CN115449749B - 优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法 - Google Patents

优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法 Download PDF

Info

Publication number
CN115449749B
CN115449749B CN202211211974.5A CN202211211974A CN115449749B CN 115449749 B CN115449749 B CN 115449749B CN 202211211974 A CN202211211974 A CN 202211211974A CN 115449749 B CN115449749 B CN 115449749B
Authority
CN
China
Prior art keywords
active layer
room temperature
amorphous
zinc oxide
indium gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211211974.5A
Other languages
English (en)
Other versions
CN115449749A (zh
Inventor
王春兰
刘晓红
宋勇乐
赵明
段楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Jusheng Vacuum Technology Co ltd
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN202211211974.5A priority Critical patent/CN115449749B/zh
Publication of CN115449749A publication Critical patent/CN115449749A/zh
Application granted granted Critical
Publication of CN115449749B publication Critical patent/CN115449749B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明公开了优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法,具体按照以下步骤实施:步骤1,室温下,在磁控溅射系统通过射频溅射方法,使铟镓锌氧靶材,在衬底上沉积一层非晶铟镓锌氧有源层薄膜;步骤2,在步骤1得到非晶铟镓锌氧有源层薄膜后,室温下继续向磁控溅射系统通入氮气,对非晶铟镓锌氧有源层薄膜及进行处理;步骤3,室温下,通过直流溅射方法,采用铜靶材在步骤2处理后的非晶铟镓锌氧有源层薄膜上沉积金属铜的源电极和漏电极。本发明方法解决现有铟镓锌氧薄膜晶体管阈值电压稳定性差且需要高温制备的问题。

Description

优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法
技术领域
本发明属于半导体技术领域,涉及优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法。
背景技术
非晶铟镓锌氧薄膜晶体管要满足新型透明电子的发展需求,仍面临着一些重要问题:非晶氧化物半导体材料中存在无序结构网络和高密度本征缺陷,包括悬挂键,原子以及杂质等,这些无疑影响着非晶氧化物薄膜晶体管的重要性能(如电子迁移率、稳定性),从而限制了其在新型高性能透明电子方面的应用,尤其是随着新型透明电子对于高分辨率、高帧频、高密度大面积集成等方面要求的日益增加,非晶铟镓锌氧薄膜晶体管必须要在低温下(小于200℃)具有更高的电学性能和稳定性能,尤其是阈值电压(VTH)对随时间的稳定性。栅介质层与铟镓锌氧层界面处的缺陷在偏置作用下捕获沟道电子,会造成持续的阈值电压漂移,这会大大降低铟镓锌氧的薄膜晶体管器件的实用化。因此研制出低温下高电学性能和高稳定性能共存的高性能非晶氧化物薄膜晶体管,是解决其应用于新型透明电子的首要科学问题。
发明内容
本发明的目的是提供优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法,解决现有铟镓锌氧薄膜晶体管阈值电压稳定性差且需要高温制备的问题。
本发明所采用的技术方案是,优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法,具体按照以下步骤实施:
步骤1,室温下,在磁控溅射系统通过射频溅射方法,使铟镓锌氧靶材,在衬底上沉积一层非晶铟镓锌氧有源层薄膜;
步骤2,在步骤1得到非晶铟镓锌氧有源层薄膜后,室温下继续向磁控溅射系统通入氮气,对非晶铟镓锌氧有源层薄膜及进行处理;
步骤3,室温下,通过直流溅射方法,采用铜靶材在步骤2处理后的非晶铟镓锌氧有源层薄膜上沉积金属铜的源电极和漏电极。
本发明的特征还在于,
步骤1的具体过程为:在室温下,将铟镓锌氧靶材和覆盖有有源层掩膜版的衬底放入磁控溅射系统空腔内,衬底保持常温,抽真空至压力低于3×10-4Pa,充入氩气,设置射频功率,打开铟镓锌氧靶材挡板,进行预溅射去除铟镓锌氧靶材和衬底表面上的杂质,打开衬底挡板,沉积铟镓锌氧薄膜,预溅射和沉积处理过程中,通过调节插板阀使磁控溅射系统腔内的压力保持恒定,得到非晶铟镓锌氧有源层薄膜。
步骤2的具体过程为:室温下,关闭衬底挡板和铟镓锌氧靶材挡板,继续保持溅射功率不变,直接向磁控溅射系统内通入氮气,氮气辉光放电,对步骤1得到非晶铟镓锌氧有源层薄膜进行氮气处理,取下有源层掩膜版,得到处理后的非晶铟镓锌氧有源层薄膜。
氮气处理的时间为50~300s,非晶铟镓锌氧有源层薄膜的厚度为20nm,有源层掩膜版覆盖后,图形化形成的非晶铟镓锌氧有源层薄膜的尺寸为600μm*600μm。
步骤3的具体过程为:室温下,在步骤2处理后的非晶铟镓锌氧有源层薄膜上覆盖电极掩膜版,并和铜靶材一同放入磁控溅射系统空腔内,抽真空至压力低于3×10-4Pa,充入氩气,设置直流溅射功率、电压,衬底继续保持常温,打开衬底挡板和铜靶材挡板,溅射铜靶材,得到金属铜的源电极和漏电极。
源电极和漏电极厚度均为55nm,源电极和漏电极间的沟道尺寸为宽210μm,长80μm。
本发明的有益效果是,本发明优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法,其阈值电压VTH漂移远小于未经过氮气处理的室温沉积的铟镓锌氧薄膜晶体管,并且本发明方法均在室温下进行,无需进行加热处理且也省略了热退火处理的过程,工艺过程简单,所制备的非晶铟镓锌氧晶体管还具有良好的电学性能,例如迁移率为11.7cm2/Vs,电流开关比接近107,亚阈值摆幅为1.79V/dec。
附图说明
图1是本发明方法制备的铟镓锌氧薄膜晶体管的结构示意图;
图2是本发明方法沉积的铟镓锌氧薄膜的光学显微镜图;
图3是本发明方法沉积金属铜电极的光学显微镜图;
图4是本发明实施例中室温下氮气处理不同时间时,沉积铟镓锌氧薄膜晶体管的转移特性曲线图;
图5是本发明方法沉积的铟镓锌氧薄膜晶体管与未经氮气处理的室温沉积的铟镓锌氧薄膜晶体管的输出特性曲线对比图;
图6是本发明方法沉积的铟镓锌氧薄膜与未经氮气处理的室温沉积的铟镓锌氧薄膜的XPS全峰图;
图7是未经氮气处理的室温沉积铟镓锌氧薄膜的XPS O1 s峰图;
图8是本发明实施例中经过氮气处理150s沉积的铟镓锌氧薄膜XPS O1 s峰图;
图9是未经过氮气处理的室温沉积的铟镓锌氧薄膜晶体管不同测试时间的转移特性曲线图;
图10是本发明实施例中经过氮气处理50s沉积的铟镓锌氧薄膜晶体管不同测试时间的转移特性曲线图;
图11是本发明实施例中经过氮气处理150s沉积的铟镓锌氧薄膜晶体管不同测试时间的转移特性曲线图;
图12是本发明实施例中经过氮气处理300s沉积的铟镓锌氧薄膜晶体管不同测试时间的转移特性曲线图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明提供一种优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法,具体按照以下步骤实施:
步骤1,室温下,在磁控溅射系统通过射频溅射方法,使铟镓锌氧靶材,在SiO2/P+-Si衬底上沉积一层非晶铟镓锌氧有源层薄膜;
具体过程为:在室温下,将铟镓锌氧靶材和覆盖有有源层掩膜版的衬底放入磁控溅射系统空腔内,在衬底与铟镓锌氧靶材之间设置有衬底挡板、铟镓锌氧靶材挡板,衬底挡板靠近衬底设置,铟镓锌氧靶材挡板靠近铟镓锌氧靶材设置,衬底保持常温,抽真空至压力低于3×10-4Pa,充入氩气,氩气的流量为10SCCM,设置射频功率为40W,打开铟镓锌氧靶材挡板,进行预溅射去除铟镓锌氧靶材和衬底表面上的杂质,打开衬底挡板,沉积铟镓锌氧薄膜,溅射时长为7min,预溅射和溅射处理过程中,通过调节插板阀使磁控溅射系统腔内的压力保持为0.4pa,得到非晶铟镓锌氧有源层薄膜,非晶铟镓锌氧有源层薄膜无需任何的热退火处理;
步骤2,在步骤1得到非晶铟镓锌氧有源层薄膜后,室温下继续向磁控溅射系统通入氮气,对非晶铟镓锌氧有源层薄膜及进行处理;
具体过程为:室温下,关闭衬底挡板和铟镓锌氧靶材挡板,继续保持溅射功率为40W,直接向磁控溅射系统内通入氮气,氮气辉光放电,对步骤1得到非晶铟镓锌氧有源层薄膜进行氮气处理,氮气与氩气的流量比为1.5:10,氮气处理的时间为50~300s,取下有源层掩膜版,得到处理后的非晶铟镓锌氧有源层薄膜;
非晶铟镓锌氧有源层薄膜的厚度为20nm,有源层掩膜版覆盖后,图形化形成的非晶铟镓锌氧有源层薄膜的尺寸为600μm*600μm;
步骤3,室温下,通过直流溅射方法,采用铜靶材在步骤2处理后的非晶铟镓锌氧有源层薄膜上沉积金属铜的源电极和漏电极;
具体过程为:室温下,在步骤2处理后的非晶铟镓锌氧有源层薄膜上覆盖电极掩膜版,并和铜靶材一同放入磁控溅射系统空腔内,在非晶铟镓锌氧有源层薄膜与铜靶材之间设置有衬底挡板、铟镓锌氧靶材挡板,衬底挡板靠近非晶铟镓锌氧有源层薄膜设置,铟镓锌氧靶材挡板靠近铜靶材,抽真空至压力低于3×10-4Pa,充入氩气,设置直流溅射功率为20W(恒流模式下),电压为50V,衬底继续保持常温,打开衬底挡板和铜靶材挡板,溅射铜靶材,溅射时间为20min,得到金属铜的源电极和漏电极;
源电极和漏电极厚度均为55nm,源电极和漏电极间的沟道尺寸为:宽210μm,长80μm。
对比例
将本发明步骤2去掉,即未采用氮气处理室温沉积铟镓锌氧薄膜晶体管,具体按照以下步骤实施:
步骤1,室温下,在磁控溅射系统通过射频溅射方法,使铟镓锌氧靶材,在SiO2/P+-Si衬底上沉积一层非晶铟镓锌氧有源层薄膜;
具体过程为:在室温下,将铟镓锌氧靶材和覆盖有有源层掩膜版的衬底放入磁控溅射系统空腔内,衬底保持常温,抽真空至压力低于3×10-4Pa,充入氩气,氩气的流量为10SCCM,设置射频功率为40W,打开铟镓锌氧靶材挡板,进行预溅射去除铟镓锌氧靶材和衬底表面上的杂质,打开衬底挡板,沉积铟镓锌氧薄膜,溅射时长为7min,预溅射和溅射处理过程中,通过调节插板阀使磁控溅射系统腔内的压力保持为0.4pa,得到非晶铟镓锌氧有源层薄膜,非晶铟镓锌氧有源层薄膜无需任何的热退火处理;
非晶铟镓锌氧有源层薄膜的厚度为20nm,有源层掩膜版覆盖后,图形化形成的非晶铟镓锌氧有源层薄膜的尺寸为600μm*600μm;
步骤2,室温下,通过直流溅射方法,采用铜靶材在步骤2处理后的非晶铟镓锌氧有源层薄膜上沉积金属铜的源电极和漏电极;
具体过程为:室温下,在步骤2处理后的非晶铟镓锌氧有源层薄膜上覆盖电极掩膜版,并和铜靶材一同放入磁控溅射系统空腔内,抽真空至压力低于3×10-4Pa,充入氩气,设置直流溅射功率为20W(恒流模式下),电压为50V,衬底继续保持常温,打开衬底挡板和铜靶材挡板,溅射铜靶材,溅射时间为20min,得到金属铜的源电极和漏电极;
源电极和漏电极厚度均为55nm,源电极和漏电极间的沟道尺寸为:宽210μm,长80μm。
对比例中未进行氮气处理。
实施例1
本发明提供一种优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法,具体按照以下步骤实施:
步骤1,室温下,在磁控溅射系统通过射频溅射方法,使铟镓锌氧靶材,在SiO2/P+-Si衬底上沉积一层非晶铟镓锌氧有源层薄膜;
具体过程为:在室温下,将铟镓锌氧靶材和覆盖有有源层掩膜版的衬底放入磁控溅射系统空腔内,衬底保持常温,抽真空至压力低于3×10-4Pa,充入氩气,氩气的流量为10SCCM,设置射频功率为40W,打开铟镓锌氧靶材挡板,进行预溅射去除铟镓锌氧靶材和衬底表面上的杂质,打开衬底挡板,沉积铟镓锌氧薄膜,溅射时长为7min,预溅射和溅射处理过程中,通过调节插板阀使磁控溅射系统腔内的压力保持为0.4pa,得到非晶铟镓锌氧有源层薄膜,非晶铟镓锌氧有源层薄膜无需任何的热退火处理;
步骤2,在步骤1得到非晶铟镓锌氧有源层薄膜后,室温下继续向磁控溅射系统通入氮气,对非晶铟镓锌氧有源层薄膜及进行处理;
具体过程为:室温下,关闭衬底挡板和铟镓锌氧靶材挡板,继续保持溅射功率为40W,直接向磁控溅射系统内通入氮气,氮气辉光放电,对步骤1得到非晶铟镓锌氧有源层薄膜进行氮气处理,氮气与氩气的流量比为1.5:10,氮气处理的时间为50s,取下有源层掩膜版,得到处理后的非晶铟镓锌氧有源层薄膜;
非晶铟镓锌氧有源层薄膜的厚度为20nm,有源层掩膜版覆盖后,图形化形成的非晶铟镓锌氧有源层薄膜的尺寸为600μm*600μm;
步骤3,室温下,通过直流溅射方法,采用铜靶材在步骤2处理后的非晶铟镓锌氧有源层薄膜上沉积金属铜的源电极和漏电极;
具体过程为:室温下,在步骤2处理后的非晶铟镓锌氧有源层薄膜上覆盖电极掩膜版,并和铜靶材一同放入磁控溅射系统空腔内,抽真空至压力低于3×10-4Pa,充入氩气,设置直流溅射功率为20W(恒流模式下),电压为50V,衬底继续保持常温,打开衬底挡板和铜靶材挡板,溅射铜靶材,溅射时间为20min,得到金属铜的源电极和漏电极,则本发明方法无氮气处理与氮气处理的室温沉积铟镓锌氧薄膜晶体管的器件结构示意图如图1所示;
源电极和漏电极厚度均为55nm,源电极和漏电极间的沟道尺寸为:宽210μm,长80μm。
实施例2
与实施例1的区别在于:氮气处理的时间为150s。
实施例3
与实施例1的区别在于:氮气处理的时间为300s。
图2为图形化形成的非晶铟镓锌氧有源层薄膜的尺寸为600μm*600μm;
图3为非晶铟镓锌氧有源层的源电极和漏电极,其尺寸为宽210μm和长80μm;
由图4可知,氮气处理的室温沉积铟镓锌氧薄膜晶体管在不同氮气处理时间(0s、50s、150s、300s)后,其相对应的转移特性曲线(源漏电压VDS=1V),可以看出随着氮气处理时间的增加,器件的阈值电压VTH不断正偏,处理时间为150s的器件VTH最靠近在0V左右;
由图5可知,未经氮气处理的a-IGZO TFT和氮气处理150s的室温沉积铟镓锌氧薄膜晶体管在栅极电压(-20V~50V)的输出特性曲线,可以看出经氮气处理150s后,室温沉积铟镓锌氧薄膜晶体管器件在栅极电压VGS=50V时,输出电流稍微有所下降,但还在同一个量级,从原始的0.91mA下降到了0.56mA,说明氮气处理150s,对室温沉积铟镓锌氧薄膜晶体管的输出电流没有造成太大的影响;
由图6可知,无氮气处理室温沉积铟镓锌氧薄膜,与氮气处理150s的室温沉积铟镓锌氧薄膜的XPS分析图,可以看出除本发明涉及的元素外,整个光谱中没有其他杂质峰,氮气处理并没有改变峰位,因此所有样品的洁净度均满足实验要求;
由图7和图8对比可知,在经过氮气处理150s后,室温沉积铟镓锌氧薄膜的氧缺陷含量为22.4%,而无氮气处理室温沉积铟镓锌氧薄膜的氧缺陷含量为29.5%,由于N的离子半径接近于O,所以N可以作为受体或缺陷粘合剂来降低薄膜中的氧缺陷,这也说明氮气处理有效的降低了器件的氧缺陷,提高了器件阈值电压随时间的稳定性;
由图9可知,在栅极电压为-50V~+50V,源漏电压VDS=1V时,无氮气处理室温沉积铟镓锌氧薄膜晶体管的转移特性曲线随时间(0h、2.5h、6h、16h、1天、2天、4天)的变化,从图9中可以看出,在0h时,VTH的为-1.53V,而在第四天时,VTH为12.98V,室温沉积铟镓锌氧薄膜晶体管阈值电压随时间的稳定差;
由图10可知,在栅极电压为-50V~+50V,源漏电压VDS=1V时,经过氮气处理50s后,室温沉积铟镓锌氧薄膜晶体管的转移特性曲线随时间(0h、2.5h、6h、16h、1天、2天、4天)的变化,从图10中看出,在0h时,VTH的为-1.36V,在第四天时VTH为9.71V,说明50s氮气处理可以优化室温沉积铟镓锌氧薄膜晶体管阈值电压,也可以提升室温沉积铟镓锌氧薄膜晶体管阈值电压随时间的稳定性;
由图11可知,在栅极电压为-50V~+50V,源漏电压VDS=1V时,经过氮气处理150s后,室温沉积铟镓锌氧薄膜晶体管的转移特性曲线随时间(0h、2.5h、6h、16h、1天、2天、4天)的变化,从图11中看出,在0h时,VTH的为-0.12V,在第四天时VTH为4.92V,说明150s氮气处理,明显优化了室温沉积铟镓锌氧薄膜晶体管阈值电压,也可以很大程度上提升室温沉积铟镓锌氧薄膜晶体管阈值电压随时间的稳定性。
由图12可知,在栅极电压为-50V~+50V,VDS=1V时,经过氮气处理300s后,室温沉积铟镓锌氧薄膜晶体管的转移特性曲线随时间(0h、2.5h、6h、16h、1天、2天、4天)的变化,从图11中可以看出,在0h时,VTH的为1.93V,在第四天时VTH为18.76V,说明300s氮气处理没有优化了室温沉积铟镓锌氧薄膜晶体管阈值电压,也没有提升室温沉积铟镓锌氧薄膜晶体管阈值电压随时间的稳定性。
表1为在室温下经过氮气分别处理0s(对比例),50s(实施例1),150s(实施例2),300s(实施例3)下室温沉积的铟镓锌氧薄膜晶体管的各种电学性能。实施例2的VTH漂移最小,具有良好的时间稳定性,同时,实施例2还具有良好的电性能和可靠性,其迁移率为11.7cm2/Vs,电流开关比接近107,亚阈值摆幅为1.79V/dec。
表1室温下经过氮气不同处理时间时室温沉积铟镓锌氧薄膜晶体管的各种参数
N处理时间 0(对比例) 50s(实施例1) 150s(实施例2) 300s(实施例3)
VTH(V) -1.53 -1.36 -0.12 1.93
μFE(cm2/Vs) 13.6 12.1 11.7 11.3
SS(V/dec) 1.97 1.86 1.79 1.68
Ion/Ioff 4.38×106 1.74×106 8.17×106 4.9×106
Von(V) -7.13 -3.02 -2.34 -1.88
Dit(cm-2/eV) 7.32×1010 6.91×1010 6.04×1010 6.24×1010
Ne(cm-3) 4.32×1018 3.95×1018 3.82×1018 5.07×1018
ΔVTH(V) 12.98 9.71 4.92 18.76
表2为在室温下经过氮气分别处理0s(对比例),50s(实施例1),150s(实施例2),300s(实施例3),测试时间分别为0h,2.5h,6h,16h,1d,2d,4d时铟镓锌氧薄膜晶体管的VTH。由表2可知,室温下在测试时间分别为0h,2.5h,6h,16h,1d,2d,4d时,经过氮气处理150s时室温沉积的铟镓锌氧薄膜晶体管的VTH最小,性能最为稳定。
表2室温下经过氮气不同处理时间、不同测试时间下的VTH
Figure BDA0003875552650000091
Figure BDA0003875552650000101
/>

Claims (4)

1.优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法,其特征在于,具体按照以下步骤实施:
步骤1,室温下,在磁控溅射系统通过射频溅射方法,使铟镓锌氧靶材,在衬底上沉积一层非晶铟镓锌氧有源层薄膜;
步骤2,在步骤1得到非晶铟镓锌氧有源层薄膜后,室温下继续向磁控溅射系统通入氮气,对非晶铟镓锌氧有源层薄膜及进行处理;
步骤2的具体过程为:室温下,关闭衬底挡板和铟镓锌氧靶材挡板,继续保持溅射功率不变,直接向磁控溅射系统内通入氮气,氮气辉光放电,对步骤1得到非晶铟镓锌氧有源层薄膜进行氮气处理,取下有源层掩膜版,得到处理后的非晶铟镓锌氧有源层薄膜;
氮气处理的时间为50~300s,非晶铟镓锌氧有源层薄膜的厚度为20nm,有源层掩膜版覆盖后,图形化形成的非晶铟镓锌氧有源层薄膜的尺寸为600μm*600μm;
步骤3,室温下,通过直流溅射方法,采用铜靶材在步骤2处理后的非晶铟镓锌氧有源层薄膜上沉积金属铜的源电极和漏电极。
2.根据权利要求1所述的优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法,其特征在于,步骤1的具体过程为:在室温下,将铟镓锌氧靶材和覆盖有有源层掩膜版的衬底放入磁控溅射系统空腔内,衬底保持常温,抽真空至压力低于3×10-4Pa,充入氩气,设置射频功率,打开铟镓锌氧靶材挡板,进行预溅射去除铟镓锌氧靶材和衬底表面上的杂质,打开衬底挡板,沉积铟镓锌氧薄膜,预溅射和沉积处理过程中,通过调节插板阀使磁控溅射系统腔内的压力保持恒定,得到非晶铟镓锌氧有源层薄膜。
3.根据权利要求1所述的优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法,其特征在于,步骤3的具体过程为:室温下,在步骤2处理后的非晶铟镓锌氧有源层薄膜上覆盖电极掩膜版,并和铜靶材一同放入磁控溅射系统空腔内,抽真空至压力低于3×10-4Pa,充入氩气,设置直流溅射功率、电压,衬底继续保持常温,打开衬底挡板和铜靶材挡板,溅射铜靶材,得到金属铜的源电极和漏电极。
4.根据权利要求1所述的优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法,其特征在于,源电极和漏电极厚度均为55nm,源电极和漏电极间的沟道尺寸为宽210μm,长80μm。
CN202211211974.5A 2022-09-30 2022-09-30 优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法 Active CN115449749B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211211974.5A CN115449749B (zh) 2022-09-30 2022-09-30 优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211211974.5A CN115449749B (zh) 2022-09-30 2022-09-30 优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法

Publications (2)

Publication Number Publication Date
CN115449749A CN115449749A (zh) 2022-12-09
CN115449749B true CN115449749B (zh) 2023-06-06

Family

ID=84308857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211211974.5A Active CN115449749B (zh) 2022-09-30 2022-09-30 优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法

Country Status (1)

Country Link
CN (1) CN115449749B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120077288A (ko) * 2010-12-30 2012-07-10 주성엔지니어링(주) 박막 트랜지스터 및 그 제조 방법
CN112436058A (zh) * 2020-10-29 2021-03-02 深圳技术大学 柔性InGaZnO薄膜晶体管及制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9249032B2 (en) * 2007-05-07 2016-02-02 Idemitsu Kosan Co., Ltd. Semiconductor thin film, semiconductor thin film manufacturing method and semiconductor element
CN103887344A (zh) * 2014-02-28 2014-06-25 上海和辉光电有限公司 Igzo薄膜晶体管及改善igzo薄膜晶体管电学性能的方法
CN105304468B (zh) * 2015-09-21 2018-01-19 西安交通大学 一种n2处理的非晶igzo透明氧化物薄膜及其制备方法
CN106128963B (zh) * 2016-09-23 2019-07-23 京东方科技集团股份有限公司 薄膜晶体管及制备方法、阵列基板及制备方法、显示面板
CN107785439B (zh) * 2017-09-04 2020-06-19 华南理工大学 一种室温脉冲直流溅射波形优化的薄膜晶体管及其制备方法
WO2019081996A1 (en) * 2017-10-26 2019-05-02 Sabic Global Technologies B.V. LOW TEMPERATURE TRANSISTOR PROCESSING
CN110098126A (zh) * 2019-05-22 2019-08-06 成都中电熊猫显示科技有限公司 一种薄膜晶体管的制作方法及薄膜晶体管和显示装置
CN111710609A (zh) * 2020-06-24 2020-09-25 中国科学院微电子研究所 铟镓锌氧薄膜晶体管的掺杂方法
JP2022077434A (ja) * 2020-11-11 2022-05-23 日本放送協会 薄膜トランジスタとその製造方法、及び表示装置
CN114883416A (zh) * 2022-06-14 2022-08-09 东南大学 一种基于igzo薄膜晶体管的基准电压源及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120077288A (ko) * 2010-12-30 2012-07-10 주성엔지니어링(주) 박막 트랜지스터 및 그 제조 방법
CN112436058A (zh) * 2020-10-29 2021-03-02 深圳技术大学 柔性InGaZnO薄膜晶体管及制备方法

Also Published As

Publication number Publication date
CN115449749A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
US20210202746A1 (en) Semiconductor device and manufacturing method thereof
Peng et al. Effect of two-step annealing on high stability of a-IGZO thin-film transistor
WO2011055644A1 (en) Method for manufacturing semiconductor device
Li et al. Enhanced performance of atomic layer deposited thin-film transistors with high-quality ZnO/Al 2 O 3 interface
Wang et al. Performance optimization of atomic layer deposited ZnO thin-film transistors by vacuum annealing
Yin et al. Low leakage current vertical thin-film transistors with InSnO-stabilized ZnO channel
Xu et al. Amorphous indium tin oxide thin-film transistors fabricated by cosputtering technique
Yan et al. Mechanism analysis of ultralow leakage and abnormal instability in InGaZnO thin-film transistor toward DRAM
Ruzgar et al. The influence of low indium composition ratio on sol–gel solution-deposited amorphous zinc oxide thin film transistors
CN115449749B (zh) 优化室温沉积铟镓锌氧薄膜晶体管阈值电压稳定性的方法
Wu et al. Submicrometer p-Type SnO thin-film transistors fabricated by film profile engineering method
Kato et al. Fabrication and electrical characteristics of ZnSnO/Si bilayer tunneling filed-effect transistors
Yu et al. AZO Thin Film Transistor Performance Enhancement by Capping an Aluminum Layer
Hu et al. Investigation of oxygen and argon plasma treatment on Mg-doped InZnO thin film transistors
Cheng et al. Indium Aluminum Zinc Oxide Phototransistor With HfO 2 Dielectric Layer Through Atomic Layer Deposition
CN115497831B (zh) 室温优化非晶铟镓锌氧薄膜晶体管界面的方法
Park et al. A novel design of quasi-lightly doped drain poly-Si thin-film transistors for suppression of kink and gate-induced drain leakage current
Chen et al. Investigation of top gate GaN thin-film transistor fabricated by DC magnetron sputtering
Kang et al. Improvement of on/off current ratio of amorphous In–Ga–Zn–O thin-film transistor with off-planed source/drain electrodes
US20220020882A1 (en) Structure for a field effect transistor (fet) device and method of processing a fet device
Lee et al. High hole and electron mobilities in nanocrystalline silicon thin-film transistors
No et al. Improved electrical properties of indium gallium zinc oxide thin-film transistors by AZO/Ag/AZO multilayer electrode
CN111863937B (zh) 一种具有埋层结构的n型TFET器件及其制备方法
Deng et al. High mobility metal-oxide thin film transistors with IGZO/In 2 O 3 dual-channel structure
Kawato et al. Carrier Control of In 2 O 3 TFT Fabricated by Atomic Layer Deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230720

Address after: 230601 Room 405, Building 8, Xixi Xingyuan, North Taoyuan Road, Ziyun Road, Hefei Economic and Technological Development Zone, Anhui Province

Patentee after: Hefei Jusheng Vacuum Technology Co.,Ltd.

Address before: 710048 Shaanxi province Xi'an Beilin District Jinhua Road No. 19

Patentee before: XI'AN POLYTECHNIC University