,计算不同组合开关下的模型预测控制电压参考值;
步骤四:计算直流侧上电容和下电容中点
Figure 280177DEST_PATH_IMAGE011
流过的电流
Figure 416760DEST_PATH_IMAGE012
,将其与步骤一得到的直流 侧上电容和下电容的电压差
Figure 538169DEST_PATH_IMAGE013
一起输入至直流侧电容中点电压预测模型中,得到不同组 合开关下的直流侧电容中点电压偏差预测值;
步骤五:将得到的不同组合开关下的储能交流器输出电压预测值、模型预测控制电压参考值、以及直流侧电容中点电压偏差预测值依次带入价值函数中,计算出不同组合开关下的价值函数值,选取使价值函数值最小的电压空间矢量,生成对应的开关信号作用至储能变流器。
2.根据权利要求1所述的三电平储能变流器的控制方法,其特征在于:所述输出电压预测模型为采用零阶保持的方法将LC滤波器在s域上的数学模型进行离散化所得,其表达式为:
Figure 203636DEST_PATH_IMAGE014
(1)
式中,
Figure 911960DEST_PATH_IMAGE015
t=k时刻储能变流器电压空间矢量;
Figure 321076DEST_PATH_IMAGE016
t=k时刻储能变流器输出电 流;
Figure 31412DEST_PATH_IMAGE017
t=k时刻电感电流;
Figure 398939DEST_PATH_IMAGE018
t=k+1时刻电感电流预测值;
Figure 328981DEST_PATH_IMAGE019
t=k时刻储能 变流器输出电压;
Figure 807366DEST_PATH_IMAGE020
t=k+1时刻储能变流器输出电压预测值;
Figure 637788DEST_PATH_IMAGE021
Figure 910637DEST_PATH_IMAGE022
均为2阶矩阵, 表达式如下:
Figure 327975DEST_PATH_IMAGE023
(2) 。
3.根据权利要求2所述的三电平储能变流器的控制方法,其特征在于:所述步骤三中, 将步骤一得到的输出电压
Figure 344472DEST_PATH_IMAGE024
、输出电流
Figure 29400DEST_PATH_IMAGE025
分别输入至下垂控制器中,所述下垂控制器先 计算储能变流器的有功功率和无功功率,再利用式(3)进行下垂控制,得到储能变流器输出 角频率,接着加入虚拟阻抗,利用式(4)计算不同组合开关下的模型预测控制电压参考值
Figure 738730DEST_PATH_IMAGE026
Figure 207862DEST_PATH_IMAGE027
(3)
式中,
Figure 293630DEST_PATH_IMAGE028
为储能变流器输出角频率;
Figure 833065DEST_PATH_IMAGE029
为额定角频率;
Figure 713296DEST_PATH_IMAGE030
为储能变流器输出有功;
Figure 839646DEST_PATH_IMAGE031
为储能变流器输出电压;
Figure 197946DEST_PATH_IMAGE032
为额定电压;
Figure 123046DEST_PATH_IMAGE033
为储能变流器输出无功;
Figure 908599DEST_PATH_IMAGE034
Figure 787825DEST_PATH_IMAGE035
是有 功和无功下垂系数;
Figure 949816DEST_PATH_IMAGE036
Figure 932684DEST_PATH_IMAGE037
分别是有功和无功的微分系数;
Figure 420297DEST_PATH_IMAGE038
(4)
式中,
Figure 255660DEST_PATH_IMAGE039
Figure 486922DEST_PATH_IMAGE040
为虚拟阻抗,表达式为
Figure 855455DEST_PATH_IMAGE041
Figure 717232DEST_PATH_IMAGE042
Figure 565190DEST_PATH_IMAGE043
为虚拟电阻和电感。
4.根据权利要求3所述的三电平储能变流器的控制方法,其特征在于:所述直流侧电容中点电压预测模型为采用欧拉离散方法对直流电容动态模型离散化所得,其表达式为:
Figure 68984DEST_PATH_IMAGE044
(5)
式中,i C1(k)和i C2(k)分别为t=k时刻直流侧上电容和下电容流过的电流,v C1(k)和v C2(k)分别为t=k时刻直流侧上电容电压和下电容电压;i C1(k+1)和i C2(k+1)分别为t=k+1时刻直流侧上电容和下电容流过的电流预测值,v C1(k+1)和v C2(k+1)分别为t=k+1时刻直流侧上电容电压预测值和下电容电压预测值;T s 为储能变流器电气信号采样周期;C为直流侧上电容和下电容的电容值;
进一步得到:
Figure 698548DEST_PATH_IMAGE045
(6)
式中,
Figure 747538DEST_PATH_IMAGE046
t=k时刻直流侧上电容和下电容的电压差,
Figure 72340DEST_PATH_IMAGE047
t=k+1时刻直 流侧电容中点电压偏差预测值,i Co(k)为t=k时刻直流侧上电容和下电容中点
Figure 629092DEST_PATH_IMAGE048
流过的电 流。
5.根据权利要求4所述的三电平储能变流器的控制方法,其特征在于:所述三电平储能变流器的开关包括a相上半桥开关S1、S2和下半桥开关S3、S4;b相上半桥开关S5、S6和下半桥开关S7、S8;以及c相上半桥开关S9、S10和下半桥开关S11、S12;所述三电平储能变流器开关模型的表达式为:
Figure 457371DEST_PATH_IMAGE049
(7)
Figure 942841DEST_PATH_IMAGE050
(8)
Figure 754939DEST_PATH_IMAGE051
(9)
式中,Sa为a相开关变量,Sb为b相开关变量,Sc为c相开关变量;
结合式(7)-(9),得到三电平储能变流器有27种开关组合方式;
定义储能变流器的极电压为:
Figure 646541DEST_PATH_IMAGE052
(10)
进而可以得到储能变流器的相电压为:
Figure 594905DEST_PATH_IMAGE053
(11)
根据储能变流器的27种不同开关组合方式,将式(15)的储能变流器的相电压进行3/2 变换后可以得到27种不同开关组合下电压空间矢量
Figure 251277DEST_PATH_IMAGE054
6.根据权利要求5所述的三电平储能变流器的控制方法,其特征在于:所述LC滤波器在s域上的数学模型的表达式为:
Figure 675305DEST_PATH_IMAGE055
(12)
式中,输出电压
Figure 183646DEST_PATH_IMAGE056
;电感电流
Figure 872336DEST_PATH_IMAGE057
;储能变流器电压空间矢量
Figure 948876DEST_PATH_IMAGE058
;输出电流
Figure 329042DEST_PATH_IMAGE059
7.根据权利要求6所述的三电平储能变流器的控制方法,其特征在于:所述直流电容动态模型的表达式为:
Figure 765708DEST_PATH_IMAGE060
(13)
式中,i C1i C2分别为直流侧上电容和下电容流过的电流,v C1v C2分别为直流侧上电容电压和下电容电压。
8.根据权利要求7所述的三电平储能变流器的控制方法,其特征在于:所述步骤四中,根据如下公式计算直流侧上电容和下电容中点O流过的电流i Co
Figure 688665DEST_PATH_IMAGE061
(14)
式中,|S a|、|S b|、|S c|是三相开关变量的绝对值;
Figure 686839DEST_PATH_IMAGE062
Figure 695247DEST_PATH_IMAGE063
Figure 670025DEST_PATH_IMAGE064
t=k时刻三相 电感电流。
9.根据权利要求8所述的三电平储能变流器的控制方法,其特征在于:所述价值函数为:
Figure 713067DEST_PATH_IMAGE065
(15)
式中,g cf为价值函数值,λ为权重系数。
10.根据权利要求9所述的三电平储能变流器的控制方法,其特征在于:λ为0.5。
CN202211533473.9A 2022-12-02 2022-12-02 一种三电平储能变流器的控制方法 Active CN115549504B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211533473.9A CN115549504B (zh) 2022-12-02 2022-12-02 一种三电平储能变流器的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211533473.9A CN115549504B (zh) 2022-12-02 2022-12-02 一种三电平储能变流器的控制方法

Publications (2)

Publication Number Publication Date
CN115549504A true CN115549504A (zh) 2022-12-30
CN115549504B CN115549504B (zh) 2023-04-07

Family

ID=84722225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211533473.9A Active CN115549504B (zh) 2022-12-02 2022-12-02 一种三电平储能变流器的控制方法

Country Status (1)

Country Link
CN (1) CN115549504B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117239711A (zh) * 2023-11-13 2023-12-15 四川大学 改善抽油机井群供电质量的储能控制方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016176998A1 (zh) * 2015-05-06 2016-11-10 永济新时速电机电器有限责任公司 具有多重保护的辅助变流器
WO2018122391A1 (en) * 2016-12-31 2018-07-05 Vito Nv Precise real-time advanced grid monitoring
CN110912208A (zh) * 2019-12-09 2020-03-24 荣信汇科电气技术有限责任公司 一种基于改进下垂控制器的柔性直流输电变流器控制方法
CN114785166A (zh) * 2022-03-14 2022-07-22 华南理工大学 基于滑模控制的t型整流器三矢量模型预测控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016176998A1 (zh) * 2015-05-06 2016-11-10 永济新时速电机电器有限责任公司 具有多重保护的辅助变流器
WO2018122391A1 (en) * 2016-12-31 2018-07-05 Vito Nv Precise real-time advanced grid monitoring
CN110912208A (zh) * 2019-12-09 2020-03-24 荣信汇科电气技术有限责任公司 一种基于改进下垂控制器的柔性直流输电变流器控制方法
CN114785166A (zh) * 2022-03-14 2022-07-22 华南理工大学 基于滑模控制的t型整流器三矢量模型预测控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张国平: "《中国优秀硕士学位论文全文数据库 (工程科技Ⅱ辑)》", 30 September 2022 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117239711A (zh) * 2023-11-13 2023-12-15 四川大学 改善抽油机井群供电质量的储能控制方法和装置
CN117239711B (zh) * 2023-11-13 2024-02-02 四川大学 改善抽油机井群供电质量的储能控制方法和装置

Also Published As

Publication number Publication date
CN115549504B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN108039821B (zh) 双有源全桥dc-dc变换器的电流应力优化双相移控制方法
CN112165271B (zh) 一种并网变流系统及其模型预测控制方法
CN112670975B (zh) 基于泰勒展开的直流配用电系统状态反馈控制方法
CN115549504B (zh) 一种三电平储能变流器的控制方法
Pal et al. A comparative analysis of different magnetics supported three-phase four-wire unified power quality conditioners–a simulation study
WO2023066407A1 (zh) 三相四桥臂辅助变流器的控制方法及装置
CN112350559A (zh) 一种基于桥臂共模电压-环流双闭环的mmc环流抑制控制方法
CN109301823A (zh) 一种基于有限状态模型预测控制策略的电能质量扰动补偿方法
Tiwary et al. Fuzzy logic based direct power control of dual active bridge converter
CN114710055B (zh) 基于有限集单矢量的两并联功率变流器模型预测控制方法
CN110429834A (zh) 一种基于扩张状态观测器的三相整流器滑模控制方法
Dehghani et al. Dynamic behavior control of induction motor with STATCOM
CN114157170B (zh) 基于滑模控制的t型三电平整流器模型预测功率控制方法
Lu et al. Feedback linearization and sliding mode control for VIENNA rectifier based on differential geometry theory
CN111525591B (zh) 一种三相不平衡状态下的vsc控制方法
CN111509761A (zh) 一种与锁相环结合的hvdc动态相量计算方法及系统
CN114614502B (zh) 一种隔离型双向dc-dc双极性输出电压均衡方法
CN117394421B (zh) 基于超螺旋滑模观测器的储能变流器改进自抗扰控制方法
CN112928929B (zh) 一种三相分离式串联混合型电力电子变压器及其控制方法
CN113992093B (zh) 一种双三相永磁同步发电机双子空间占空比模型预测电流控制方法
CN113746344B (zh) 一种高频隔离双级式电池储能变换器的阻抗模型建模方法
Khan et al. Tuning of weighing factors by direct pole-placement for model predictive current controlled grid-tied converters with an LCL filter
CN112039084B (zh) 一种同步静止补偿器改进二阶滑模控制方法
CN113258586B (zh) 一种基于储能的配电静止同步补偿器配电网有功和无功补偿方法
Bing et al. Sliding mode and predictive current control for vienna-type rectifiers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant