CN115536413A - 一种多层核壳结构纳米线增韧化学气相沉积SiC涂层及制备方法 - Google Patents

一种多层核壳结构纳米线增韧化学气相沉积SiC涂层及制备方法 Download PDF

Info

Publication number
CN115536413A
CN115536413A CN202211230431.8A CN202211230431A CN115536413A CN 115536413 A CN115536413 A CN 115536413A CN 202211230431 A CN202211230431 A CN 202211230431A CN 115536413 A CN115536413 A CN 115536413A
Authority
CN
China
Prior art keywords
sic
sio
nanowire
coating
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211230431.8A
Other languages
English (en)
Other versions
CN115536413B (zh
Inventor
付前刚
刘冰
孙佳
殷学民
刘天宇
童明德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202211230431.8A priority Critical patent/CN115536413B/zh
Publication of CN115536413A publication Critical patent/CN115536413A/zh
Application granted granted Critical
Publication of CN115536413B publication Critical patent/CN115536413B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • C04B35/62855Refractory metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种多层核壳结构纳米线增韧化学气相沉积SiC涂层及制备方法,采用三步法,首先采用热蒸发法在碳/碳(C/C)复合材料表面制备SiC@SiO2纳米线,然后利用溶胶凝胶法在纳米线表面包覆TiO2,最后在含SiC@SiO2@TiO2纳米线的C/C复合材料表面通过化学气相沉积工艺制备SiC涂层。通过纳米线的增韧作用减少涂层中裂纹数量并减小裂纹尺寸,避免涂层中贯穿性裂纹的生成;利用TiO2和SiO2的互扩散降低SiO2粘度,提高SiC涂层的自愈合效率,最终实现SiC涂层热防护性能的提升。

Description

一种多层核壳结构纳米线增韧化学气相沉积SiC涂层及制备 方法
技术领域
本发明属于材料制备技术领域,涉及一种多层核壳结构纳米线增韧化学气相沉积SiC涂层及制备方法。
背景技术
C/C复合材料是以碳纤维为增强体的碳基复合材料,具有低密度(理论密度约为2.2g/cm3)、低热膨胀系数(约为1.1×10-6/K)、高导热率、高比强、耐摩擦磨损、良好的抗高温热循环性能以及强度随温度的升高不降反升等优点,被广泛用作航空航天领域的热结构材料。然而,C/C复合材料强烈的氧化敏感性极大的限制了其在高温环境下的应用。目前,硅基陶瓷涂层可对C/C复合材料起到有效的防护作用。其中SiC涂层由于与C/C复合材料热膨胀系数相近,在高温下可生成具有自愈合能力的SiO2,而受到广泛关注。在众多制备方法中,化学气相沉积法制备的SiC涂层形貌和厚度可控,涂层纯度高,均匀性好,对基体损伤小,是理想的抗氧化涂层材料。
但化学气相沉积SiC涂层仍具有脆性大,与C/C基体易因热失配而产生裂纹导致涂层失效,以及自愈合效率低等问题。研究表明,通过向SiC涂层中引入低维材料和自愈合组元可有效改善涂层的脆性,提高涂层的自愈合效率。如文献1“J.Jing,Q.Fu,R.Yuan.Nanowire-toughened CVD-SiC coating for C/C composites with surfacepre-oxidation[J],Surface Engineering,2017,34(1):47-53.”中,通过向化学气相沉积SiC涂层中引入SiC纳米线,提高了涂层的韧性,减小了裂纹尺寸,其抗热震性能与无改性SiC涂层相比,提高了67%。但涂层中未发现明显的裂纹愈合现象,说明其自愈合效率仍较低。文献2“Y.Wei,L.Zhou,J.Zhang et al.Effect of TiB2 on the self-crack-healingability of SiC-Si coating at 1300℃[J],Surface Coating Technology,2021,425”中,通过向SiC涂层中引入TiB2,利用TiO2与SiO2的相互作用提高了涂层的自愈合效率,1300℃氧化1h后,TiB2-SiC涂层表面原始裂纹几乎完全愈合,而SiC涂层表面裂纹无明显愈合现象。然而裂纹愈合后的涂层在热震过程中又产生了较多大尺寸裂纹,说明涂层韧性仍需增强。
因此,为了进一步改善SiC涂层的热防护性能,需要同时提高涂层的韧性和自愈合效率,需要研究TiO2对涂层的自愈合效果提升的观察,需要涂层中仅存在TiO2。而在采用热蒸发法以SiO为原料,温度为1200℃制备SiC纳米线时,会出现SiC纳米线和Si纳米线共存。但是由于工艺局限性Si纳米线的含量目前无法精确控制。而Si的熔点是1400℃,Si纳米线的熔点会更低一些,是常用的提高涂层自愈合性能的物质。
作为研究TiO2对涂层自愈合性能和热震性能的影响时,如果涂层中存在Si,则会影响TiO2对涂层的自愈合效果提升的观察,并且Si的量目前不可控,因此,需要制备SiC纳米线且避免Si纳米线的生成。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种多层核壳结构纳米线增韧化学气相沉积SiC涂层及制备方法。
技术方案
一种多层核壳结构纳米线增韧化学气相沉积SiC涂层,其特征在于:涂层为三层核壳结构,基材表面为利用热蒸发法制备的SiC@SiO2纳米线,然后为溶胶凝胶法在SiC@SiO2纳米线外包覆TiO2,通过化学气相沉积工艺在TiO2外层制备碳SiC涂层;所述SiC@SiO2纳米线中的孔隙被填充碳化硅。
所述基材包括但不限于C/C复合材料、石墨、石墨纸、Al2O3、ZrO2或SiC。
所述SiC@SiO2纳米线直径为150nm,长度达数十微米。
一种制备所述多层核壳结构纳米线增韧化学气相沉积碳化物涂层的方法,其特征在于步骤如下:
步骤1、SiC@SiO2纳米线的制备:将SiO粉末均匀铺在坩埚底部,并将负载催化剂的基材悬挂于粉末上方,将坩埚置于管式炉恒温区;以Ar为保护气,在负压状态下,将炉内温度从室温升至1250~1500℃;然后构造封闭环境,保温1~3时间,获得表面生长SiC@SiO2纳米线的C/C复合材料;
步骤2、SiC@SiO2@TiO2纳米线的制备:将带有SiC@SiO2纳米线的基材浸泡于氨水和无水乙醇混合溶液中,并进行水浴加热,然后加入钛酸四丁酯,继续水浴加热,反应结束后用无水乙醇清洗并干燥;将干燥后的材料于Ar/空气气氛中进行热处理,得到表面生长有SiC@SiO2@TiO2纳米线的基材;
所述热处理温度为400~500℃,热处理时间为1~3h;
步骤3、SiC@SiO2@TiO2纳米线增韧碳化物涂层的制备:将带有SiC@SiO2@TiO2纳米线的基材悬挂于等温化学气相沉积炉中;以三氯甲基硅烷MTS为原料,H2为反应气,Ar为稀释气,于负压状态下进行SiC涂层的沉积,获得SiC@SiO2@TiO2纳米线增韧碳化物涂层。
所述负载催化剂的基材的制备:将基材放入含有催化剂的乙醇溶液中浸泡10~30min后取出,放于40~50℃烘箱中进行干燥处理;所述催化剂的乙醇溶液浓度为0.02~0.2mol/L。
所述步骤1负载催化剂的C/C复合材料悬挂于粉末上方1~4cm位置处。
所述催化剂包括但不限于硝酸镍、硫酸亚铁、氯化镍或氯化亚铁。
所述步骤2中氨水和钛酸四丁酯的体积比为1:1~1:3,氨水和无水乙醇的体积比为1:50~1:200。
所述步骤3的MTS、H2和Ar的流量分别为0.05~0.3g/min,700~1300mL/min和200~600mL/min,沉积温度为1100~1300℃,沉积压力为4~10kPa。
所述负压状态为4~10kPa。
有益效果
本发明提出的一种多层核壳结构纳米线增韧化学气相沉积SiC涂层及制备方法,采用三步法,首先采用热蒸发法在C/C复合材料表面制备SiC@SiO2纳米线层,然后利用溶胶凝胶法在SiC@SiO2纳米线表面包覆TiO2层,最后采用化学气相沉积法制备SiC@SiO2@TiO2纳米线增韧SiC涂层。所制备的SiC@SiO2@TiO2纳米线为三层核壳结构,纳米线最外层为TiO2层,中间层为SiO2层,核心为SiC。多层核壳结构纳米线直径约为150nm,长度达数十微米。SiC@SiO2@TiO2纳米线增韧SiC涂层经30次1500℃-室温热震测试后,失重率仅为1.23%,抗热震性能优于未改性SiC涂层(经30次1500℃-室温热震测试后,失重率约11.73%)。1500℃氧化5min后,SiC@SiO2@TiO2纳米线增韧SiC涂层内裂纹的愈合效果同样优于SiC涂层。因此,SiC@SiO2@TiO2纳米线的引入不仅可以有效减小涂层表面裂纹尺寸,偏转裂纹,提高SiC涂层的抗热震性能,还可以有效提高SiC涂层的自愈合效率。对纳米线进行改性,为沉积制备多相涂层,同时提高涂层韧性和自愈合效率提供了思路。
附图说明
图1SiC@SiO2纳米线的SEM和TEM照片。可以看出纳米线为核壳结构纳米线,长度为数十微米,直径约为120nm,SiO2层厚度约为30nm。
图2SiC@SiO2@TiO2纳米线的SEM、TEM照片及Ti能谱结果。可以看出,包覆后的纳米线为三层核壳结构,纳米线表面粗糙,直径约为150nm,TiO2层厚度约为20nm。
图3SiC涂层和SiC@SiO2@TiO2纳米线增韧SiC涂层的表面及截面SEM照片。可以看出,SiC@SiO2@TiO2纳米线增韧SiC涂层表面裂纹尺寸小于SiC涂层。两种涂层均匀致密,厚度均为120μm左右。在SiC@SiO2@TiO2纳米线增韧SiC涂层截面中可以观察到纳米线。
图4SiC涂层和SiC@SiO2@TiO2纳米线增韧SiC涂层1500℃-室温热震测试后质量变化曲线。可以看出,30次热震后,SiC@SiO2@TiO2纳米线增韧SiC涂层失重百分数约为1.23%,小于纯SiC涂层(约11.73%)。
图5SiC涂层和SiC@SiO2@TiO2纳米线增韧SiC涂层1500℃-室温热震测试后表面及截面SEM照片。可以看出,热震后SiC@SiO2@TiO2纳米线增韧SiC涂层表面裂纹尺寸小于SiC涂层,且在截面照片中可以观察到明显的裂纹偏转终止现象。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1:
将C/C复合材料用无水乙醇清洗干净,于0.05mol/L的硝酸镍溶液中浸泡约10min,然后于50℃烘箱中烘干。称取3g SiO粉末,将其铺于坩埚底部,并将负载有催化剂的C/C复合材料悬挂于粉末上方约1cm的位置,然后将坩埚置于管式炉恒温区。于负压下,以5℃/min的升温速率升温至1300℃。到温后构造封闭环境保温1h。保温结束后,关闭加热电源样品随炉冷却,即可得到表面生长有SiC@SiO2纳米线的C/C复合材料。
将带有SiC@SiO2纳米线的C/C复合材料置于50mL无水乙醇中,加入0.7mL氨水,45℃水浴加热1h后,加入1.4mL钛酸四丁酯,继续水浴加热36h,反应结束后使用无水乙醇洗涤三次并干燥。将上述样品于450℃Ar气氛中保温2h,即可得到带有SiC@SiO2@TiO2纳米线的C/C复合材料。
将上述样品悬挂于等温化学气相沉积炉恒温区,以Ar为保护气和稀释气,于负压下以6℃/min的升温速率将炉内温度升至1150℃。然后通入MTS和H2,控制Ar、MTS和H2的流量分别为300mL/min,0.08g/min和1000mL/min。沉积结束后停止通入MTS和H2,关闭加热电源炉体自然降温,期间保持Ar流量不变。冷却至室温后,将试样取出,即可获得SiC@SiO2@TiO2纳米线增韧SiC涂层。
实施例2:
将C/C复合材料用无水乙醇清洗干净,于0.05mol/L的硝酸镍溶液中浸泡约10min,然后于50℃烘箱中烘干。称取6g SiO粉末,将其铺于坩埚底部,并将负载有催化剂的C/C复合材料悬挂于粉末上方约2cm的位置,然后将坩埚置于管式炉恒温区。于负压下,以7℃/min的升温速率升温至1200℃。到温后构造封闭环境保温2h。保温结束后,关闭加热电源样品随炉冷却,即可得到表面生长有SiC@SiO2纳米线的C/C复合材料。
将带有SiC@SiO2纳米线的C/C复合材料置于50mL无水乙醇中,加入1mL氨水,45℃水浴加热1h后,加入2mL钛酸四丁酯,继续水浴加热24h,反应结束后使用无水乙醇洗涤三次并干燥。将上述样品于450℃Ar气氛中保温2h,即可得到带有SiC@SiO2@TiO2纳米线的C/C复合材料。
将上述样品悬挂于等温化学气相沉积炉恒温区,以Ar为保护气和稀释气,于负压下以7℃/min的升温速率将炉内温度升至1200℃。然后通入MTS和H2,控制Ar、MTS和H2的流量分别为400mL/min,0.1g/min和1000mL/min。沉积结束后停止通入MTS和H2,关闭加热电源炉体自然降温,期间保持Ar流量不变。冷却至室温后,将试样取出,即可获得SiC@SiO2@TiO2纳米线增韧SiC涂层。
对比例3:
将C/C复合材料用无水乙醇清洗干净,于0.1mol/L的硝酸镍溶液中浸泡约10min,然后于50℃烘箱中烘干。称取4g SiO粉末,将其铺于坩埚底部,并将负载有催化剂的C/C复合材料悬挂于粉末上方约1cm的位置,然后将坩埚置于管式炉恒温区。于负压下,以7℃/min的升温速率升温至1300℃。到温后构造封闭环境保温1h。保温结束后,关闭加热电源样品随炉冷却,即可得到表面生长有SiC@SiO2纳米线的C/C复合材料。
将带有SiC@SiO2纳米线的C/C复合材料置于50mL无水乙醇中,加入0.7mL氨水,45℃水浴加热1h后,加入1.4mL钛酸四丁酯,继续水浴加热50h,反应结束后使用无水乙醇洗涤三次并干燥。将上述样品于450℃Ar气氛中保温2h,得到的纳米线包覆效果较差,其中含有较多TiO2颗粒。
将上述样品悬挂于等温化学气相沉积炉恒温区,以Ar为保护气和稀释气,于负压下以6℃/min的升温速率将炉内温度升至1200℃。然后通入MTS和H2,控制Ar、MTS和H2的流量分别为300mL/min,0.4g/min和800mL/min。沉积结束后停止通入MTS和H2,关闭加热电源炉体自然降温,期间保持Ar流量不变。冷却至室温后,将试样取出,得到的涂层结壳现象明显,涂层疏松多孔。

Claims (10)

1.一种多层核壳结构纳米线增韧化学气相沉积SiC涂层,其特征在于:涂层为三层核壳结构,基材表面为利用热蒸发法制备的SiC@SiO2纳米线,然后为溶胶凝胶法在SiC@SiO2纳米线外包覆TiO2,通过化学气相沉积工艺在TiO2外层制备碳SiC涂层;所述SiC@SiO2纳米线中的孔隙被填充碳化硅。
2.根据权利要求1所述多层核壳结构纳米线增韧化学气相沉积碳化物涂层,其特征在于:所述基材包括但不限于C/C复合材料、石墨、石墨纸、Al2O3、ZrO2或SiC。
3.根据权利要求1所述多层核壳结构纳米线增韧化学气相沉积碳化物涂层,其特征在于:所述SiC@SiO2纳米线直径为150nm,长度达数十微米。
4.一种制备权利要求1~3任一项所述多层核壳结构纳米线增韧化学气相沉积碳化物涂层的方法,其特征在于步骤如下:
步骤1、SiC@SiO2纳米线的制备:将SiO粉末均匀铺在坩埚底部,并将负载催化剂的基材悬挂于粉末上方,将坩埚置于管式炉恒温区;以Ar为保护气,在负压状态下,将炉内温度从室温升至1250~1500℃;然后构造封闭环境,保温1~3时间,获得表面生长SiC@SiO2纳米线的C/C复合材料;
步骤2、SiC@SiO2@TiO2纳米线的制备:将带有SiC@SiO2纳米线的基材浸泡于氨水和无水乙醇混合溶液中,并进行水浴加热,然后加入钛酸四丁酯,继续水浴加热,反应结束后用无水乙醇清洗并干燥;将干燥后的材料于Ar/空气气氛中进行热处理,得到表面生长有SiC@SiO2@TiO2纳米线的基材;
所述热处理温度为400~500℃,热处理时间为1~3h;
步骤3、SiC@SiO2@TiO2纳米线增韧碳化物涂层的制备:将带有SiC@SiO2@TiO2纳米线的基材悬挂于等温化学气相沉积炉中;以三氯甲基硅烷MTS为原料,H2为反应气,Ar为稀释气,于负压状态下进行SiC涂层的沉积,获得SiC@SiO2@TiO2纳米线增韧碳化物涂层。
5.根据权利要求5所述的方法,其特征在于:所述负载催化剂的基材的制备:将基材放入含有催化剂的乙醇溶液中浸泡10~30min后取出,放于40~50℃烘箱中进行干燥处理;所述催化剂的乙醇溶液浓度为0.02~0.2mol/L。
6.根据权利要求5所述的方法,其特征在于:所述步骤1负载催化剂的C/C复合材料悬挂于粉末上方1~4cm位置处。
7.根据权利要求6所述的方法,其特征在于:所述催化剂包括但不限于硝酸镍、硫酸亚铁、氯化镍或氯化亚铁。
8.根据权利要求5所述的方法,其特征在于:所述步骤2中氨水和钛酸四丁酯的体积比为1:1~1:3,氨水和无水乙醇的体积比为1:50~1:200。
9.根据权利要求5所述的方法,其特征在于:所述步骤3的MTS、H2和Ar的流量分别为0.05~0.3g/min,700~1300mL/min和200~600mL/min,沉积温度为1100~1300℃,沉积压力为4~10kPa。
10.根据权利要求5所述的方法,其特征在于:所述负压状态为4~10kPa。
CN202211230431.8A 2022-10-08 2022-10-08 一种多层核壳结构纳米线增韧化学气相沉积SiC涂层及制备方法 Active CN115536413B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211230431.8A CN115536413B (zh) 2022-10-08 2022-10-08 一种多层核壳结构纳米线增韧化学气相沉积SiC涂层及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211230431.8A CN115536413B (zh) 2022-10-08 2022-10-08 一种多层核壳结构纳米线增韧化学气相沉积SiC涂层及制备方法

Publications (2)

Publication Number Publication Date
CN115536413A true CN115536413A (zh) 2022-12-30
CN115536413B CN115536413B (zh) 2023-09-08

Family

ID=84733640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211230431.8A Active CN115536413B (zh) 2022-10-08 2022-10-08 一种多层核壳结构纳米线增韧化学气相沉积SiC涂层及制备方法

Country Status (1)

Country Link
CN (1) CN115536413B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116120097A (zh) * 2023-01-14 2023-05-16 西北工业大学 一种SiC纳米线@碳纳米相核壳异质结构增韧SiC涂层及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134759A (en) * 1976-09-01 1979-01-16 The Research Institute For Iron, Steel And Other Metals Of The Tohoku University Light metal matrix composite materials reinforced with silicon carbide fibers
US4772524A (en) * 1986-04-14 1988-09-20 The United States Of America As Represented By The Secretary Of Commerce Fibrous monolithic ceramic and method for production
US5283109A (en) * 1991-04-15 1994-02-01 Ultramet High temperature resistant structure
KR101702970B1 (ko) * 2015-12-08 2017-02-09 한국원자력연구원 물리적 기상증착법 및 화학적 기상증착법의 융합에 의한 흑연 또는 탄소/탄소 복합재 표면에 세라믹 소재의 코팅재를 코팅하는 방법
CN111485220A (zh) * 2020-05-28 2020-08-04 西北工业大学 一种SiC纳米线增韧化学气相沉积ZrC涂层及制备方法
CN112266259A (zh) * 2020-09-29 2021-01-26 中京吉泰(北京)科技有限责任公司 一种陶瓷基复合材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134759A (en) * 1976-09-01 1979-01-16 The Research Institute For Iron, Steel And Other Metals Of The Tohoku University Light metal matrix composite materials reinforced with silicon carbide fibers
US4772524A (en) * 1986-04-14 1988-09-20 The United States Of America As Represented By The Secretary Of Commerce Fibrous monolithic ceramic and method for production
US5283109A (en) * 1991-04-15 1994-02-01 Ultramet High temperature resistant structure
KR101702970B1 (ko) * 2015-12-08 2017-02-09 한국원자력연구원 물리적 기상증착법 및 화학적 기상증착법의 융합에 의한 흑연 또는 탄소/탄소 복합재 표면에 세라믹 소재의 코팅재를 코팅하는 방법
CN111485220A (zh) * 2020-05-28 2020-08-04 西北工业大学 一种SiC纳米线增韧化学气相沉积ZrC涂层及制备方法
CN112266259A (zh) * 2020-09-29 2021-01-26 中京吉泰(北京)科技有限责任公司 一种陶瓷基复合材料及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BING LIU等: "Microstructure evolution and growth mechanism of core–shell silicon-based nanowires by thermal evaporation of SiO", vol. 11, no. 9, pages 1417 - 1430 *
YALONG WEI等: "Effect of TiB2 on the self-crack-healing ability of SiC-Si coating at 1300℃", vol. 425, pages 1 - 9 *
赵龙志;王怀;赵明娟;张鹏;唐延川;刘德佳;李劲;宋立军;: "TiO_2包覆CNTs复合纳米线的制备研究", 兵器材料科学与工程, no. 02 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116120097A (zh) * 2023-01-14 2023-05-16 西北工业大学 一种SiC纳米线@碳纳米相核壳异质结构增韧SiC涂层及制备方法
CN116120097B (zh) * 2023-01-14 2024-07-19 西北工业大学 一种SiC纳米线@碳纳米相核壳异质结构增韧SiC涂层及制备方法

Also Published As

Publication number Publication date
CN115536413B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
CN107032816A (zh) 一种碳化硅纳米线增强C/C‑SiC‑ZrB2陶瓷基复合材料的制备方法
Li et al. A SiC-ZrB2-ZrC coating toughened by electrophoretically-deposited SiC nanowires to protect C/C composites against thermal shock and oxidation
CN107540400A (zh) 一种具有复合界面的SiCf/SiC陶瓷基复合材料
Zhang et al. AC/SiC gradient oxidation protective coating for carbon/carbon composites
Zhang et al. Oxidation behavior of SiC-HfB2-Si coating on C/C composites prepared by slurry dipping combined with gaseous Si infiltration
Ramasamy et al. Mullite–gadolinium silicate environmental barrier coatings for melt infiltrated SiC/SiC composites
CN109485423B (zh) SiC纳米线增韧化学气相共沉积HfC-SiC复相涂层的制备方法
CN106045550B (zh) SiC-ZrC梯度改性碳/碳复合材料的制备方法
CN105272328B (zh) 一种SiC晶须增韧莫来石抗氧化涂层的制备方法
CN113716977B (zh) 一种碳/碳复合材料表面宽温域复合抗氧化涂层及制备方法
CN113845367B (zh) 高温抗氧化碳纤维增韧氧化锆陶瓷材料的制备方法及高温抗氧化碳纤维增韧氧化锆陶瓷材料
CN115536413B (zh) 一种多层核壳结构纳米线增韧化学气相沉积SiC涂层及制备方法
CN109704750B (zh) 利用芦苇纤维制备中空镁铝尖晶石陶瓷纤维的方法
CN106495745B (zh) 一种β-硅酸钇晶须增韧硅酸钇/YAS涂层的制备方法
Wang et al. Oxidation mechanism of SiC–Zirconia–Glass ceramic coated carbon/carbon composites at 1123–1273 K
Shimada et al. Preparation and high temperature oxidation of SiC compositionally graded graphite coated with HfO2
CN109384475A (zh) 一种联合提高SiCf/SiC复合材料高温抗水氧腐蚀性能的方法
CN111099596B (zh) 一种在二氧化硅气凝胶颗粒表面包覆高疏水氮化硼纳米片薄层的简易方法
CN106673710A (zh) 碳/碳复合材料表面HfC纳米线增韧抗烧蚀陶瓷涂层及制备方法
CN104150938B (zh) 一维碳化铪HfC材料改性炭/炭复合材料的制备方法
CN102659451B (zh) CVD SiC/SiO2梯度抗氧化复合涂层及其制备方法
CN104945013B (zh) 一种c/c复合材料及其表面抗氧化复合涂层的制备方法
CN116289238B (zh) 一种碳纤维硬毡表面涂层及其制备工艺
Niu et al. A crack-free SiC nanowire-toughened Si-Mo-WC coating prepared on graphite materials for enhancing the oxidation resistance
KR100520436B1 (ko) 탄소/탄소 복합재료의 내산화 복합코팅방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant