CN115504510B - 一种3R-MoS2粉体的制备方法 - Google Patents

一种3R-MoS2粉体的制备方法 Download PDF

Info

Publication number
CN115504510B
CN115504510B CN202211180000.5A CN202211180000A CN115504510B CN 115504510 B CN115504510 B CN 115504510B CN 202211180000 A CN202211180000 A CN 202211180000A CN 115504510 B CN115504510 B CN 115504510B
Authority
CN
China
Prior art keywords
temperature
powder
mos
molybdate
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211180000.5A
Other languages
English (en)
Other versions
CN115504510A (zh
Inventor
季小红
侯晓诗
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202211180000.5A priority Critical patent/CN115504510B/zh
Publication of CN115504510A publication Critical patent/CN115504510A/zh
Application granted granted Critical
Publication of CN115504510B publication Critical patent/CN115504510B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于二硫化钼制备的技术领域,公开了一种3R‑MoS2粉体的制备方法。方法:1)将钼酸盐滴入氯化亚锡反应,获得前驱体粉末;2)将前驱体粉末和升华硫粉分别置于高温区和低温区,分别加热至所需的温度,并通入载气使得硫粉载入高温区进行反应,冷却,获得3R型MoS2粉体;高温区所需的温度为890~910℃,高温区的升温速率为5~7℃/min;高温区升至所需温度后保温,保温的时间为30~60min;低温区所需的温度为210~230℃,低温区的升温速率为9~11℃/min。本发明的方法简单,获得的3R‑MoS2粉体结晶度高且不含其他化学物,有利于对3R‑MoS2的性质进行深入研究。

Description

一种3R-MoS2粉体的制备方法
技术领域
本发明涉及二维纳米材料的制备,具体涉及一种3R-MoS2粉体的制备方法。
背景技术
过渡金属硫族化合物MoS2具有多型性,目前研究最多的多型包括1T、2H和3R,其中,数字代表描述晶胞所需的“MoS2”层数,字母代表晶系,T表示三方,H表示六方,R表示菱面体。2H-MoS2是热力学最稳定的,所以2H-MoS2也是研究最多的。金属相1T-MoS2具有很高的电子迁移率,这使其在众多领域都表现出良好的应用前景。菱面体3R-MoS2为半导体,与相邻层反向排列的2H-MoS2不同,3R-MoS2每一层的取向都是一样的。关于其形成机理,一种说法是MoS2晶体在新生阶段被引入螺旋位错,从缺陷中心开始生长包含了平行S-Mo-S基元的连续层,最终得到金字塔形的3R-MoS2。这种特殊的螺旋位错生长机制使其表面主要由边缘位点组成,而MoS2中的这种位点被证明是电催化析氢反应的活性位点。值得注意的是,3R-MoS2这种连续层生长方式导致其垂直于基面方向上的电导率高于2H-MoS2,因为在2H-MoS2中,电子的层间传导需要通过隧穿来实现,这也是MoS2层间电导率比层内电导率低几个数量级的原因。由此可见,3R-MoS2不仅具有更丰富的活性边缘位点,还能提供更利于电子传输的条件,在光催化领域展现出极大的潜力。然而,与2H-MoS2相比,3R-MoS2的研究还处于起步阶段,常用于制备3R-MoS2的熔盐法获得的产物中往往还含有2H-MoS2,因此,成功制备出纯相3R-MoS2成为进一步探究其性质的先决条件。
发明内容
本发明的目的是提供一种纯相3R-MoS2粉体的制备方法。本发明通过简便省时的硫化工艺一步即可得到纯相3R-MoS2粉体。
本发明的目的通过以下技术方案实现:
一种3R-MoS2粉体的制备方法,包括以下步骤:
1)在搅拌的条件下,将钼酸盐溶液滴入氯化亚锡溶液中进行反应,反应完成后将沉淀取出,干燥,获得前驱体粉末;
2)将前驱体粉末和升华硫粉分别置于高温区和低温区,分别加热至所需的温度,并通入载气使得硫粉载入高温区进行反应,反应完后冷却至室温,获得3R型MoS2粉体。
所述钼酸盐溶液为钼酸盐的水溶液;所述氯化亚锡溶液是将含结晶水或不含结晶水的氯化亚锡用水配成溶液得到;氯化亚锡溶液在配制的过程中加入稀盐酸,抑制氯化亚锡的水解,防止氢氧化锡沉淀的产生。
钼酸盐与氯化亚锡的摩尔比为1:1。
步骤1)中所述反应的完成是以反应过程中产生的沉淀的颗粒消失为准。
步骤1)中所述钼酸盐为钼酸钠或钼酸钾中一种以上。
所述钼酸盐溶液中钼酸盐与水的质量体积比为(4~6)g:40mL;氯化亚锡溶液中氯化亚锡与水的质量体积比为(4~5)g:40mL。
所述稀盐酸的浓度为0.3~0.6mol/L;所述稀盐酸与氯化亚锡的体积质量比为(15~30)mL:(4~5)g。
步骤2)中所述前驱体粉末与升华硫粉的质量比为0.5:(1~10)。
步骤2)中所述高温区所需的温度为890~910℃,高温区的升温速率为5~7℃/min;高温区升至所需温度后保温,保温的时间为30~60min;
所述低温区所需的温度为210~230℃,低温区的升温速率为9~11℃/min。
所述低温区在高温区的温度升至290~310℃时开始升温;低温区的温度达到所需温度时,保温至反应结束,具体是指保温至高温区反应结束。
步骤2)中所述载气为氩气,所述载气在高温区开始升温时通入。
所述载气的流量为30~40sccm。
本发明的前驱体即钼酸亚锡受热会分解为MoO2和SnO2,两者再进一步被硫化为MoS2和SnS2,在高温区的温度下以及随着硫化时间延长,SnO2的量会逐渐减少,且SnS2不稳定,熔点较低,SnS2逐渐流失;形成3R-MoS2的原因可能是在硫化过程中,Sn掺入MoS2,使得原本不稳定的3R-MoS2能稳定存在。
本发明的有益效果:
1)本发明通过一步硫化法得到了纯化的3R-MoS2粉体;
2)本发明制备工艺简单且耗时短,同时采用的原料廉价易得,毒性低,对环境污染较小;
3)本发明制备的3R-MoS2粉体具有很高的结晶度,有利于更深入地研究其性质。
附图说明
图1为本发明制备3R-MoS2粉体的硫化工艺的装置简图;
图2为实施例1制备的3R-MoS2粉体的X射线粉末衍射图(XRD);
图3为实施例1制备的3R-MoS2粉体的场发射扫描电子显微镜图像(FESEM);
图4中(a)为实施例1制备的3R-MoS2粉体的透射电子显微镜图;(b)为实施例1制备的3R-MoS2粉体的高分辨率透射电子显微镜图像(HRTEM);即b为a图的局部放大图;
图5为实施例2制备的3R-MoS2粉体的X射线粉末衍射图(XRD);
图6为对比例1制备的3R-MoS2粉体的X射线粉末衍射图(XRD)。
具体实施方式
下面结合具体实施例和附图对本发明作进一步详细地描述,但本发明的实施方式不限于此。
实施例1:
1)将5.148g钼酸钠溶于40mL去离子水中,超声得到澄清的钼酸钠溶液;将4.74g氯化亚锡溶于40mL去离子水中并加入20mL0.5 mol/L稀盐酸,超声得到白色悬浮液即氯化亚锡悬浮液;在搅拌的条件下,将钼酸钠溶液逐滴滴入氯化亚锡悬浮液中,待反应完全(在室温下,钼酸盐与氯化亚锡碰到的瞬间就会发生反应,由于一开始氯化亚锡为过量,反应会先生成黑灰色沉淀,悬浮液中颗粒感明显,随着钼酸盐的量逐渐增加至与氯化亚锡等量,沉淀变为褐色,颗粒感消失,此时反应完全),过滤,随后将沉淀置于鼓风干燥箱中干燥(干(90℃干燥3h),研磨,得到前驱体粉末。
2)取0.5g上述前驱体粉末和过量硫粉(如:3g硫粉)分别装入陶瓷石英舟中,再将前驱体和硫粉分别置于管式炉的高温区和低温区。通入氩气后对管式炉进行加热,高温区温度设置为900℃,加热速率为6℃/min,保温时长为60min;低温区温度设置为220℃,当高温区温度达到300℃时开始加热,加热速率为10℃/min,保温至高温区加热结束。加热结束后继续通入30sccm氩气直至管式炉自然冷却至室温,取出样品研磨后即可得到3R-MoS2粉体。
图1为本发明制备3R-MoS2粉体的硫化工艺的装置简图;
图2为实施例1制备的3R-MoS2粉体的X射线粉末衍射图(XRD);
图3为实施例1制备的3R-MoS2粉体的场发射扫描电子显微镜图像(FESEM)。
图4为实施例1制备的3R-MoS2粉体的高分辨率透射电子显微镜图像(HRTEM)。图4中(a)为实施例1制备的3R-MoS2粉体的透射电子显微镜图;(b)为实施例1制备的3R-MoS2粉体的高分辨率透射电子显微镜图像(HRTEM);即b为a图的局部放大图。
由图2中实施例1制备的粉体的X射线衍射图谱以及标准PDF卡片可知,本发明成功制备出了3R-MoS2粉体且未观察到其他化学物质的特征峰。窄而强的衍射峰同时表明通过本发明制备出的3R-MoS2粉体具有很高的结晶度。
从图3的场发射扫描电镜图像可以看出制备的3R-MoS2具有明显的片状结构,部分3R-MoS2薄片堆叠构成表面光滑的规则多面体。
由图4的透射电镜图像可以观察到二维透明层状结构,0.27nm的晶格条纹间距对应于3R-MoS2的(101)晶面。众所周知,3R-MoS2与2H-MoS2的TEM区别在于3R-MoS2的六边形中心存在一个S原子投影,同时,3R-MoS2中所有原子柱包含的原子数都相等(Mo+S2),所以没有明显的对比度差异,图4(b)展现的3R-MoS2原子排布符合上述两点,进一步证明了本发明合成的MoS2为3R-MoS2
实施例2:
具体制备方法与实施例1中的基本相同,不同之处在于:高温区保温时间为30min。
图5为实施例2制备的3R-MoS2粉体的X射线粉末衍射图(XRD)。
由图5中3R-MoS2粉体的X射线衍射图谱以及标准PDF卡片可知按上述方法同样成功制备出了高结晶度3R-MoS2且未观察到其他化学物质的特征峰。
对比例1
高温区设置为800℃,其他条件同实施例1。
图6为对比例1制备的3R-MoS2粉体的X射线粉末衍射图(XRD)。
由图6中样品的X射线衍射图谱以及标准PDF卡片可知按上述方法同样成功制备出了3R-MoS2,但产物中还存在SnO2的特征峰,表明800℃下无法获得纯3R-SnO2
以上所述实施例仅是为充分说明本发明而举的较佳实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,只要不偏离本权利要求书所定义的范围,均在本发明的保护范围之内。

Claims (6)

1.一种3R-MoS2粉体的制备方法,其特征在于:包括以下步骤:
1)在搅拌的条件下,将钼酸盐溶液滴入氯化亚锡溶液中进行反应,反应完成后将沉淀取出,干燥,获得前驱体粉末;钼酸盐与氯化亚锡的摩尔比为1:1;
2)将前驱体粉末和升华硫粉分别置于高温区和低温区,分别加热至所需的温度,并通入载气使得硫粉载入高温区进行反应,反应完后冷却至室温,获得3R型MoS2粉体;
步骤2)中所述高温区所需的温度为890~910℃,高温区的升温速率为5~7℃/min;高温区升至所需温度后保温,保温的时间为30~60min;
所述低温区所需的温度为210~230℃,低温区的升温速率为9~11℃/min;
步骤2)中所述低温区在高温区的温度升至290~310℃时开始升温;低温区的温度达到所需温度时,保温至反应结束,具体是指保温至高温区反应结束。
2.根据权利要求1所述3R-MoS2粉体的制备方法,其特征在于:步骤2)中所述载气为氩气,所述载气在高温区开始升温时通入。
3.根据权利要求1所述3R-MoS2粉体的制备方法,其特征在于:
所述钼酸盐溶液为钼酸盐的水溶液;所述氯化亚锡溶液是将含结晶水或不含结晶水的氯化亚锡用水配成溶液得到;氯化亚锡溶液在配制的过程中加入稀盐酸;
步骤1)中所述反应的完成是以反应过程中产生的沉淀的颗粒消失为准。
4.根据权利要求3所述3R-MoS2粉体的制备方法,其特征在于:步骤1)中所述钼酸盐为钼酸钠或钼酸钾中一种以上;
所述钼酸盐溶液中钼酸盐与水的质量体积比为(4~6)g:40mL;氯化亚锡溶液中氯化亚锡与水的质量体积比为(4~5)g:40mL;
所述稀盐酸的浓度为0.3~0.6mol/L;所述稀盐酸与氯化亚锡的体积质量比为(15~30)mL:(4~5)g。
5.根据权利要求1所述3R-MoS2粉体的制备方法,其特征在于:
步骤2)中所述前驱体粉末与升华硫粉的质量比为0.5:(1~10);
所述载气的流量为30~40 sccm。
6.一种由权利要求1~5任一项所述制备方法得到3R-MoS2粉体。
CN202211180000.5A 2022-09-27 2022-09-27 一种3R-MoS2粉体的制备方法 Active CN115504510B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211180000.5A CN115504510B (zh) 2022-09-27 2022-09-27 一种3R-MoS2粉体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211180000.5A CN115504510B (zh) 2022-09-27 2022-09-27 一种3R-MoS2粉体的制备方法

Publications (2)

Publication Number Publication Date
CN115504510A CN115504510A (zh) 2022-12-23
CN115504510B true CN115504510B (zh) 2023-11-07

Family

ID=84506829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211180000.5A Active CN115504510B (zh) 2022-09-27 2022-09-27 一种3R-MoS2粉体的制备方法

Country Status (1)

Country Link
CN (1) CN115504510B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105688944A (zh) * 2016-03-14 2016-06-22 西安建筑科技大学 一种层状MoS2-SnO2纳米复合材料的制备方法
CN108910953A (zh) * 2018-07-13 2018-11-30 电子科技大学 一种Fe掺杂单层MoS2化学气相沉积制备方法
CN110790313A (zh) * 2019-12-18 2020-02-14 湘潭大学 一种3r相过渡金属硫属化合物二维纳米片的制备方法
CN112079386A (zh) * 2020-09-16 2020-12-15 长春理工大学 一种MoS2二维材料S空位缺陷调控的制备方法
CN112194185A (zh) * 2020-10-13 2021-01-08 西南科技大学 一种富含缺陷的超薄二维纳米MoS2制备方法
CN114423714A (zh) * 2019-09-24 2022-04-29 Dic株式会社 硫化钼粉体及其制造方法、重金属吸附剂、光热转化材料、蒸馏方法、氧还原催化剂和催化剂墨水
CN114959635A (zh) * 2022-05-05 2022-08-30 中国计量大学 一种硫化锡/二硫化钼混合维度范德华异质结的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105688944A (zh) * 2016-03-14 2016-06-22 西安建筑科技大学 一种层状MoS2-SnO2纳米复合材料的制备方法
CN108910953A (zh) * 2018-07-13 2018-11-30 电子科技大学 一种Fe掺杂单层MoS2化学气相沉积制备方法
CN114423714A (zh) * 2019-09-24 2022-04-29 Dic株式会社 硫化钼粉体及其制造方法、重金属吸附剂、光热转化材料、蒸馏方法、氧还原催化剂和催化剂墨水
CN110790313A (zh) * 2019-12-18 2020-02-14 湘潭大学 一种3r相过渡金属硫属化合物二维纳米片的制备方法
CN112079386A (zh) * 2020-09-16 2020-12-15 长春理工大学 一种MoS2二维材料S空位缺陷调控的制备方法
CN112194185A (zh) * 2020-10-13 2021-01-08 西南科技大学 一种富含缺陷的超薄二维纳米MoS2制备方法
CN114959635A (zh) * 2022-05-05 2022-08-30 中国计量大学 一种硫化锡/二硫化钼混合维度范德华异质结的制备方法

Also Published As

Publication number Publication date
CN115504510A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
Li et al. Rational synthesis of MnxCd1-xS for enhanced photocatalytic H2 evolution: Effects of S precursors and the feed ratio of Mn/Cd on its structure and performance
US5958358A (en) Oriented polycrystalline thin films of transition metal chalcogenides
Wang et al. Hydrothermal route to single crystalline α-MoO3 nanobelts and hierarchical structures
Demazeau Solvothermal reactions: an original route for the synthesis of novel materials
Wang et al. Controlled growth of atomically thin transition metal dichalcogenides via chemical vapor deposition method
Shi et al. Na-assisted fast growth of large single-crystal MoS2 on sapphire
Sheena et al. Microstructural characterization and modified spectral response of cobalt doped NiO nanoparticles
CN101780981B (zh) 一种二氧化钼纳米粒子的水热合成方法
Reshmi et al. Structural stability of coplanar 1T-2H superlattice MoS2 under high energy electron beam
CN112663088A (zh) 一种纳米花瓣状结构的二硒化钴/羟基氧化铁复合材料的制备方法
Liu Hydrothermal synthesis and characterization of nickel and cobalt sulfides nanocrystallines
Hu et al. Morphology evolution of SnS nanocrystals: from 3D urchin-like architectures to 1D nanostructures
Ma et al. Controlling the dendritic structure and the photo-electrocatalytic properties of highly crystalline MoS2 on sapphire substrate
Khatun et al. Stabilization of anatase phase by uncompensated Ga-V co-doping in TiO2: A structural phase transition, grain growth and optical property study
Sim et al. Recent advances in metallic transition metal dichalcogenides as electrocatalysts for hydrogen evolution reaction
CN110577239B (zh) 一种利用层间限域策略制备二维金属氧化物纳米片的方法
Peng et al. Controllable synthesis of MnS nanocrystals from a single-source precursor
Parvizian et al. Precursor chemistry of metal nitride nanocrystals
CN115504510B (zh) 一种3R-MoS2粉体的制备方法
Wang et al. Crystalline-to-amorphous transformation of tantalum-containing oxides for a superior performance in unassisted photocatalytic water splitting
Treadwell et al. Impact of oleylamine: oleic acid ratio on the morphology of yttria nanomaterials
Aslanov et al. Liquid phase methods for design and engineering of two-dimensional nanocrystals
Kapuria et al. Engineering polymorphs in colloidal metal dichalcogenides: precursor-mediated phase control, molecular insights into crystallisation kinetics and promising electrochemical activity
Myers et al. Controlling heterogenite particle morphology and microstructure by varying synthetic conditions
Bankar et al. Evaluation of field electron emission properties of ZnIn2S4 nanopetals grown on conducting carbon substrate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant