CN115524311A - 基于斜条纹图案的表面漫反射率和三维形貌一体成像方法 - Google Patents

基于斜条纹图案的表面漫反射率和三维形貌一体成像方法 Download PDF

Info

Publication number
CN115524311A
CN115524311A CN202211168313.9A CN202211168313A CN115524311A CN 115524311 A CN115524311 A CN 115524311A CN 202211168313 A CN202211168313 A CN 202211168313A CN 115524311 A CN115524311 A CN 115524311A
Authority
CN
China
Prior art keywords
cosine
dimensional
image
axis
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211168313.9A
Other languages
English (en)
Inventor
于双
邹旭彤
赵烟桥
吴爽
杨文龙
吴海滨
孙晓明
于晓洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202211168313.9A priority Critical patent/CN115524311A/zh
Publication of CN115524311A publication Critical patent/CN115524311A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2527Projection by scanning of the object with phase change by in-plane movement of the patern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/254Projection of a pattern, viewing through a pattern, e.g. moiré
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/42Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation
    • G06V10/431Frequency domain transformation; Autocorrelation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4735Solid samples, e.g. paper, glass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Graphics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明基于斜条纹图案的表面漫反射率和三维形貌一体成像方法属于结构光三维成像技术领域;该方法通过生成不同频率的余弦斜条纹图案,在漫反射板和样品上分别形成固定光波下余弦斜条纹图像,再进行傅里叶变换得到图像频谱,并进行滤波和傅里叶逆变换,得到直流分量和一阶频谱分量的空域表达形式,进而得到图像像素点所对应样品表面漫反射率和包裹相位,对包裹相位进行展开得到绝对相位并计算图像像素点所对应的样品表面三维坐标,最后实现样品表面的漫反射率和三维形貌一体成像;本发明同采用正条纹图案的传统傅里叶变换三维成像方法相比,提高了样品表面三维坐标的测量准确度,并实现了样品表面漫反射测量,进而实现漫反射率和三维形貌一体成像。

Description

基于斜条纹图案的表面漫反射率和三维形貌一体成像方法
技术领域:
本发明基于斜条纹图案的表面漫反射率和三维形貌一体成像方法属于结构光三维成像技术领域。
背景技术:
基于数字条纹投射的结构光三维成像方法是应用于空间几何尺寸的精确测量和定位的一种现代光学成像方法,其具有非接触、高准确度、高效率的优点而广泛应用于工业检测、逆向工程、虚拟现实和生物医学等诸多领域。傅里叶变换三维成像方法作为一种典型的结构光三维成像方法,其仅需投射少幅甚至一幅条纹图案就可实现三维表面形貌成像,在原理上最具实时性。因此,它特别适合用于动态三维成像和在线三维成像这类实时性要求高的场合。傅里叶变换三维成像方法需要对条纹图像进行傅里叶变换、滤波和逆变换来实现三维成像,被测表面三维形貌仅由条纹图像一阶频谱分量来表征。然而,目前傅里叶变换三维成像方法普遍采用余弦正条纹图案进行投射,只能对余弦正条纹图像进行一维分割提取,致使一阶频谱分量提取质量差,结果导致被测表面三维坐标的测量准确度低。
样品表面漫反射率作为表征样品特性的物理量,是一种重要的光学指标。目前,普遍采用积分球方法实现漫反射的测量,该方法通过积分球克服漫反射测量中随机因素的影响,提高测量的稳定性和重复性,然而积分球方法仅能实现单点漫反射率测量,无法实现样品表面漫反射率成像,且测量设备价格昂贵。
发明内容:
为了提高样品表面三维坐标的测量准确度,同时实现样品表面漫反射率成像的功能,本发明公开了一种基于斜条纹图案的表面漫反射率和三维形貌一体成像方法,相比采用正条纹图案的传统傅里叶变换三维成像方法,本发明方法采用斜条纹图案实现了条纹图像频谱的二维分割提取,有效缓解了一阶频谱分量与零阶频谱分量和二阶频谱分量的混叠,有效改善了一阶频谱分量提取质量,提高了样品表面三维坐标的测量准确度,本发明方法还能够测量样品表面的漫反射率,进而实现了样品表面漫反射率和三维形貌一体成像。
本发明的目的是这样实现的:
基于斜条纹图案的表面漫反射率和三维形貌一体成像方法,包括以下步骤:
步骤a、计算机生成3幅不同频率的二维余弦斜条纹图案:
Figure BDA0003862346560000011
Figure BDA0003862346560000012
Figure BDA0003862346560000021
其中,(x,y)为图案像素点坐标;I1(x,y)为第1幅二维余弦斜条纹图案像素强度,I2(x,y)为第2幅二维余弦斜条纹图案像素强度,I3(x,y)为第3幅二维余弦斜条纹图案像素强度;IDC为二维余弦条纹图案的平均强度;IAC为二维余弦条纹图案的调制强度;
Figure BDA0003862346560000022
Figure BDA0003862346560000023
分别为二维余弦斜条纹图案I1(x,y)沿x轴和y轴的频率,
Figure BDA0003862346560000024
Figure BDA0003862346560000025
分别为二维余弦斜条纹图案I2(x,y)沿x轴和y轴的频率,
Figure BDA0003862346560000026
Figure BDA0003862346560000027
分别为二维余弦斜条纹图案I3(x,y)沿x轴和y轴的频率;
步骤b、计算机控制水平放置的投影仪将步骤a中的第1幅余弦斜条纹图案I1(x,y)垂直投射到可见光波段漫反射为98%的标准漫反射板上,CCD相机光轴与投影仪光轴相交形成夹角α,标准漫反射板上形成的余弦斜条纹图像经滤光片滤光后成像到CCD相机上以形成固定光波下的余弦斜条纹图像
Figure BDA0003862346560000028
Figure BDA0003862346560000029
其中,(x0,y0)为图像像素点坐标;MTFsystem为成像系统的调制传递函数;Rref为标准漫反射版的漫反射率,Rref=0.98;
Figure BDA00038623465600000210
Figure BDA00038623465600000211
分别为余弦斜条纹图像
Figure BDA00038623465600000212
沿相机像面坐标系x0轴和y0轴的空间载波频率;
Figure BDA00038623465600000213
步骤c、计算机控制水平放置的投影仪按时序依次将步骤a中的3幅二维余弦斜条纹图案I1(x,y)、I2(x,y)、I3(x,y)垂直投射到被测样品表面上,被测样品表面与标准漫反射板的空间深度位置相同,被测样品表面上形成的余弦斜条纹图像经滤光片滤光后成像到CCD相机上以形成固定光波下的3幅余弦斜条纹图像
Figure BDA00038623465600000214
Figure BDA00038623465600000215
Figure BDA00038623465600000216
Figure BDA00038623465600000217
其中,(x0,y0)为图像像素点坐标;MTFsystem为成像系统的调制传递函数;R(x0,y0)为图像像素点(x0,y0)所对应的被测样品表面的漫反射率;
Figure BDA00038623465600000218
Figure BDA00038623465600000219
分别为余弦斜条纹图像
Figure BDA00038623465600000220
沿相机像面坐标系x0轴和y0轴的空间载波频率;
Figure BDA00038623465600000221
Figure BDA00038623465600000222
Figure BDA00038623465600000223
分别为余弦斜条纹图像
Figure BDA00038623465600000224
沿相机像面坐标系x0轴和y0轴的空间载波频率;
Figure BDA00038623465600000225
Figure BDA00038623465600000226
Figure BDA00038623465600000227
分别为余弦斜条纹图像
Figure BDA00038623465600000228
沿相机像面坐标系x0轴和y0轴的空间载波频率;
Figure BDA0003862346560000031
步骤d、对步骤b中的余弦斜条纹图像
Figure BDA0003862346560000032
和步骤c中的余弦斜条纹图像
Figure BDA0003862346560000033
Figure BDA0003862346560000034
Figure BDA0003862346560000035
进行二维傅里叶变换得到图像频谱:
Figure BDA0003862346560000036
Figure BDA0003862346560000037
Figure BDA0003862346560000038
Figure BDA0003862346560000039
其中,
Figure BDA00038623465600000310
为二维傅里叶变换运算;
Figure BDA00038623465600000311
为余弦斜条纹图像
Figure BDA00038623465600000312
傅里叶变换后的频谱,
Figure BDA00038623465600000313
为余弦斜条纹图像
Figure BDA00038623465600000314
傅里叶变换后的频谱,
Figure BDA00038623465600000315
为余弦斜条纹图像
Figure BDA00038623465600000316
傅里叶变换后的频谱,
Figure BDA00038623465600000317
为余弦斜条纹图像
Figure BDA00038623465600000318
傅里叶变换后的频谱;
Figure BDA00038623465600000319
Figure BDA00038623465600000320
分别为余弦斜条纹图像沿x0轴和y0轴的空间频率;
Figure BDA00038623465600000321
Figure BDA00038623465600000322
的一阶频谱分量,且
Figure BDA00038623465600000323
Figure BDA00038623465600000324
Figure BDA00038623465600000325
的一阶频谱分量,且
Figure BDA00038623465600000326
Figure BDA00038623465600000327
Figure BDA00038623465600000328
的一阶频谱分量,且
Figure BDA00038623465600000329
Figure BDA00038623465600000330
Figure BDA00038623465600000331
的一阶频谱分量,且
Figure BDA00038623465600000332
Figure BDA00038623465600000333
Figure BDA00038623465600000334
的复共轭,
Figure BDA00038623465600000335
Figure BDA00038623465600000336
的复共轭,
Figure BDA00038623465600000337
Figure BDA00038623465600000338
的复共轭,
Figure BDA00038623465600000339
Figure BDA00038623465600000340
的复共轭;
步骤e、采用二维频域低通滤波器分隔提取出步骤d中
Figure BDA00038623465600000341
Figure BDA00038623465600000342
的零阶频谱分量
Figure BDA00038623465600000343
Figure BDA00038623465600000344
然后对
Figure BDA00038623465600000345
Figure BDA00038623465600000346
进行二维傅里叶逆变换得到余弦斜条纹图像
Figure BDA00038623465600000347
Figure BDA0003862346560000041
的直流分量MTFsystem·Rref·IDC和MTFsystem·R(x0,y0)·IDC;再采用二维频域带通滤波器分隔提取出步骤d中
Figure BDA0003862346560000042
Figure BDA0003862346560000043
的一阶频谱分量
Figure BDA0003862346560000044
Figure BDA0003862346560000045
然后对
Figure BDA0003862346560000046
Figure BDA0003862346560000047
Figure BDA0003862346560000048
进行二维傅里叶逆变换得到相应的空域表达形式
Figure BDA0003862346560000049
Figure BDA00038623465600000410
步骤f、根据步骤e获得的余弦斜条纹图像
Figure BDA00038623465600000411
的直流分量MTFsystem·Rref·IDC和余弦斜条纹图像
Figure BDA00038623465600000412
的直流分量MTFsystem·R(x0,y0)·IDC计算得到图像像素点(x0,y0)所对应的样品表面漫反射率R(x0,y0);
Figure BDA00038623465600000413
步骤g、根据步骤e中所获得的
Figure BDA00038623465600000414
Figure BDA00038623465600000415
得到余弦斜条纹图像
Figure BDA00038623465600000416
Figure BDA00038623465600000417
的包裹相位
Figure BDA00038623465600000418
Figure BDA00038623465600000419
Figure BDA00038623465600000420
Figure BDA00038623465600000421
Figure BDA00038623465600000422
其中,atan{}为反正切函数;Im[]为取虚部函数;Re[]为取实部函数;
步骤h、根据步骤g中所获得的包裹相位
Figure BDA00038623465600000423
Figure BDA00038623465600000424
并采用基于数论的三频时间相位展开方法将包裹相位
Figure BDA00038623465600000425
展开为绝对相位φ(x0,y0),然后根据三角测量原理使用绝对相位φwrapped(x0,y0)计算得到图像像素点(x0,y0)所对应的样品表面三维坐标X(x0,y0)、Y(x0,y0)和Z(x0,y0);
步骤i、根据步骤f得到的样品表面漫反射率R(x0,y0)和步骤h得到的样品表面三维坐标X(x0,y0)、Y(x0,y0)和Z(x0,y0)实现样品表面的漫反射率和三维形貌一体成像。
有益效果:
第一、同采用正条纹图案的传统傅里叶变换三维成像方法相比,本发明方法采用斜条纹图案实现了条纹图像频谱的二维分割提取,有效缓解了一阶频谱分量与零阶频谱分量和二阶频谱分量的混叠,有效改善了一阶频谱分量提取质量,提高了样品表面三维坐标的测量准确度。
第二、本发明方法通过标准漫反射板上形成的斜条纹图像的直流分量和样品表面上形成的斜条纹图像的直流分量实现了样品表面的漫反射测量。
第三、本发明方法实现了样品表面的漫反射率和三维形貌一体成像。
附图说明:
图1为基于斜条纹图案的表面漫反射率和三维形貌一体成像系统示意图;
图2为实验一中相机拍摄的参考平面上形成的余弦斜条纹图像
Figure BDA0003862346560000051
图3为实验一中相机拍摄的被测水平面上形成的第一幅余弦斜条纹图像
Figure BDA0003862346560000052
图4为实验一中相机拍摄的被测水平面上形成的第二幅余弦斜条纹图像
Figure BDA0003862346560000053
图5为实验一中相机拍摄的被测水平面上形成的第三幅余弦斜条纹图像
Figure BDA0003862346560000054
图6为实验一中本发明方法得到的被测水平面漫反射率和三维形貌一体成像结果(图中灰度表示漫反射率值);
图7为实验一中采用正条纹图案的传统傅里叶变换三维成像方法得到的被测水平面深度成像误差图;
图8为实验一中本发明方法得到的被测水平面深度成像误差图;
图9为实验一中本发明方法得到的被测水平面漫反射率成像误差图;
图10为实验二中相机拍摄的参考平面上形成的余弦斜条纹图像
Figure BDA0003862346560000055
图11为实验二中相机拍摄的被测斜面上形成的第一幅余弦斜条纹图像
Figure BDA0003862346560000056
图12为实验二中相机拍摄的被测斜面上形成的第二幅余弦斜条纹图像
Figure BDA0003862346560000057
图13为实验二中相机拍摄的被测斜面上形成的第三幅余弦斜条纹图像
Figure BDA0003862346560000058
图14为实验二中本发明方法得到的被测斜面漫反射率和三维形貌一体成像结果(图中灰度表示漫反射率值);
图15为实验二中采用正条纹图案的传统傅里叶变换三维成像方法得到的被测斜面深度成像误差图;
图16为实验二中本发明方法得到的被测斜面深度成像误差图;
图17为实验二中本发明方法得到的被测平面漫反射率成像误差图;
其中:1-投影仪,2-CCD相机,3-计算机,4-滤光片,5-标准漫反射板,6-被测样品,7-二维余弦斜条纹图案,8-固定光波下的余弦斜条纹图像。
具体实施方式
下面结合附图对本发明具体实施方式作进一步详细描述。
具体实施方式一
以下是本发明基于斜条纹图案的表面漫反射率和三维形貌一体成像方法的理论实施方式。
该具体实施方式下的基于斜条纹图案的表面漫反射率和三维形貌一体成像方法,包括以下步骤:
步骤a、计算机生成3幅不同频率的二维余弦斜条纹图案:
Figure BDA0003862346560000061
Figure BDA0003862346560000062
Figure BDA0003862346560000063
其中,(x,y)为图案像素点坐标;I1(x,y)为第1幅二维余弦斜条纹图案像素强度,I2(x,y)为第2幅二维余弦斜条纹图案像素强度,I3(x,y)为第3幅二维余弦斜条纹图案像素强度;IDC为二维余弦条纹图案的平均强度;IAC为二维余弦条纹图案的调制强度;
Figure BDA0003862346560000064
Figure BDA0003862346560000065
分别为二维余弦斜条纹图案I1(x,y)沿x轴和y轴的频率,
Figure BDA0003862346560000066
Figure BDA0003862346560000067
分别为二维余弦斜条纹图案I2(x,y)沿x轴和y轴的频率,
Figure BDA0003862346560000068
Figure BDA0003862346560000069
分别为二维余弦斜条纹图案I3(x,y)沿x轴和y轴的频率;
步骤b、计算机控制水平放置的投影仪将步骤a中的第1幅余弦斜条纹图案I1(x,y)垂直投射到可见光波段漫反射为98%的标准漫反射板上,CCD相机光轴与投影仪光轴相交形成夹角α,标准漫反射板上形成的余弦斜条纹图像经滤光片滤光后成像到CCD相机上以形成固定光波下的余弦斜条纹图像
Figure BDA00038623465600000610
Figure BDA00038623465600000611
其中,(x0,y0)为图像像素点坐标;MTFsystem为成像系统的调制传递函数;Rref为标准漫反射版的漫反射率,Rref=0.98;
Figure BDA00038623465600000612
Figure BDA00038623465600000613
分别为余弦斜条纹图像
Figure BDA00038623465600000614
沿相机像面坐标系x0轴和y0轴的空间载波频率;
Figure BDA00038623465600000615
步骤c、计算机控制水平放置的投影仪按时序依次将步骤a中的3幅二维余弦斜条纹图案I1(x,y)、I2(x,y)、I3(x,y)垂直投射到被测样品表面上,被测样品表面与标准漫反射板的空间深度位置相同,被测样品表面上形成的余弦斜条纹图像经滤光片滤光后成像到CCD相机上以形成固定光波下的3幅余弦斜条纹图像
Figure BDA0003862346560000071
Figure BDA0003862346560000072
Figure BDA0003862346560000073
Figure BDA0003862346560000074
其中,(x0,y0)为图像像素点坐标;MTFsystem为成像系统的调制传递函数;R(x0,y0)为图像像素点(x0,y0)所对应的被测样品表面的漫反射率;
Figure BDA0003862346560000075
Figure BDA0003862346560000076
分别为余弦斜条纹图像
Figure BDA0003862346560000077
沿相机像面坐标系x0轴和y0轴的空间载波频率;
Figure BDA0003862346560000078
Figure BDA0003862346560000079
Figure BDA00038623465600000710
分别为余弦斜条纹图像
Figure BDA00038623465600000711
沿相机像面坐标系x0轴和y0轴的空间载波频率;
Figure BDA00038623465600000712
Figure BDA00038623465600000713
Figure BDA00038623465600000714
分别为余弦斜条纹图像
Figure BDA00038623465600000715
沿相机像面坐标系x0轴和y0轴的空间载波频率;
Figure BDA00038623465600000716
步骤d、对步骤b中的余弦斜条纹图像
Figure BDA00038623465600000717
和步骤c中的余弦斜条纹图像
Figure BDA00038623465600000718
Figure BDA00038623465600000719
Figure BDA00038623465600000720
进行二维傅里叶变换得到图像频谱:
Figure BDA00038623465600000721
Figure BDA00038623465600000722
Figure BDA00038623465600000723
Figure BDA00038623465600000724
其中,
Figure BDA00038623465600000725
为二维傅里叶变换运算;
Figure BDA00038623465600000726
为余弦斜条纹图像
Figure BDA00038623465600000727
傅里叶变换后的频谱,
Figure BDA00038623465600000728
为余弦斜条纹图像
Figure BDA00038623465600000729
傅里叶变换后的频谱,
Figure BDA00038623465600000730
为余弦斜条纹图像
Figure BDA00038623465600000731
傅里叶变换后的频谱,
Figure BDA00038623465600000732
为余弦斜条纹图像
Figure BDA00038623465600000733
傅里叶变换后的频谱;
Figure BDA00038623465600000734
Figure BDA00038623465600000735
分别为余弦斜条纹图像沿x0轴和y0轴的空间频率;
Figure BDA00038623465600000736
Figure BDA00038623465600000737
的一阶频谱分量,且
Figure BDA00038623465600000738
Figure BDA00038623465600000739
Figure BDA00038623465600000740
的一阶频谱分量,且
Figure BDA0003862346560000081
Figure BDA0003862346560000082
Figure BDA0003862346560000083
的一阶频谱分量,且
Figure BDA0003862346560000084
Figure BDA0003862346560000085
Figure BDA0003862346560000086
的一阶频谱分量,且
Figure BDA0003862346560000087
Figure BDA0003862346560000088
Figure BDA0003862346560000089
的复共轭,
Figure BDA00038623465600000810
Figure BDA00038623465600000811
的复共轭,
Figure BDA00038623465600000812
Figure BDA00038623465600000813
的复共轭,
Figure BDA00038623465600000814
Figure BDA00038623465600000815
的复共轭;
步骤e、采用二维频域低通滤波器分隔提取出步骤d中
Figure BDA00038623465600000816
Figure BDA00038623465600000817
的零阶频谱分量
Figure BDA00038623465600000818
Figure BDA00038623465600000819
然后对
Figure BDA00038623465600000820
Figure BDA00038623465600000821
进行二维傅里叶逆变换得到余弦斜条纹图像
Figure BDA00038623465600000822
Figure BDA00038623465600000823
的直流分量MTFsystem·Rref·IDC和MTFsystem·R(x0,y0)·IDC;再采用二维频域带通滤波器分隔提取出步骤d中
Figure BDA00038623465600000824
Figure BDA00038623465600000825
的一阶频谱分量
Figure BDA00038623465600000826
Figure BDA00038623465600000827
然后对
Figure BDA00038623465600000828
Figure BDA00038623465600000829
Figure BDA00038623465600000830
进行二维傅里叶逆变换得到相应的空域表达形式
Figure BDA00038623465600000831
Figure BDA00038623465600000832
步骤f、根据步骤e获得的余弦斜条纹图像
Figure BDA00038623465600000833
的直流分量MTFsystem·Rref·IDC和余弦斜条纹图像
Figure BDA00038623465600000834
的直流分量MTFsystem·R(x0,y0)·IDC计算得到图像像素点(x0,y0)所对应的样品表面漫反射率R(x0,y0);
Figure BDA00038623465600000835
步骤g、根据步骤e中所获得的
Figure BDA00038623465600000836
Figure BDA00038623465600000837
得到余弦斜条纹图像
Figure BDA00038623465600000838
Figure BDA00038623465600000839
的包裹相位
Figure BDA00038623465600000840
Figure BDA00038623465600000841
Figure BDA0003862346560000091
Figure BDA0003862346560000092
Figure BDA0003862346560000093
其中,atan{}为反正切函数;Im[]为取虚部函数;Re[]为取实部函数;
步骤h、根据步骤g中所获得的包裹相位
Figure BDA0003862346560000094
Figure BDA0003862346560000095
并采用基于数论的三频时间相位展开方法将包裹相位
Figure BDA0003862346560000096
展开为绝对相位φ(x0,y0),然后根据三角测量原理使用绝对相位φwrapped(x0,y0)计算得到图像像素点(x0,y0)所对应的样品表面三维坐标X(x0,y0)、Y(x0,y0)和Z(x0,y0);
步骤i、根据步骤f得到的样品表面漫反射率R(x0,y0)和步骤h得到的样品表面三维坐标X(x0,y0)、Y(x0,y0)和Z(x0,y0)实现样品表面的漫反射率和三维形貌一体成像。
具体实施方式二
以下是本发明基于斜条纹图案的表面漫反射率和三维形貌一体成像方法的仿真实验实施方式。
下面通过仿真成像实验来证明,本发明一种基于斜条纹图案的表面漫反射率和三维形貌一体成像方法与采用正条纹图案的传统傅里叶变换三维成像方法相比,具有提高样品表面三维坐标测量准确度的技术优势,以及本发明方法能够实现样品表面的漫反射测量和样品表面的漫反射率和三维形貌一体成像的技术优势。
所采用的仿真成像实验系统在3DMAX仿真环境中构建,该系统包括一台分辨率为1024×768像素的投影仪、一台分辨率为2048×1536像素的相机和一个已知漫反射率为0.98且均匀的参考平面组成;已知漫反射率为0.98且均匀的参考平面作为标准漫反射板,相机光轴与投影仪光轴相交形成夹角25°,投影仪投射单色红光来模拟滤光片的作用。
使用仿真成像实验系统实现了本发明方法和采用正条纹图案的传统傅里叶变换三维成像方法,其中3幅斜条纹图案沿x轴的频率分别为1/18像素-1、1/20像素-1和1/22像素-1,沿y轴的频率分别为1/18像素-1、1/20像素-1和1/22像素-1;3幅正条纹图案沿x轴的频率分别为1/18像素-1、1/20像素-1和1/22像素-1,沿y轴的频率均为0;采用这些投射图案分别对漫反射率为0.4的均匀水平面和漫反射率为0.6的均匀斜面进行了仿真测量,被测水平面和被测斜面均与其相应的参考平面的空间深度位置相同,被测水平面与被测斜面的法线夹角为25°,根据本发明方法获得了被测水平面和被测斜面的漫反射率和空间三维坐标,实现了被测水平面和被测斜面的漫反射率和三维形貌一体成像。
需要说明的是,采用正条纹图案的传统傅里叶变换三维成像方法为结构光三维成像技术领域中的常用方法,本领域技术人员对其充分知晓、能够根据专业知识自主实现,在本发明中没有必要进行具体描述。
实验一、水平面仿真成像实验
实验过程如图2至图5所示,本发明方法得到的被测水平面漫反射率和三维形貌一体成像结果如图6所示,图中灰度表示漫反射率值,采用正条纹图案的传统傅里叶变换三维成像方法得到的被测水平面深度成像误差图如图7所示,本发明方法得到的被测水平面深度成像误差图和漫反射率成像误差图分别如图8和图9所示。被测水平面的深度成像误差定量评价参见表1:
表1水平面的深度成像误差
Figure BDA0003862346560000101
本发明方法得到的被测水平面的漫反射率定量评价参见表2:
表2水平面的漫反射率成像误差
Figure BDA0003862346560000102
实验二、斜面仿真成像实验
实验过程如图10至图13所示,本发明方法得到的被测斜面漫反射率和三维形貌一体成像结果如图14所示,图中灰度表示漫反射率值,采用正条纹图案的传统傅里叶变换三维成像方法得到的被测斜面深度成像误差图如图15所示,本发明方法得到的被测斜面深度成像误差图和漫反射率成像误差图分别如图16和图17所示。被测斜面的深度成像误差定量评价参见表1:
表3斜面的深度成像误差
Figure BDA0003862346560000103
本发明方法得到的被测斜面的漫反射率定量评价参见表2:
表4斜面的漫反射率成像误差
Figure BDA0003862346560000111
由图6和图14可知,本发明方法能够实现被测样品表面漫反射率和三维形貌一体成像;通过分别对比图7和图8、图15和图16并由表1和表3可知,与采用正条纹图案的传统傅里叶变换三维成像方法相比,本发明方法的深度平均绝对误差、均方根误差和最大绝对误差均显著减小,提高了样品表面三维坐标的测量准确度,这是因为采用正条纹图案的传统傅里叶变换三维成像方法仅在一维频率方向上进行一阶频谱分量分隔提取,而本发明方法在二维频率方向上进行一阶频谱分量分隔提取,这有效缓解了一阶频谱分量与零阶频谱分量和二阶频谱分量的混叠,有效改善了一阶频谱分量提取质量;由图9、图17、表2和表4可知,本发明方法能够测量样品表面的漫反射率,且测量准确度高;仿真实验结果验证了本发明方法的有益效果。
最后需要说明的是,本发明技术方案所对应的技术领域为结构光三维测量技术领域,就本领域技术人员而言,本发明方法中每一个步骤的具体参数和采用的仪器设备,本领域技术人员能够根据专业知识进行选择和应用;本发明步骤h中根据包裹相位
Figure BDA0003862346560000112
Figure BDA0003862346560000113
并采用基于数论的三频时间相位展开方法将包裹相位
Figure BDA0003862346560000114
展开为绝对相位φ(x0,y0),然后根据三角测量原理使用绝对相位φwrapped(x0,y0)计算得到样品表面的三维坐标X(x0,y0)、Y(x0,y0)、Z(x0,y0),属于本领域中众所周知的成熟技术,本领域技术人员完全能够自主实现,本发明已经做到充分公开。

Claims (1)

1.基于斜条纹图案的表面漫反射率和三维形貌一体成像方法,其特征在于,包括以下步骤:
步骤a、计算机生成3幅不同频率的二维余弦斜条纹图案:
Figure FDA0003862346550000011
Figure FDA0003862346550000012
Figure FDA0003862346550000013
其中,(x,y)为图案像素点坐标;I1(x,y)为第1幅二维余弦斜条纹图案像素强度,I2(x,y)为第2幅二维余弦斜条纹图案像素强度,I3(x,y)为第3幅二维余弦斜条纹图案像素强度;IDC为二维余弦条纹图案的平均强度;IAC为二维余弦条纹图案的调制强度;
Figure FDA0003862346550000014
Figure FDA00038623465500000119
分别为二维余弦斜条纹图案I1(x,y)沿x轴和y轴的频率,
Figure FDA0003862346550000015
Figure FDA0003862346550000016
分别为二维余弦斜条纹图案I2(x,y)沿x轴和y轴的频率,
Figure FDA0003862346550000017
Figure FDA0003862346550000018
分别为二维余弦斜条纹图案I3(x,y)沿x轴和y轴的频率;
步骤b、计算机控制水平放置的投影仪将步骤a中的第1幅余弦斜条纹图案I1(x,y)垂直投射到可见光波段漫反射为98%的标准漫反射板上,CCD相机光轴与投影仪光轴相交形成夹角α,标准漫反射板上形成的余弦斜条纹图像经滤光片滤光后成像到CCD相机上以形成固定光波下的余弦斜条纹图像
Figure FDA0003862346550000019
Figure FDA00038623465500000110
其中,(x0,y0)为图像像素点坐标;MTFsystem为成像系统的调制传递函数;Rref为标准漫反射版的漫反射率,Rref=0.98;
Figure FDA00038623465500000111
Figure FDA00038623465500000112
分别为余弦斜条纹图像
Figure FDA00038623465500000113
沿相机像面坐标系x0轴和y0轴的空间载波频率;
Figure FDA00038623465500000114
步骤c、计算机控制水平放置的投影仪按时序依次将步骤a中的3幅二维余弦斜条纹图案I1(x,y)、I2(x,y)、I3(x,y)垂直投射到被测样品表面上,被测样品表面与标准漫反射板的空间深度位置相同,被测样品表面上形成的余弦斜条纹图像经滤光片滤光后成像到CCD相机上以形成固定光波下的3幅余弦斜条纹图像
Figure FDA00038623465500000115
Figure FDA00038623465500000116
Figure FDA00038623465500000117
Figure FDA00038623465500000118
其中,(x0,y0)为图像像素点坐标;MTFsystem为成像系统的调制传递函数;R(x0,y0)为图像像素点(x0,y0)所对应的被测样品表面的漫反射率;
Figure FDA0003862346550000021
Figure FDA0003862346550000022
分别为余弦斜条纹图像
Figure FDA0003862346550000023
沿相机像面坐标系x0轴和y0轴的空间载波频率;
Figure FDA0003862346550000024
Figure FDA0003862346550000025
Figure FDA0003862346550000026
分别为余弦斜条纹图像
Figure FDA0003862346550000027
沿相机像面坐标系x0轴和y0轴的空间载波频率;
Figure FDA0003862346550000028
Figure FDA0003862346550000029
Figure FDA00038623465500000210
分别为余弦斜条纹图像
Figure FDA00038623465500000211
沿相机像面坐标系x0轴和y0轴的空间载波频率;
Figure FDA00038623465500000212
步骤d、对步骤b中的余弦斜条纹图像
Figure FDA00038623465500000213
和步骤c中的余弦斜条纹图像
Figure FDA00038623465500000214
Figure FDA00038623465500000215
Figure FDA00038623465500000216
进行二维傅里叶变换得到图像频谱:
Figure FDA00038623465500000217
Figure FDA00038623465500000218
Figure FDA00038623465500000219
Figure FDA00038623465500000220
其中,
Figure FDA00038623465500000221
为二维傅里叶变换运算;
Figure FDA00038623465500000222
为余弦斜条纹图像
Figure FDA00038623465500000223
傅里叶变换后的频谱,
Figure FDA00038623465500000224
为余弦斜条纹图像
Figure FDA00038623465500000225
傅里叶变换后的频谱,
Figure FDA00038623465500000226
为余弦斜条纹图像
Figure FDA00038623465500000227
傅里叶变换后的频谱,
Figure FDA00038623465500000228
为余弦斜条纹图像
Figure FDA00038623465500000229
傅里叶变换后的频谱;
Figure FDA00038623465500000230
Figure FDA00038623465500000231
分别为余弦斜条纹图像沿x0轴和y0轴的空间频率;
Figure FDA00038623465500000232
Figure FDA00038623465500000233
的一阶频谱分量,且
Figure FDA00038623465500000234
Figure FDA00038623465500000235
Figure FDA00038623465500000236
的一阶频谱分量,且
Figure FDA00038623465500000237
Figure FDA00038623465500000238
Figure FDA00038623465500000239
Figure FDA00038623465500000240
的一阶频谱分量,且
Figure FDA00038623465500000241
Figure FDA00038623465500000242
Figure FDA00038623465500000243
Figure FDA00038623465500000244
的一阶频谱分量,且
Figure FDA00038623465500000245
Figure FDA00038623465500000246
Figure FDA00038623465500000247
Figure FDA00038623465500000248
的复共轭,
Figure FDA0003862346550000031
Figure FDA0003862346550000032
的复共轭,
Figure FDA0003862346550000033
Figure FDA0003862346550000034
的复共轭,
Figure FDA0003862346550000035
Figure FDA0003862346550000036
的复共轭;
步骤e、采用二维频域低通滤波器分隔提取出步骤d中
Figure FDA0003862346550000037
Figure FDA0003862346550000038
的零阶频谱分量
Figure FDA0003862346550000039
Figure FDA00038623465500000310
然后对
Figure FDA00038623465500000311
Figure FDA00038623465500000312
进行二维傅里叶逆变换得到余弦斜条纹图像
Figure FDA00038623465500000313
Figure FDA00038623465500000314
的直流分量MTFsystem·Rref·IDC和MTFsystem·R(x0,y0)·IDC;再采用二维频域带通滤波器分隔提取出步骤d中
Figure FDA00038623465500000315
Figure FDA00038623465500000316
的一阶频谱分量
Figure FDA00038623465500000317
Figure FDA00038623465500000318
然后对
Figure FDA00038623465500000319
Figure FDA00038623465500000320
Figure FDA00038623465500000321
进行二维傅里叶逆变换得到相应的空域表达形式
Figure FDA00038623465500000322
Figure FDA00038623465500000323
步骤f、根据步骤e获得的余弦斜条纹图像
Figure FDA00038623465500000324
的直流分量MTFsystem·Rref·IDC和余弦斜条纹图像
Figure FDA00038623465500000325
的直流分量MTFsystem·R(x0,y0)·IDC计算得到图像像素点(x0,y0)所对应的样品表面漫反射率R(x0,y0);
Figure FDA00038623465500000326
步骤g、根据步骤e中所获得的
Figure FDA00038623465500000327
Figure FDA00038623465500000328
得到余弦斜条纹图像
Figure FDA00038623465500000329
Figure FDA00038623465500000330
的包裹相位
Figure FDA00038623465500000331
Figure FDA00038623465500000332
Figure FDA00038623465500000333
Figure FDA00038623465500000334
Figure FDA00038623465500000335
其中,atan{}为反正切函数;Im[]为取虚部函数;Re[]为取实部函数;
步骤h、根据步骤g中所获得的包裹相位
Figure FDA0003862346550000041
Figure FDA0003862346550000042
并采用基于数论的三频时间相位展开方法将包裹相位
Figure FDA0003862346550000043
展开为绝对相位φ(x0,y0),然后根据三角测量原理使用绝对相位φwrapped(x0,y0)计算得到图像像素点(x0,y0)所对应的样品表面三维坐标X(x0,y0)、Y(x0,y0)和Z(x0,y0);
步骤i、根据步骤f得到的样品表面漫反射率R(x0,y0)和步骤h得到的样品表面三维坐标X(x0,y0)、Y(x0,y0)和Z(x0,y0)实现样品表面的漫反射率和三维形貌一体成像。
CN202211168313.9A 2022-09-23 2022-09-23 基于斜条纹图案的表面漫反射率和三维形貌一体成像方法 Pending CN115524311A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211168313.9A CN115524311A (zh) 2022-09-23 2022-09-23 基于斜条纹图案的表面漫反射率和三维形貌一体成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211168313.9A CN115524311A (zh) 2022-09-23 2022-09-23 基于斜条纹图案的表面漫反射率和三维形貌一体成像方法

Publications (1)

Publication Number Publication Date
CN115524311A true CN115524311A (zh) 2022-12-27

Family

ID=84699422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211168313.9A Pending CN115524311A (zh) 2022-09-23 2022-09-23 基于斜条纹图案的表面漫反射率和三维形貌一体成像方法

Country Status (1)

Country Link
CN (1) CN115524311A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117405044A (zh) * 2023-12-13 2024-01-16 华东交通大学 基于多频偏振条纹技术的工件三维测量方法及其系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117405044A (zh) * 2023-12-13 2024-01-16 华东交通大学 基于多频偏振条纹技术的工件三维测量方法及其系统
CN117405044B (zh) * 2023-12-13 2024-02-27 华东交通大学 基于多频偏振条纹技术的工件三维测量方法及其系统

Similar Documents

Publication Publication Date Title
Gorthi et al. Fringe projection techniques: whither we are?
CN106931910B (zh) 一种基于多模态复合编码和极线约束的高效三维图像获取方法
US9863861B2 (en) Method and apparatus for particle size determination
CN102184566A (zh) 基于微型投影仪手机平台的便携式三维扫描系统及方法
CN113108721B (zh) 基于多光束自适应互补匹配的高反光物体三维测量方法
WO2013107076A1 (zh) 一种光学三维测量中的自适应窗口傅里叶相位提取法
CN103940371A (zh) 一种用于跃变物体的高精度三维面形测量的方法
CN109087348B (zh) 一种基于自适应区域投射的单像素成像方法
CN111174730B (zh) 一种基于相位编码的快速相位解包裹方法
CN107388963B (zh) 将小波分析和低通滤波结合的数字莫尔条纹相位提取方法
CN111256628A (zh) 墙面平整度检测方法、装置、计算机设备和存储介质
CN115524311A (zh) 基于斜条纹图案的表面漫反射率和三维形貌一体成像方法
Chen et al. High-speed 3D surface profilometry employing trapezoidal phase-shifting method with multi-band calibration for colour surface reconstruction
CN113587852A (zh) 一种基于改进三步相移的彩色条纹投影三维测量方法
Sutton et al. Development and assessment of a single-image fringe projection method for dynamic applications
CN113188477A (zh) 基于三通道正弦条纹投影的彩色物体快速三维测量方法
CN112014408B (zh) 一种基于结构光原理对pcb板进行重建的检测方法
CN109916332B (zh) 一种带载频单幅干涉条纹相位重构方法
Jin et al. The measurement method for the size of the hole on the part surface based on grating image processing
Zhang et al. BimodalPS: Causes and corrections for bimodal multi-path in phase-shifting structured light scanners
Hu et al. Improved three-step phase shifting profilometry using digital fringe pattern projection
CN115200509A (zh) 一种基于条纹投影测量模型的测量方法、装置和控制设备
Siddiolo et al. A direction/orientation-based method for shape measurement by shadow moiré
CN117387524B (zh) 一种高动态范围三维测量方法及系统
CN118189857B (zh) 基于单相机-投影仪系统的数字图像相关的三维测量方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination