CN115497831B - 室温优化非晶铟镓锌氧薄膜晶体管界面的方法 - Google Patents

室温优化非晶铟镓锌氧薄膜晶体管界面的方法 Download PDF

Info

Publication number
CN115497831B
CN115497831B CN202211164269.4A CN202211164269A CN115497831B CN 115497831 B CN115497831 B CN 115497831B CN 202211164269 A CN202211164269 A CN 202211164269A CN 115497831 B CN115497831 B CN 115497831B
Authority
CN
China
Prior art keywords
amorphous
active layer
zinc oxide
indium gallium
gallium zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211164269.4A
Other languages
English (en)
Other versions
CN115497831A (zh
Inventor
王春兰
段楠
宋勇乐
赵明
刘晓红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Polytechnic University
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN202211164269.4A priority Critical patent/CN115497831B/zh
Publication of CN115497831A publication Critical patent/CN115497831A/zh
Application granted granted Critical
Publication of CN115497831B publication Critical patent/CN115497831B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/42Bombardment with radiation
    • H01L21/423Bombardment with radiation with high-energy radiation
    • H01L21/425Bombardment with radiation with high-energy radiation producing ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • C23C14/5833Ion beam bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • H01L29/247Amorphous materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了室温优化非晶铟镓锌氧薄膜晶体管界面的方法,具体步骤如下:步骤1,在室温下采用射频磁控溅射铟镓锌氧复合靶材,并利用掩膜工艺在衬底上制备非晶铟镓锌氧有源层;步骤2,采用氧等离子体对非晶铟镓锌氧有源层进行处理,得到处理后的非晶铟镓锌氧有源层;步骤3,在室温下采用直流溅射铜靶材,并利用掩膜工艺在处理后的非晶铟镓锌氧有源层上制备源电极和漏电极。本发明方法能够在室温下沉积高性能非晶铟镓锌氧薄膜晶体管。

Description

室温优化非晶铟镓锌氧薄膜晶体管界面的方法
技术领域
本发明属于半导体器件技术领域,涉及室温优化非晶铟镓锌氧薄膜晶体管界面的方法。
背景技术
薄膜晶体管作为平板显示器的核心驱动元件,其能够控制像素单元的开启与关断进而实现不同的画面显示效果,因此薄膜晶体管的性能直接影响显示器的成像质量。非晶铟镓锌氧(a-InGaZnO)半导体是目前主流薄膜晶体管导电沟道层/有源层的主要材料,其原因有两方面:(1)制备工艺流程简单、易调控、可大面积等符合现代工业化的要求;(2)其器件具有良好电学性能与透光性能。
但为了满足新型柔性电子如柔性显示屏、电子纸、可穿戴电子等发展需求,非晶铟镓锌氧薄膜晶体管必须要满足高性能与低温沉积共存的条件。低温(小于350℃)制备非晶铟镓锌氧薄膜晶体管的载流子迁移率一般都在10cm2V-1s-1左右,这还有待进一步提升。通常适当增加非晶铟镓锌氧沟道层中的In含量可使非晶铟镓锌氧薄膜晶体管的迁移率有所提高,2)但这往往需要350℃以上的高温惰性气氛处理;3)非晶铟镓锌氧薄膜晶体管沟道层厚度对其电学性能影响极大,因此高质量薄层非晶铟镓锌氧薄膜,是研制出非晶铟镓锌氧薄膜晶体管的关键方法,综上,高性能,低温沉积和薄厚度的非晶铟镓锌氧薄膜晶体管在柔性电子乃至印刷电子等有着巨大潜力。
发明内容
本发明的目的是提供一种室温优化非晶铟镓锌氧薄膜晶体管界面的方法,能够在室温下沉积高性能非晶铟镓锌氧薄膜晶体管。
本发明所采用的技术方案是,室温优化非晶铟镓锌氧薄膜晶体管界面的方法,具体步骤如下:
步骤1,在室温下采用射频磁控溅射铟镓锌氧复合靶材,并利用掩膜工艺在衬底上制备非晶铟镓锌氧有源层;
步骤2,采用氧等离子体对非晶铟镓锌氧有源层进行处理,得到处理后的非晶铟镓锌氧有源层;
步骤3,在室温下采用直流溅射铜靶材,并利用掩膜工艺在处理后的非晶铟镓锌氧有源层上制备源电极和漏电极。
本发明的特征还在于,
步骤1的具体过程为:
步骤1.1,在衬底上设置掩膜版A,再将衬底和铟镓锌氧靶材放入磁控溅射系统腔体内,在衬底与铟镓锌氧靶材之间设置有衬底挡板、铟镓锌氧靶材挡板,检查气密性,抽真空;
步骤1.2,向磁控溅射系统腔体内通入氩气,当腔体内压力稳定时,调节磁控溅射系统的插板阀保持腔体内压力恒定;
步骤1.3,设置射频溅射功率,承物台底片温度为室温,进行预溅射去除铟镓锌氧复合靶材表面杂质与有机物,打开磁控溅射系统内铟镓锌氧靶材挡板和衬底挡板进行溅射,关闭铟镓锌氧复合靶材挡板、衬底挡板及射频溅射电源,保持40min时间,取出,取下掩膜版A,得到非晶铟镓锌氧有源层。
步骤1.1中,抽真空至压力低于2×10-4Pa;
步骤1.2中,通入氩气的流量为9-10SCCM,腔体内压力保持0.5pa恒定;
步骤1.3中,射频溅射功率为30~50W,预溅射时间为10-15min,溅射时间为5-8min。
二氧化硅栅电介质层厚度为100纳米,非晶铟镓锌氧薄膜层厚度为10-30纳米,非晶铟镓锌氧有源层溅射时使用的掩模版A尺寸为长度320微米,宽度590微米。
步骤2的具体过程为:将步骤1得到的非晶铟镓锌氧有源层放入等离子清洗机腔体内,抽真空,向等离子清洗机腔体内通入氧气,设置溅射功率进行溅射,结束后,得到处理后的非晶铟镓锌氧有源层。
抽真空至压力低于5×10-3Pa,通入氧气的流量为5-10SCCM,溅射功率为10-40W。
步骤3的具体过程为:
步骤3.1,在非晶铟镓锌氧有源层上设置掩膜版B,再将步骤2得到的处理后的非晶铟镓锌氧有源层及铜靶材放入磁控溅射系统腔体内,在非晶铟镓锌氧有源层和铜靶材之间设置有非晶铟镓锌氧有源层挡板、铜靶材挡板,检查气密性,抽真空;
步骤3.2,向磁控溅射系统腔体内通入氩气,当腔体内压力稳定时,调节磁控溅射系统的插板阀保持腔体内压力恒定;
步骤3.3,设置直流溅射功率,承物台底片温度为室温,进行预溅射去除铜靶材表面杂质和有机物,打开磁控溅射系统内铜靶材挡板和非晶铟镓锌氧有源层挡板进行溅射,关闭铜靶材挡板、非晶铟镓锌氧有源层挡板及直流溅射电源,保持一定时间,取出,取下掩膜版B,得到源电极和漏电极。
步骤3.1中,抽真空至压力低于2×10-4Pa;
步骤3.2中,通入氩气的流量为5-20SCCM,腔体内压力保持0.5pa恒定;
步骤3.3中,直流溅射功率为40W,溅射时间为15-25min。
源电极和漏电极的厚度均为50纳米;源电极和漏电极溅射时使用的掩模版B尺寸为长度110微米,宽度170微米,源电极和漏电极间沟道尺寸为长度为110微米,宽度为170微米。
本发明的有益效果是,
(1)本发明室温优化非晶铟镓锌氧薄膜晶体管界面的方法,其中氧等离子体通过填充非晶铟镓锌氧有源层中多余的氧空位,降低源/漏层与有源层之间的接触电阻和有源层中的陷阱密度,从而提高了薄膜晶体管的迁移率,电流开关比,并降低了亚阈值摆幅;
(2)本发明室温优化非晶铟镓锌氧薄膜晶体管界面的方法,制备工艺简单,制备流程较少,并且所有溅射过程均在室温下进行,适合于未来柔性电子器件的应用。
附图说明
图1是本发明方法制备的非晶铟镓锌氧薄膜晶体管的结构示意图;
图2是本发明方法制备的非晶铟镓锌氧晶体管的转移特性曲线图;
图3是本发明方法制备的20纳米厚度非晶铟镓锌氧薄膜晶体管的输出特性曲线图;
图4是本发明方法制备的非晶铟镓锌氧薄膜的原子力显微镜图;
图5是本发明方法制备的非晶铟镓锌氧薄膜的扫描电镜截面图;
图6是本发明方法制备的不同功率非晶铟镓锌氧晶体管的转移特性曲线图;
图7是本发明方法制备的溅射功率为40W的非晶铟镓锌氧薄膜晶体管的转移特性曲线图;
图8本发明方法制备的功率为0-40W氧等离子体处理的非晶铟镓锌氧薄膜晶体管的转移特性曲线图;
图9本发明方法制备的功率为20W氧等离子体处理的非晶铟镓锌氧薄膜晶体管的输出特性曲线图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明提供室温优化非晶铟镓锌氧薄膜晶体管界面的方法,如图1所示,非晶铟镓锌氧薄膜晶体管自下而上以此包括硅衬底、栅电介质层、非晶铟镓锌氧有源层、源电极和漏电极,衬底为生长有二氧化硅为栅电介质层的重掺杂P型硅。
具体步骤如下:
步骤1,在室温下采用射频磁控溅射铟镓锌氧靶材,并利用掩膜工艺在衬底上制备非晶铟镓锌氧有源层;
步骤1.1,在衬底上设置掩膜版A,再将衬底和铟镓锌氧靶材(In2O3:Ga2O3:ZnO的质量比为1:1:1)放入磁控溅射系统腔体内,在衬底与铟镓锌氧靶材之间设置有衬底挡板、铟镓锌氧靶材挡板,衬底挡板靠近衬底设置,铟镓锌氧靶材挡板靠近铟镓锌氧靶材设置,检查气密性,抽真空至压力低于2×10-4Pa;
步骤1.2,向磁控溅射系统腔体内通入氩气,氩气的流量为9-10SCCM,当腔体内压力稳定时,调节磁控溅射系统的插板阀保持腔体内压力为0.5pa恒定;
步骤1.3,设置射频溅射功率为30-50W,磁控溅射系统的承物台底片的温度为室温,进行预溅射10-15min去除铟镓锌氧靶材表面杂质与有机物等,打开磁控溅射系统内铟镓锌氧复合靶材挡板和衬底挡板进行溅射5-8min,关闭铟镓锌氧复合靶材挡板、衬底挡板及射频溅射电源,保持40min,取出,取下掩膜版A,得到非晶铟镓锌氧有源层。
衬底的厚度为100纳米,有源层(非晶铟镓锌氧薄膜层)厚度为10-30纳米,非晶铟镓锌氧有源层溅射时使用的掩模版A尺寸为长度320微米,宽度590微米,掩模版用于覆盖在衬底上。
步骤2,采用氧等离子体对非晶铟镓锌氧有源层进行处理,得到处理后的非晶铟镓锌氧有源层;
具体为:将步骤1得到的非晶铟镓锌氧有源层放入等离子清洗机腔体内,抽真空至压力低于5×10-3Pa,向等离子清洗机腔体内通入氧气,流量为5-10SCCM,设置溅射功率为10-40W进行溅射30s,关闭溅射电源,得到处理后的非晶铟镓锌氧有源层。
步骤3,在室温下采用直流溅射铜靶材,并利用掩膜工艺在处理后的非晶铟镓锌氧有源层上制备铜电极作为源电极和漏电极;
步骤3.1,在非晶铟镓锌氧有源层上设置掩膜版B,再将步骤2得到的处理后的非晶铟镓锌氧有源层及铜靶材放入磁控溅射系统腔体内,在非晶铟镓锌氧有源层和铜靶材之间设置有非晶铟镓锌氧有源层挡板、铜靶材挡板,有源层挡板靠近非晶铟镓锌氧有源层设置,铜靶材挡板靠近铜靶材设置,检查气密性,抽真空至压力低于2×10-4Pa;
步骤3.2,向磁控溅射系统腔体内通入氩气,流量为5-20SCCM,当腔体内压力稳定时,调节磁控溅射系统的插板阀保持腔体内压力为0.5pa恒定;
步骤3.3,设置直流溅射功率为40W,磁控溅射系统的承物台底片的温度为室温,进行预溅射8-10min去除铜靶材表面杂质,打开磁控溅射系统内铜靶材挡板和非晶铟镓锌氧有源层挡板进行溅射15-25min,关闭铜靶材挡板、非晶铟镓锌氧有源层挡板及直流溅射电源,保持40min,取出,取下掩膜版B,得到源电极和漏电极的;
源电极和漏电极厚度均为50纳米;源电极和漏电极溅射时使用的掩模版B尺寸为长度110微米,宽度170微米,则源电极和漏电极间的沟道长度为110微米,宽度为170微米。
实施例1
本发明室温优化非晶铟镓锌氧薄膜晶体管界面的方法,具体步骤如下:
步骤1,在室温下采用射频磁控溅射铟镓锌氧靶材,并利用掩膜工艺在衬底上制备非晶铟镓锌氧有源层;
步骤1.1,在衬底上设置掩膜版A,再将衬底和铟镓锌氧靶材放入磁控溅射系统腔体内,在衬底与铟镓锌氧靶材之间设置有衬底挡板、铟镓锌氧靶材挡板,检查气密性,抽真空至压力低于2×10-4Pa;
步骤1.2,向磁控溅射系统腔体内通入氩气,氩气的流量为10SCCM,当腔体内压力稳定时,调节磁控溅射系统的插板阀保持腔体内压力为0.5pa恒定;
步骤1.3,设置射频溅射功率为40W,磁控溅射系统的承物台底片的温度为室温,进行预溅射10min去除铟镓锌氧靶材表面杂质与有机物等,打开磁控溅射系统内铟镓锌氧复合靶材挡板和衬底挡板进行溅射6min,关闭铟镓锌氧复合靶材挡板、衬底挡板及射频溅射电源,保持40min,取出,取下掩膜版A,得到非晶铟镓锌氧有源层;
衬底的厚度为100纳米,有源层(非晶铟镓锌氧薄膜层)厚度为20纳米,非晶铟镓锌氧有源层溅射时使用的掩模版尺寸为长度320微米,宽度590微米,掩模版用于覆盖在衬底上;
步骤2,采用氧等离子体对非晶铟镓锌氧有源层进行处理,得到处理后的非晶铟镓锌氧有源层;
具体为:将步骤1得到的非晶铟镓锌氧有源层放入等离子清洗机腔体内,抽真空至压力低于5×10-3Pa,向等离子清洗机腔体内通入氧气,流量为8SCCM,设置溅射功率为10W进行溅射30s,关闭溅射电源,得到处理后的非晶铟镓锌氧有源层。
步骤3,在室温下采用直流溅射铜靶材,并利用掩膜工艺在处理后的非晶铟镓锌氧有源层上制备铜电极作为源电极和漏电极;
步骤3.1,在非晶铟镓锌氧有源层上设置掩膜版B,再将步骤2得到的处理后的非晶铟镓锌氧有源层及铜靶材放入磁控溅射系统腔体内,在非晶铟镓锌氧有源层和铜靶材之间设置有非晶铟镓锌氧有源层挡板、铜靶材挡板,检查气密性,抽真空至压力低于2×10-4Pa;
步骤3.2,向磁控溅射系统腔体内通入氩气,流量为10SCCM,当腔体内压力稳定时,调节磁控溅射系统的插板阀保持腔体内压力为0.5pa恒定;
步骤3.3,设置直流溅射功率为40W,磁控溅射系统的承物台底片的温度为室温,进行预溅射10min去除铜靶材表面杂质,打开磁控溅射系统内铜靶材挡板和非晶铟镓锌氧有源层挡板进行溅射20min,关闭铜靶材挡板、非晶铟镓锌氧有源层挡板及直流溅射电源,保持40min,取出,取下掩膜版B,得到源电极和漏电极的;源电极和漏电极厚度均为50纳米;源电极和漏电极间的沟道长度为110微米,宽度为170微米。
实施例2:与实施例1的区别在于:步骤2中设置溅射功率为15W;
实施例3:与实施例1的区别在于:步骤2中设置溅射功率为20W;
实施例4:与实施例1的区别在于:步骤2中设置溅射功率为30W;
实施例5:与实施例1的区别在于:步骤2中设置溅射功率为40W;
对比例
步骤1,在室温下采用射频磁控溅射铟镓锌氧靶材,并利用掩膜工艺在衬底上制备非晶铟镓锌氧有源层;
步骤1.1,在衬底上设置掩膜版A,再将衬底和铟镓锌氧靶材放入磁控溅射系统腔体内,在衬底与铟镓锌氧靶材之间设置有衬底挡板、铟镓锌氧靶材挡板,检查气密性,抽真空至压力低于2×10-4Pa;
步骤1.2,向磁控溅射系统腔体内通入氩气,氩气的流量为10SCCM,当腔体内压力稳定时,调节磁控溅射系统的插板阀保持腔体内压力为0.5pa恒定;
步骤1.3,设置射频溅射功率为40W,磁控溅射系统的承物台底片的温度为室温,进行预溅射10min去除铟镓锌氧靶材表面杂质与有机物等,打开磁控溅射系统内铟镓锌氧复合靶材挡板和衬底挡板进行溅射6min,关闭铟镓锌氧复合靶材挡板、衬底挡板及射频溅射电源,保持40min,取出,得到非晶铟镓锌氧有源层。
衬底的厚度为100纳米,有源层(非晶铟镓锌氧薄膜层)厚度为20纳米,非晶铟镓锌氧有源层溅射时使用的掩模版尺寸为长度320微米,宽度590微米;
步骤2,在室温下采用直流溅射铜靶材,并利用掩膜工艺在处理后的非晶铟镓锌氧有源层上制备铜电极作为源电极和漏电极;
步骤2.1,在非晶铟镓锌氧有源层上设置掩膜版B,再将步骤1得到的非晶铟镓锌氧有源层及铜靶材放入磁控溅射系统腔体内,在非晶铟镓锌氧有源层和铜靶材之间设置有非晶铟镓锌氧有源层挡板、铜靶材挡板,检查气密性,抽真空至压力低于2×10-4Pa;
步骤2.2,向磁控溅射系统腔体内通入氩气,流量为10SCCM,当腔体内压力稳定时,调节磁控溅射系统的插板阀保持腔体内压力为0.5pa恒定;
步骤2.3,设置直流溅射功率为40W,磁控溅射系统的承物台底片的温度为室温,进行预溅射10min去除铜靶材表面杂质,打开磁控溅射系统内铜靶材挡板和非晶铟镓锌氧有源层挡板进行溅射20min,关闭铜靶材挡板、非晶铟镓锌氧有源层挡板及直流溅射电源,保持40min,取出,得到源电极和漏电极的;源电极和漏电极厚度均为50纳米;源电极和漏电极间的沟道长度为110微米,宽度为170微米。
实施例6
本发明室温优化非晶铟镓锌氧薄膜晶体管界面的方法,具体步骤如下:
步骤1,在室温下采用射频磁控溅射铟镓锌氧靶材,并利用掩膜工艺在衬底上制备非晶铟镓锌氧有源层;
步骤1.1,在衬底上设置掩膜版A,再将衬底和铟镓锌氧靶材放入磁控溅射系统腔体内,在衬底与铟镓锌氧靶材之间设置有衬底挡板、铟镓锌氧靶材挡板,检查气密性,抽真空至压力低于2×10-4Pa;
步骤1.2,向磁控溅射系统腔体内通入氩气,氩气的流量为10SCCM,当腔体内压力稳定时,调节磁控溅射系统的插板阀保持腔体内压力为0.5pa恒定;
步骤1.3,设置射频溅射功率为40W,磁控溅射系统的承物台底片的温度为室温,进行预溅射10min去除铟镓锌氧靶材表面杂质与有机物等,打开磁控溅射系统内铟镓锌氧复合靶材挡板和衬底挡板进行溅射6min,关闭铟镓锌氧复合靶材的挡板、衬底挡板及射频溅射电源,保持40min,取出,得到非晶铟镓锌氧有源层。
衬底的厚度为100纳米,有源层(非晶铟镓锌氧薄膜层)厚度为20纳米,非晶铟镓锌氧有源层溅射时使用的掩模版尺寸为长度320微米,宽度590微米,掩模版用于覆盖在衬底上;
步骤2,采用氧等离子体对非晶铟镓锌氧有源层进行处理,得到处理后的非晶铟镓锌氧有源层;
具体为:将步骤1得到的非晶铟镓锌氧有源层放入等离子清洗机腔体内,抽真空至压力低于5×10-3Pa,向等离子清洗机腔体内通入氧气,流量为8SCCM,设置溅射功率为40W进行溅射30s,关闭溅射电源,得到处理后的非晶铟镓锌氧有源层。
步骤3,在室温下采用直流溅射铜靶材,并利用掩膜工艺在处理后的非晶铟镓锌氧有源层上制备铜电极作为源电极和漏电极;
步骤3.1,在非晶铟镓锌氧有源层上设置掩膜版B,再将步骤2得到的处理后的非晶铟镓锌氧有源层及铜靶材放入磁控溅射系统腔体内,在非晶铟镓锌氧有源层和铜靶材之间设置有非晶铟镓锌氧有源层挡板、铜靶材挡板,检查气密性,抽真空至压力低于2×10-4Pa;
步骤3.2,向磁控溅射系统腔体内通入氩气,流量为10SCCM,当腔体内压力稳定时,调节磁控溅射系统的插板阀保持腔体内压力为0.5pa恒定;
步骤3.3,设置直流溅射功率为40W,磁控溅射系统的承物台底片的温度为室温,进行预溅射10min去除铜靶材表面杂质,打开磁控溅射系统内铜靶材挡板和非晶铟镓锌氧有源层挡板进行溅射20min,关闭铜靶材挡板、非晶铟镓锌氧有源层挡板及直流溅射电源,保持40min,取出,取下掩膜版B,得到源电极和漏电极;源电极和漏电极厚度均为50纳米;源电极和漏电极间的沟道长度为110微米,宽度为170微米。
实施例7
本发明室温优化非晶铟镓锌氧薄膜晶体管界面的方法,具体步骤如下:
步骤1,在室温下采用射频磁控溅射铟镓锌氧靶材,并利用掩膜工艺在衬底上制备非晶铟镓锌氧有源层;
步骤1.1,在衬底上设置掩膜版A,再将衬底和铟镓锌氧靶材放入磁控溅射系统腔体内,在衬底与铟镓锌氧靶材之间设置有衬底挡板、铟镓锌氧靶材挡板,检查气密性,抽真空至压力低于2×10-4Pa;
步骤1.2,向磁控溅射系统腔体内通入氩气,氩气的流量为9SCCM,当腔体内压力稳定时,调节磁控溅射系统的插板阀保持腔体内压力为0.5pa恒定;
步骤1.3,设置射频溅射功率为30W,磁控溅射系统的承物台底片的温度为室温,进行预溅射15min去除铟镓锌氧靶材表面杂质与有机物等,打开磁控溅射系统内铟镓锌氧复合靶材的挡板和衬底的挡板进行溅射8min,关闭铟镓锌氧复合靶材挡板、衬底挡板及射频溅射电源,保持40min,取出,得到非晶铟镓锌氧有源层。
衬底的厚度为100纳米,有源层(非晶铟镓锌氧薄膜层)厚度为30纳米,非晶铟镓锌氧有源层溅射时使用的掩模版尺寸为长度320微米,宽度590微米,掩模版用于覆盖在衬底上;
步骤2,采用氧等离子体对非晶铟镓锌氧有源层进行处理,得到处理后的非晶铟镓锌氧有源层;
具体为:将步骤1得到的非晶铟镓锌氧有源层放入等离子清洗机腔体内,抽真空至压力低于5×10-3Pa,向等离子清洗机腔体内通入氧气,流量为10SCCM,设置溅射功率为20W进行溅射30s,关闭溅射电源,得到处理后的非晶铟镓锌氧有源层。
步骤3,在室温下采用直流溅射铜靶材,并利用掩膜工艺在处理后的非晶铟镓锌氧有源层上制备铜电极作为源电极和漏电极;
步骤3.1,在非晶铟镓锌氧有源层上设置掩膜版B,再将步骤2得到的处理后的非晶铟镓锌氧有源层及铜靶材放入磁控溅射系统腔体内,在非晶铟镓锌氧有源层和铜靶材之间设置有非晶铟镓锌氧有源层挡板、铜靶材挡板,检查气密性,抽真空至压力低于2×10-4Pa;
步骤3.2,向磁控溅射系统腔体内通入氩气,流量为20SCCM,当腔体内压力稳定时,调节磁控溅射系统的插板阀保持腔体内压力为0.5pa恒定;
步骤3.3,设置直流溅射功率为40W,磁控溅射系统的承物台底片的温度为室温,进行预溅射9min去除铜靶材表面杂质,打开磁控溅射系统内铜靶材挡板和非晶铟镓锌氧有源层挡板进行溅射25min,关闭铜靶材挡板、非晶铟镓锌氧有源层挡板及直流溅射电源,保持40min,取出,取下掩膜版B,得到源电极和漏电极的;源电极和漏电极厚度均为50纳米;源电极和漏电极间的沟道长度为110微米,宽度为170微米。
实施例8
本发明室温优化非晶铟镓锌氧薄膜晶体管界面的方法,具体步骤如下:
步骤1,在室温下采用射频磁控溅射铟镓锌氧靶材,并利用掩膜工艺在衬底上制备非晶铟镓锌氧有源层;
步骤1.1,在衬底上设置掩膜版A,再将衬底和铟镓锌氧靶材放入磁控溅射系统腔体内,在衬底与铟镓锌氧靶材之间设置有衬底挡板、铟镓锌氧靶材挡板,检查气密性,抽真空至压力低于2×10-4Pa;
步骤1.2,向磁控溅射系统腔体内通入氩气,氩气的流量为9.5SCCM,当腔体内压力稳定时,调节磁控溅射系统的插板阀保持腔体内压力为0.5pa恒定;
步骤1.3,设置射频溅射功率为50W,磁控溅射系统的承物台底片的温度为室温,进行预溅射12min去除铟镓锌氧靶材表面杂质与有机物等,打开磁控溅射系统内铟镓锌氧复合靶材挡板和衬底挡板进行溅射5min,关闭铟镓锌氧复合靶材挡板、衬底挡板及射频溅射电源,保持40min,取出,取下掩膜版A,得到非晶铟镓锌氧有源层。
衬底的厚度为100纳米,有源层(非晶铟镓锌氧薄膜层)厚度为10纳米,非晶铟镓锌氧有源层溅射时使用的掩模版尺寸为长度320微米,宽度590微米,掩模版用于覆盖在衬底上;
步骤2,采用氧等离子体对非晶铟镓锌氧有源层进行处理,得到处理后的非晶铟镓锌氧有源层;
具体为:将步骤1得到的非晶铟镓锌氧有源层放入等离子清洗机腔体内,抽真空至压力低于5×10-3Pa,向等离子清洗机腔体内通入氧气,流量为5SCCM,设置溅射功率为10W进行溅射30s,关闭溅射电源,得到处理后的非晶铟镓锌氧有源层。
步骤3,在室温下采用直流溅射铜靶材,并利用掩膜工艺在处理后的非晶铟镓锌氧有源层上制备铜电极作为源电极和漏电极;
步骤3.1,在非晶铟镓锌氧有源层上设置掩膜版B,再将步骤2得到的处理后的非晶铟镓锌氧有源层及铜靶材放入磁控溅射系统腔体内,在非晶铟镓锌氧有源层和铜靶材之间设置有非晶铟镓锌氧有源层挡板、铜靶材挡板,检查气密性,抽真空至压力低于2×10-4Pa;
步骤3.2,向磁控溅射系统腔体内通入氩气,流量为5SCCM,当腔体内压力稳定时,调节磁控溅射系统的插板阀保持腔体内压力为0.5pa恒定;
步骤3.3,设置直流溅射功率为40W,磁控溅射系统的承物台底片的温度为室温,进行预溅射8min去除铜靶材表面杂质,打开磁控溅射系统内铜靶材挡板和非晶铟镓锌氧有源层挡板进行溅射15min,关闭铜靶材挡板、非晶铟镓锌氧有源层挡板及直流溅射电源,保持40min,取出,取下掩膜版B,得到源电极和漏电极的;源电极和漏电极厚度均为50纳米;源电极和漏电极间的沟道长度为110微米,宽度为170微米。
如图2所述,实施例1~实施例8均为在室温下制备的10-30nm不同厚度的非晶铟镓锌氧薄膜晶体管,对比了不同有源层厚度下非晶铟镓锌氧薄膜晶体管转移特性曲线,随着非晶铟镓锌氧有源层厚度增加,器件的栅控能力逐渐降低,在厚度为20nm器件的性能最佳,其迁移率为16.9cm2/V s,阈值电压为-0.9V,电流开关比在106
如图3所示,为非晶铟镓锌氧有源层厚度为20nm时,即实施例1制备的薄膜晶体管的输出特性曲线图,源电极和漏电极电压在0V到50V的范围内的输出特性曲线,测试中栅极电压从-20V到50V变化,变化台阶为10V/dec,可以看到非晶铟镓锌氧薄膜晶体管具有良好饱和特性以及0.53mA的最大饱和电流。
如图4所示,用原子力显微镜对20nm厚的非晶铟镓锌氧有源层(实施例1)进行薄膜表面形貌和粗糙度表征,结果表明非晶铟镓锌氧表面粗糙度为0.56nm,具有相对良好的粗糙度。
如图5所示,为实施例1制备的非晶铟镓锌氧薄晶体管的扫描电镜截面形貌表征结果,可以看到非晶铟镓锌氧有源层的厚度在20nm左右,二氧化硅栅电介质层(衬底)厚度在100nm,均与实验结果一致。
如图6所示,对比了室温下溅射功率为30-50W下制备的非晶铟镓锌氧薄膜晶体管的转移特性曲线,随着溅射功率的增加,非晶铟镓锌氧薄膜晶体管的阈值电压出现不断负偏的趋势,虽然迁移率得到了一定程度的提升,但是电流开关比降低和亚阈值摆幅增加。
如图7所示,给出了溅射功率为40W时,即实施例1制备的薄膜晶体管的输出特性曲线图。源、漏电压在0V到50V的范围内的输出特性曲线,测试中栅极电压从-20V到50V变化,变化台阶为10V/dec,可以看到非晶铟镓锌氧薄膜晶体管具有良好饱和特性以及0.54mA的最大饱和电流。
如图8所示,采用0-40W不同功率的氧等离子体处理室温制备非晶铟镓锌氧有源层(实施例1~实施例5),比较不同功率下非晶铟镓锌氧薄膜晶体管转移特性曲线,可知器件阈值电压沿正方向移动,器件性能呈现先增加达到某一顶点后开始下降的趋势。
表1不同功率氧等离子体处理室温制备的非晶铟镓锌氧薄膜晶体管电性能参数
对比例 实施例1 实施例2 实施例3 实施例4 实施例5
Oxygen power(W) 0 10 15 20 30 40
Von(V) -4.8 -4.1 -3.1 -1.8 1.2 4.4
Vth(V) -0.9 -0.8 0.3 0.9 9.1 12.0
μFE(cm2/V s) 16.9 18.2 18.9 27.9 14.6 10.1
Ion/Ioff 2.3×106 2.2×106 1.6×106 2.3×107 8.5×105 2.8×106
SS(V/dec) 1.7 1.5 1.3 0.9 1.9 2.2
Dit(cm-2/eV) 6.3×1010 5.7×1010 4.8×1010 3.3×1010 7.1×1010 8.2×1010
由表1可以看到在不同功率氧等离子体处理后室温制备的非晶铟镓锌氧薄膜晶体管的性能得到了明显的改变,其中在氧等离子体功率为20W时性能达到最佳,其迁移率达到27.9cm2/Vs,电流开关比在107,亚阈值摆幅为0.9V/dec;结合图9氧等离子体功率为20W时器件的输出特性曲线,源漏电压在0V到50V的范围内的输出特性曲线,测试中栅极电压从-20V到50V变化,变化台阶为10V/dec,可以看到非晶铟镓锌氧薄膜晶体管具有良好饱和特性以及0.9mA的最大饱和电流。

Claims (1)

1.室温优化非晶铟镓锌氧薄膜晶体管界面的方法,其特征在于,具体步骤如下:
步骤1,在室温下采用射频磁控溅射铟镓锌氧复合靶材,并利用掩模工艺在衬底上制备非晶铟镓锌氧有源层;
步骤1的具体过程为:
步骤1.1,在衬底上设置掩模版A,再将衬底和铟镓锌氧复合靶材放入磁控溅射系统腔体内,在衬底与铟镓锌氧复合靶材之间设置有衬底挡板、铟镓锌氧复合靶材挡板,检查气密性,抽真空;
抽真空至压力低于2×10-4Pa;
非晶铟镓锌氧有源层溅射时使用的掩模版尺寸为长度320微米,宽度590微米;
步骤1.2,向磁控溅射系统腔体内通入氩气,当腔体内压力稳定时,调节磁控溅射系统的插板阀保持腔体内压力恒定;
通入氩气的流量为10sccm,腔体内压力保持0.5Pa恒定;
步骤1.3,设置射频溅射功率,承物台底片温度为室温,进行预溅射去除铟镓锌氧复合靶材表面杂质,打开磁控溅射系统内铟镓锌氧复合靶材挡板和衬底挡板进行溅射,关闭铟镓锌氧复合靶材挡板、衬底挡板及射频溅射电源,保持40min时间,取出,取下掩模版A,得到非晶铟镓锌氧有源层;
射频溅射功率为40W,预溅射时间为10min,溅射时间为6min;
衬底厚度为100纳米,非晶铟镓锌氧薄膜层厚度为20纳米;
步骤2,采用氧等离子体对非晶铟镓锌氧有源层进行处理,得到处理后的非晶铟镓锌氧有源层;
步骤2的具体过程为:将步骤1得到的非晶铟镓锌氧有源层放入等离子清洗机腔体内,抽真空,向等离子清洗机腔体内通入氧气,设置溅射功率进行溅射30s,结束后,得到处理后的非晶铟镓锌氧有源层;
抽真空至压力低于5×10-3Pa,通入氧气的流量为8sccm,溅射功率为20W;
步骤3,在室温下采用直流溅射铜靶材,并利用掩模工艺在处理后的非晶铟镓锌氧有源层上制备源电极和漏电极;
步骤3的具体过程为:
步骤3.1,在非晶铟镓锌氧有源层上设置掩模版B,再将步骤2得到的处理后的非晶铟镓锌氧有源层及铜靶材放入磁控溅射系统腔体内,在非晶铟镓锌氧有源层和铜靶材之间设置有非晶铟镓锌氧有源层挡板、铜靶材挡板,检查气密性,抽真空;
抽真空至压力低于2×10-4Pa;
步骤3.2,向磁控溅射系统腔体内通入氩气,当腔体内压力稳定时,调节磁控溅射系统的插板阀保持腔体内压力恒定;
通入氩气的流量为10sccm,腔体内压力保持0.5Pa恒定;
步骤3.3,设置直流溅射功率为40W,磁控溅射系统的承物台底片的温度为室温,进行预溅射10min去除铜靶材表面杂质,打开磁控溅射系统内铜靶材挡板和非晶铟镓锌氧有源层挡板进行溅射20min,关闭铜靶材挡板、非晶铟镓锌氧有源层挡板及直流溅射电源,保持40min,取出,取下掩模版B,得到源电极和漏电极;源电极和漏电极厚度均为50纳米;源电极和漏电极间的沟道长度为110微米,宽度为170微米;
薄膜晶体管的迁移率为27.9cm2/Vs,电流开关比在107,亚阈值摆幅为0.9V/dec,最大饱和电流为0.9mA。
CN202211164269.4A 2022-09-23 2022-09-23 室温优化非晶铟镓锌氧薄膜晶体管界面的方法 Active CN115497831B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211164269.4A CN115497831B (zh) 2022-09-23 2022-09-23 室温优化非晶铟镓锌氧薄膜晶体管界面的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211164269.4A CN115497831B (zh) 2022-09-23 2022-09-23 室温优化非晶铟镓锌氧薄膜晶体管界面的方法

Publications (2)

Publication Number Publication Date
CN115497831A CN115497831A (zh) 2022-12-20
CN115497831B true CN115497831B (zh) 2023-06-20

Family

ID=84470740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211164269.4A Active CN115497831B (zh) 2022-09-23 2022-09-23 室温优化非晶铟镓锌氧薄膜晶体管界面的方法

Country Status (1)

Country Link
CN (1) CN115497831B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106298880A (zh) * 2016-10-13 2017-01-04 中山大学 氧化物薄膜及制备方法、晶体管及制备方法、显示背板
CN107403832A (zh) * 2017-07-26 2017-11-28 华南理工大学 一种高性能薄膜晶体管及其用途
CN109742156A (zh) * 2019-01-14 2019-05-10 云谷(固安)科技有限公司 薄膜晶体管、显示装置及薄膜晶体管的制备方法
CN114783881A (zh) * 2022-03-31 2022-07-22 西安交通大学 一种氧化铝/a-IGZO薄膜晶体管及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157565A (zh) * 2011-01-18 2011-08-17 北京大学深圳研究生院 一种薄膜晶体管的制作方法
CN103700710B (zh) * 2013-12-30 2018-07-13 Tcl集团股份有限公司 Igzo薄膜晶体管及其制备方法
CN103887344A (zh) * 2014-02-28 2014-06-25 上海和辉光电有限公司 Igzo薄膜晶体管及改善igzo薄膜晶体管电学性能的方法
CN107785439B (zh) * 2017-09-04 2020-06-19 华南理工大学 一种室温脉冲直流溅射波形优化的薄膜晶体管及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106298880A (zh) * 2016-10-13 2017-01-04 中山大学 氧化物薄膜及制备方法、晶体管及制备方法、显示背板
CN107403832A (zh) * 2017-07-26 2017-11-28 华南理工大学 一种高性能薄膜晶体管及其用途
CN109742156A (zh) * 2019-01-14 2019-05-10 云谷(固安)科技有限公司 薄膜晶体管、显示装置及薄膜晶体管的制备方法
CN114783881A (zh) * 2022-03-31 2022-07-22 西安交通大学 一种氧化铝/a-IGZO薄膜晶体管及其制备方法

Also Published As

Publication number Publication date
CN115497831A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
US7883934B2 (en) Method of fabricating oxide semiconductor device
JP5718052B2 (ja) 薄膜半導体材料を用いる薄膜トランジスタ
US20140175437A1 (en) Oxide Semiconductor Device and Surface Treatment Method of Oxide Semiconductor
KR20110028385A (ko) 고 성능 금속 산화물 및 금속 산질화물 박막 트랜지스터들을 제조하기 위한 게이트 유전체의 처리
TW201306266A (zh) 薄膜電晶體構造,及具備該構造之薄膜電晶體與顯示裝置
Wang et al. Performance optimization of atomic layer deposited ZnO thin-film transistors by vacuum annealing
CN113078112B (zh) 一种氧化物基耗尽型负载反相器的制备方法
CN115497831B (zh) 室温优化非晶铟镓锌氧薄膜晶体管界面的方法
JP2011258804A (ja) 電界効果型トランジスタ及びその製造方法
Liang et al. Effects of interface trap density on the electrical performance of amorphous InSnZnO thin-film transistor
CN116598317A (zh) 一种提高铟锌氧化物薄膜晶体管偏压应力稳定性的方法
CN116313815A (zh) 一种基于Li掺杂氧化锌锡的双有源层氧化物薄膜晶体管的制备方法
Hu et al. Investigation of oxygen and argon plasma treatment on Mg-doped InZnO thin film transistors
CN114783881A (zh) 一种氧化铝/a-IGZO薄膜晶体管及其制备方法
CN115449749B (zh) 优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法
CN108682614B (zh) 一种以锌锡铝钾氧化物为沟道层的薄膜晶体管及其制备方法
JP7549515B2 (ja) 導電領域の形成方法、及び薄膜トランジスタの製造方法
US20230378368A1 (en) Regeneration anneal of metal oxide thin-film transistors
Cho et al. Lowering the Trap-State Density of Transparent Amorphous Oxide Semiconductor-Based Thin Film Transistors Through Microwave Irradiation
US20220020882A1 (en) Structure for a field effect transistor (fet) device and method of processing a fet device
CN207038530U (zh) 一种氧化物薄膜晶体管
CN118431297A (zh) 一种ito薄膜晶体管及其制备方法
Qingfeng et al. The Influence of Sputtering Power on the Electrical Properties of InZnO Thin-Film Transistors
CN116344546A (zh) 基于大面积Ga2O3的电性能可调节的场效应晶体管阵列的制备方法及应用
Jiang et al. Dependence of the Electrical Behavior of an Indium-Gallium-Zinc Oxide Thin-Film Transistor on the Process Condition of Plasma-Based Fluorination

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant