CN115488546A - 一种银纳米线改性锡银铜复合焊膏及其制备方法 - Google Patents

一种银纳米线改性锡银铜复合焊膏及其制备方法 Download PDF

Info

Publication number
CN115488546A
CN115488546A CN202211214111.3A CN202211214111A CN115488546A CN 115488546 A CN115488546 A CN 115488546A CN 202211214111 A CN202211214111 A CN 202211214111A CN 115488546 A CN115488546 A CN 115488546A
Authority
CN
China
Prior art keywords
silver
copper composite
solution
percent
silver nanowire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211214111.3A
Other languages
English (en)
Other versions
CN115488546B (zh
Inventor
严继康
王彪
白海龙
赵建华
赵玲彦
冷曼希
梁华鑫
张洪宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
R & D Center Of Yunnan Tin Industry Group Holdings Co ltd
Southwest Petroleum University
Original Assignee
R & D Center Of Yunnan Tin Industry Group Holdings Co ltd
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by R & D Center Of Yunnan Tin Industry Group Holdings Co ltd, Southwest Petroleum University filed Critical R & D Center Of Yunnan Tin Industry Group Holdings Co ltd
Priority to CN202211214111.3A priority Critical patent/CN115488546B/zh
Publication of CN115488546A publication Critical patent/CN115488546A/zh
Application granted granted Critical
Publication of CN115488546B publication Critical patent/CN115488546B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及一种银纳米线改性锡银铜复合焊膏及其制备方法,属于焊接技术领域。本发明银纳米线改性锡银铜复合焊膏由银纳米线、助焊剂和Sn3.0Ag0.5Cu无铅焊料组成,以质量百分数计,银纳米线占0.1~0.4%,助焊剂占10~20%,其余为Sn3.0Ag0.5Cu无铅焊料;以质量百分数计,助焊剂由15~20%活性剂、30~35%成膜剂、1~3%触变剂、1~2%调节剂、2~3.5%表面活性剂、0.5~1.5%缓蚀剂和溶剂组成。本发明利用银纳米线改性锡银铜复合焊膏,细化了焊点的微观组织,极大地提升焊料合金的性能。

Description

一种银纳米线改性锡银铜复合焊膏及其制备方法
技术领域
本发明涉及一种银纳米线改性锡银铜复合焊膏及其制备方法,属于焊接技术领域。
背景技术
锡银铜焊料已作为电子封装互连材料被广泛应用于电子产品当中,可以替代对环境有害的含铅焊料。然而,电子产品封装密度的提高以及焊点尺寸的减小要求焊料产品具有更高的强度。
提高锡银铜焊料的方法是在锡银铜焊料中加入微小颗粒,借助微小颗粒的弥散强化效果实现强化。目前,用于强化锡银铜焊料的纳米颗粒主要有Al、Mo、Co、Ni等金属纳米颗粒以及TiO2、Al2O3等非金属纳米颗粒。这些纳米颗粒虽然适当提高锡银铜焊点的强度,但是,金属纳米颗粒在焊接过程和高温环境下容易粗化或与锡银铜合金过度反应失去强化作用;非金属纳米颗粒与锡银铜合金不易形成可靠界面,对焊点的强度和热疲劳抗性不利;在焊膏类产品中,纳米颗粒与锡银铜合金在物理和化学性质上的失配会导致纳米颗粒在回流焊接过程中随助焊剂大量流失。利用金属Mo和Co纳米颗粒强化锡银铜焊料时,纳米颗粒回流焊接后的流失率高达80%。
发明内容
本发明针对现有技术中采用纳米颗粒增强锡银铜焊料时出现粗大的金属间化合物的问题,提出了一种银纳米线改性锡银铜复合焊膏及其制备方法,本发明利用银纳米线改性锡银铜复合焊膏,银纳米线能通过减缓Cu在界面中的扩散速率来抑制固相界面IMC生长,细化焊点的微观组织,极大地提升焊料合金的性能。
一种银纳米线改性锡银铜复合焊膏,由银纳米线、助焊剂和Sn3.0Ag0.5Cu无铅焊料组成,以质量百分数计,银纳米线占0.1~0.4%,助焊剂占10~20%,其余为Sn3.0Ag0.5Cu无铅焊料。
所述助焊剂由活性剂、成膜剂、触变剂、调节剂、缓蚀剂和溶剂组成,活性剂为辛基酚聚氧乙稀醚,成膜剂由混合松香和聚乙二醇组成,触变剂为蓖麻油,调节剂为三乙醇胺,缓蚀剂为苯并三氮唑,溶剂为由异丙醇和乙二醇丁醚组成。
优选的,成膜剂中混合松香和聚乙二醇的质量比为4:1,混合松香由松香和氢化松香组成,松香与氢化松香的质量比为1:1。
优选的,溶剂中异丙醇和乙二醇丁醚的质量比为3:1。
以助焊剂的质量百分数为100%计,活性剂占15~20%、成膜剂占30~35%、触变剂占1~3%、调节剂占1~2%、缓蚀剂占0.5~1.5%,其余为溶剂。
所述银纳米线改性锡银铜复合焊膏的制备方法,具体步骤如下:
(1)将硝酸银、聚乙烯吡咯烷酮、溴化钾和氯化钠分别溶于乙二醇中得到硝酸银溶液、聚乙烯吡咯烷酮溶液、溴化钾溶液和氯化钠溶液;
(2)将硝酸银溶液加热升温至150~160℃,在搅拌、恒温条件下依次加入溴化钾溶液和氯化钠溶液反应15~18min,再逐滴滴加聚乙烯吡咯烷酮溶液并恒温搅拌反应45~55min,冷却至室温,反复洗涤得到银纳米线;
(3)将银纳米线、助焊剂和Sn3.0Ag0.5Cu焊膏搅拌机中机械搅拌40~90min,得到银纳米线改性锡银铜复合焊膏。
所述步骤(1)硝酸银溶液浓度为0.2795~0.2965mol/L、溴化钾溶液浓度为0.00238~0.00513mol/L,氯化钠溶液浓度为0.0153~0.02640mol/L。
所述步骤(1)硝酸银、聚乙烯吡咯烷酮、溴化钾和氯化钠的质量比为1:5~6:0.035~0.050:0.060~0.085。
所述步骤(2)聚乙烯吡咯烷酮溶液滴加速率为1~2滴/s。
所述步骤(3)机械搅拌速率为2000~3000rpm。
银纳米线改性锡银铜复合焊膏的机理:银纳米线在铅料中不发生团聚作用,利于强化相在母材中均匀分布,起到细化组织的作用;银纳米线具有尺寸小而比表面积大、表面原子占总原子数高和表面能高等特点,在钎料中能起到弥散强化、晶界强化、降低材料表面自由能等作用,从而使钎料的力学性能得到较大改善。
本发明的有益效果是:
(1)本发明通过银纳米线增强Sn3.0Ag0.5Cu无铅焊料,因具有复合体银纳米增强相存在而具有相比Sn3.0Ag0.5Cu合金材料较优的焊接强度等特点;
(2)本发明中,银纳米线通过减缓Cu在界面中的扩散速率来抑制固相界面IMC生长,且对Cu3Sn生长的抑制比对Cu6Sn5生长的抑制更明显,使Sn3.0Ag0.5Cu无铅高温焊料具有更高的强度和热疲劳抗性。
附图说明
图1为实施例1银纳米线样品电子扫描图;
图2为实施例1银纳米线增强Sn3.0Ag0.5Cu无铅焊料焊接界面IMC层SEM图;
图3为实施例1银纳米线增强Sn3.0Ag0.5Cu无铅焊料焊接界面IMC层金相显微图;
图4为实施例1银纳米线增强Sn3.0Ag0.5Cu无铅焊料基体的EDS分析;
图5为实施例2银纳米线增强Sn3.0Ag0.5Cu无铅焊料焊接界面IMC层厚度变化;
图6为实施例3银纳米线增强Sn3.0Ag0.5Cu无铅焊料焊接界面IMC层厚度变化;
图7为实施例4银纳米线增强Sn3.0Ag0.5Cu无铅焊料焊接界面IMC层厚度变化;
图8为实施例5银纳米线增强Sn3.0Ag0.5Cu无铅焊料焊接界面IMC层厚度变化。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1:本实施例银纳米线改性锡银铜复合焊膏,由银纳米线、助焊剂和Sn3.0Ag0.5Cu无铅焊料组成,以质量百分数计,银纳米线占0.15%,助焊剂占15%,其余为Sn3.0Ag0.5Cu无铅焊料;
助焊剂由活性剂、成膜剂、触变剂、调节剂、缓蚀剂和溶剂组成,活性剂为辛基酚聚氧乙稀醚,成膜剂由混合松香和聚乙二醇组成,触变剂为蓖麻油,调节剂为三乙醇胺,缓蚀剂为苯并三氮唑,溶剂为由异丙醇和乙二醇丁醚组成;成膜剂中混合松香和聚乙二醇的质量比为4:1,混合松香由松香和氢化松香组成,松香与氢化松香的质量比为1:1,溶剂中异丙醇和乙二醇丁醚的质量比为3:1;以助焊剂的质量百分数为100%计,活性剂占15%、成膜剂占30%、触变剂占2%、调节剂占1%、缓蚀剂占1.5%,其余为溶剂;
一种银纳米线改性锡银铜复合焊膏的制备方法,具体步骤如下:
(1)将硝酸银、聚乙烯吡咯烷酮、溴化钾和氯化钠分别溶于乙二醇中得到硝酸银溶液、聚乙烯吡咯烷酮溶液、溴化钾溶液和氯化钠溶液;其中硝酸银溶液浓度为0.0285mol/L、溴化钾溶液浓度为0.0037mol/L,氯化钠溶液浓度为0.024mol/L;
(2)将硝酸银溶液加热升温至150℃,在搅拌、恒温条件下依次加入溴化钾溶液和氯化钠溶液反应18min,再逐滴滴加聚乙烯吡咯烷酮溶液并恒温搅拌反应55min,冷却至室温,反复洗涤得到银纳米线;其中硝酸银、聚乙烯吡咯烷酮、溴化钾和氯化钠的质量比为1:5:0.037:0.064;
本实施例银纳米线样品电子扫描图见图1,银纳米线的长径比为85~100:1,银纳米线的直径为70~75nm;
(3)将银纳米线、助焊剂和Sn3.0Ag0.5Cu焊膏搅拌机中机械搅拌90min,得到银纳米线改性锡银铜复合焊膏;
将锡银铜复合焊膏贴装在PCB板上,在温度150℃的条件下对PCB板进行时效处理,具体的,在温度150℃下分别保温0h、50h、100h、200h,进行高温时效处理;时效不同时间的银纳米线增强Sn3.0Ag0.5Cu无铅焊料焊接界面IMC层SEM图见图2,从图2可知,通过时效处理后的焊点界面,IMC层厚度有所降低,其中Cu6Sn5层厚度降低的比较明显,Cu3Sn层无明显变化,说明银纳米线的添加对IMC层生长有抑制作用,对Cu6Sn5层的生长抑制作用较明显;
对时效样品利用标准金相法制备金相,再进行界面的显微组织观察分析时效不同时间的IMC金相图(见图3),可以看出Cu6Sn5 IMC层都是由未时效时的棱柱型随时效时间的增加变为扇贝型,最后慢慢趋于平面型;银纳米线能通过减缓Cu在界面中的扩散速率来抑制固相界面IMC生长,且对Cu3Sn生长的抑制比对Cu6Sn5生长的抑制更明显;
对该增加量后的焊点进行EDS分析见图4,从图4可知,焊料基体中Cu含量只有3.522%,再次证明了银纳米线的添加能减缓Cu在界面中的扩散速率并影响Sn与Cu原子的结合。
实施例2:本实施例助焊剂与实施例1相同,银纳米线改性锡银铜复合焊膏,由银纳米线、助焊剂和Sn3.0Ag0.5Cu无铅焊料组成,以质量百分数计,银纳米线占0.18%,助焊剂占15%,其余为Sn3.0Ag0.5Cu无铅焊料;
一种银纳米线改性锡银铜复合焊膏的制备方法,具体步骤如下:
(1)将硝酸银、聚乙烯吡咯烷酮、溴化钾和氯化钠分别溶于乙二醇中得到硝酸银溶液、聚乙烯吡咯烷酮溶液、溴化钾溶液和氯化钠溶液;其中硝酸银溶液浓度为0.0285mol/L、溴化钾溶液浓度为0.0037mol/L,氯化钠溶液浓度为0.024mol/L;
(2)将硝酸银溶液加热升温至155℃,在搅拌、恒温条件下依次加入溴化钾溶液和氯化钠溶液反应16min,再逐滴滴加聚乙烯吡咯烷酮溶液并恒温搅拌反应50min,冷却至室温,反复洗涤得到银纳米线;其中硝酸银、聚乙烯吡咯烷酮、溴化钾和氯化钠的质量比为1:5:0.046:0.078;
本实施例银纳米线的长径比为85~100:1,银纳米线的直径为70~75nm;
(3)将银纳米线、助焊剂和Sn3.0Ag0.5Cu焊膏搅拌机中机械搅拌60min,得到银纳米线改性锡银铜复合焊膏;
将锡银铜复合焊膏贴装在PCB板上,在温度150℃的条件下对PCB板进行时效处理,具体的,在温度150℃下分别保温0h、50h、100h、200h,进行高温时效处理;时效不同时间的银纳米线增强Sn3.0Ag0.5Cu无铅焊料焊接界面IMC层厚度变化见图5,从图5可知厚度随时效时间增加而增大,可以看出在时效不同时间时的厚度均比未增加银纳米线焊料的厚度低,说明银纳米线的添加对IMC层有部分的抑制作用。
实施例3:本实施例助焊剂与实施例1相同,银纳米线改性锡银铜复合焊膏,由银纳米线、助焊剂和Sn3.0Ag0.5Cu无铅焊料组成,以质量百分数计,银纳米线占0.24%,助焊剂占15%,其余为Sn3.0Ag0.5Cu无铅焊料;
一种银纳米线改性锡银铜复合焊膏的制备方法,具体步骤如下:
(1)将硝酸银、聚乙烯吡咯烷酮、溴化钾和氯化钠分别溶于乙二醇中得到硝酸银溶液、聚乙烯吡咯烷酮溶液、溴化钾溶液和氯化钠溶液;其中硝酸银溶液浓度为0.0285mol/L、溴化钾溶液浓度为0.0037mol/L,氯化钠溶液浓度为0.024mol/L;
(2)将硝酸银溶液加热升温至158℃,在搅拌、恒温条件下依次加入溴化钾溶液和氯化钠溶液反应16min,再逐滴滴加聚乙烯吡咯烷酮溶液并恒温搅拌反应45min,冷却至室温,反复洗涤得到银纳米线;其中硝酸银、聚乙烯吡咯烷酮、溴化钾和氯化钠的质量比为1:5.5:0.037:0.068;
本实施例银纳米线的长径比为85~100:1,银纳米线的直径为70~75nm;
(3)将银纳米线、助焊剂和Sn3.0Ag0.5Cu焊膏搅拌机中机械搅拌70min,得到银纳米线改性锡银铜复合焊膏;
将锡银铜复合焊膏贴装在PCB板上,在温度150℃的条件下对PCB板进行时效处理,具体的,在温度150℃下分别保温0h、50h、100h、200h,进行高温时效处理;时效不同时间的银纳米线增强Sn3.0Ag0.5Cu无铅焊料焊接界面IMC层厚度变化见图6,从图6可知添加了银纳米线的样品在时效不同时间后厚度都基本上小于未添加银纳米线的样品,说明银纳米的增加对IMC的抑制效果最好。
实施例4:本实施例助焊剂与实施例1相同,银纳米线改性锡银铜复合焊膏,由银纳米线、助焊剂和Sn3.0Ag0.5Cu无铅焊料组成,以质量百分数计,银纳米线占0.30%,助焊剂占15%,其余为Sn3.0Ag0.5Cu无铅焊料;
一种银纳米线改性锡银铜复合焊膏的制备方法,具体步骤如下:
(1)将硝酸银、聚乙烯吡咯烷酮、溴化钾和氯化钠分别溶于乙二醇中得到硝酸银溶液、聚乙烯吡咯烷酮溶液、溴化钾溶液和氯化钠溶液;其中硝酸银溶液浓度为0.0285mol/L、溴化钾溶液浓度为0.0037mol/L,氯化钠溶液浓度为0.024mol/L;
(2)将硝酸银溶液加热升温至160℃,在搅拌、恒温条件下依次加入溴化钾溶液和氯化钠溶液反应15min,再逐滴滴加聚乙烯吡咯烷酮溶液并恒温搅拌反应52min,冷却至室温,反复洗涤得到银纳米线;其中硝酸银、聚乙烯吡咯烷酮、溴化钾和氯化钠的质量比为1:6:0.042:0.075;
本实施例银纳米线的长径比为85~100:1,银纳米线的直径为70~75nm;
(3)将银纳米线、助焊剂和Sn3.0Ag0.5Cu焊膏搅拌机中机械搅拌50min,得到银纳米线改性锡银铜复合焊膏;
将锡银铜复合焊膏贴装在PCB板上,在温度150℃的条件下对PCB板进行时效处理,具体的,在温度150℃下分别保温0h、50h、100h、200h,进行高温时效处理;时效不同时间的银纳米线增强Sn3.0Ag0.5Cu无铅焊料焊接界面IMC层厚度变化见图7,从图7可知添加量为0.30%时添加银纳米线的焊料IMC层生长趋势最慢,添加纳米线的焊料IMC层厚度均小于未增加银纳米线的焊料IMC层厚度。
实施例5:本实施例助焊剂与实施例1相同,银纳米线改性锡银铜复合焊膏,由银纳米线、助焊剂和Sn3.0Ag0.5Cu无铅焊料组成,以质量百分数计,银纳米线占0.36%,助焊剂占15%,其余为Sn3.0Ag0.5Cu无铅焊料;
一种银纳米线改性锡银铜复合焊膏的制备方法,具体步骤如下:
(1)将硝酸银、聚乙烯吡咯烷酮、溴化钾和氯化钠分别溶于乙二醇中得到硝酸银溶液、聚乙烯吡咯烷酮溶液、溴化钾溶液和氯化钠溶液;其中硝酸银溶液浓度为0.0285mol/L、溴化钾溶液浓度为0.0037mol/L,氯化钠溶液浓度为0.024mol/L;
(2)将硝酸银溶液加热升温至156℃,在搅拌、恒温条件下依次加入溴化钾溶液和氯化钠溶液反应18min,再逐滴滴加聚乙烯吡咯烷酮溶液并恒温搅拌反应55min,冷却至室温,反复洗涤得到银纳米线;其中硝酸银、聚乙烯吡咯烷酮、溴化钾和氯化钠的质量比为1:5:0.045:0.082;
本实施例银纳米线的长径比为85~100:1,银纳米线的直径为70~75nm;
(3)将银纳米线、助焊剂和Sn3.0Ag0.5Cu焊膏搅拌机中机械搅拌60min,得到银纳米线改性锡银铜复合焊膏;
将锡银铜复合焊膏贴装在PCB板上,在温度150℃的条件下对PCB板进行时效处理,具体的,在温度150℃下分别保温0h、50h、100h、200h,进行高温时效处理;时效不同时间的银纳米线增强Sn3.0Ag0.5Cu无铅焊料焊接界面IMC层厚度变化见图8,从图8可知添加量为0.36%时添加银纳米线的焊料IMC层厚度变化趋势与未增加银纳米线的焊料IMC层厚度趋势一样,但厚度均小于未增加银纳米线的焊料IMC层厚度。说明银纳米线对焊料的Cu6Sn5的扩散以及IMC层的生长有明显的抑制作用。其中银纳米线能通过减缓Cu在界面中的扩散速率来抑制固相界面IMC生长。
以上对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (8)

1.一种银纳米线改性锡银铜复合焊膏,其特征在于:由银纳米线、助焊剂和Sn3.0Ag0.5Cu无铅焊料组成,以质量百分数计,银纳米线占0.1~0.4%,助焊剂占10~20%,其余Sn3.0Ag0.5Cu无铅焊料。
2.根据权利要求1所述银纳米线改性锡银铜复合焊膏,其特征在于:助焊剂由活性剂、成膜剂、触变剂、调节剂、缓蚀剂和溶剂组成,活性剂为辛基酚聚氧乙稀醚,成膜剂由混合松香和聚乙二醇组成,触变剂为蓖麻油,调节剂为三乙醇胺,缓蚀剂为苯并三氮唑,溶剂为由异丙醇和乙二醇丁醚组成。
3.根据权利要求2所述银纳米线改性锡银铜复合焊膏,其特征在于:以助焊剂的质量百分数为100%计,活性剂占15~20%、成膜剂占30~35%、触变剂占1~3%、调节剂占1~2%、表面活性剂占2~3.5%、缓蚀剂占0.5~1.5%,其余为溶剂。
4.权利要求1~3任一项所述银纳米线改性锡银铜复合焊膏的制备方法,其特征在于,具体步骤如下:
(1)将硝酸银、聚乙烯吡咯烷酮、溴化钾和氯化钠分别溶于乙二醇中得到硝酸银溶液、聚乙烯吡咯烷酮溶液、溴化钾溶液和氯化钠溶液;
(2)将硝酸银溶液加热升温至150~160℃,在搅拌、恒温条件下依次加入溴化钾溶液和氯化钠溶液反应15~18min,再逐滴滴加聚乙烯吡咯烷酮溶液并恒温搅拌反应45~55min,冷却至室温,反复洗涤得到银纳米线;
(3)将银纳米线、助焊剂和Sn3.0Ag0.5Cu焊膏搅拌机中机械搅拌40~90min,得到银纳米线改性锡银铜复合焊膏。
5.根据权利要求4所述银纳米线改性锡银铜复合焊膏的制备方法,其特征在于:步骤(1)硝酸银溶液浓度为0.2795~0.2965mol/L、溴化钾溶液浓度为0.00238~0.00513mol/L,氯化钠溶液浓度为0.0153~0.02640mol/L。
6.根据权利要求4或5所述银纳米线改性锡银铜复合焊膏的制备方法,其特征在于:步骤(1)硝酸银、聚乙烯吡咯烷酮、溴化钾和氯化钠的质量比为1:5~6:0.035~0.050:0.060~0.085。
7.根据权利要求4所述银纳米线改性锡银铜复合焊膏的制备方法,其特征在于:步骤(2)聚乙烯吡咯烷酮溶液滴加速率为1~2滴/s。
8.根据权利要求4所述银纳米线改性锡银铜复合焊膏的制备方法,其特征在于:步骤(3)机械搅拌速率为2000~3500rpm。
CN202211214111.3A 2022-09-30 2022-09-30 一种银纳米线改性锡银铜复合焊膏及其制备方法 Active CN115488546B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211214111.3A CN115488546B (zh) 2022-09-30 2022-09-30 一种银纳米线改性锡银铜复合焊膏及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211214111.3A CN115488546B (zh) 2022-09-30 2022-09-30 一种银纳米线改性锡银铜复合焊膏及其制备方法

Publications (2)

Publication Number Publication Date
CN115488546A true CN115488546A (zh) 2022-12-20
CN115488546B CN115488546B (zh) 2024-01-30

Family

ID=84471457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211214111.3A Active CN115488546B (zh) 2022-09-30 2022-09-30 一种银纳米线改性锡银铜复合焊膏及其制备方法

Country Status (1)

Country Link
CN (1) CN115488546B (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101279405A (zh) * 2008-05-23 2008-10-08 北京工业大学 纳米结构增强的锡银铜基无铅复合钎料及其制备方法
CN101462209A (zh) * 2009-01-16 2009-06-24 深圳市唯特偶化工开发实业有限公司 一种适用于低银无铅焊膏制备用松香型无卤素助焊剂
CN101564805A (zh) * 2009-05-27 2009-10-28 北京工业大学 低银SnAgCu无铅焊膏用新型环保型助焊剂
JP2011104649A (ja) * 2009-11-12 2011-06-02 Tamura Seisakusho Co Ltd 鉛フリーはんだナノ粒子を使用したソルダーペースト
WO2011151894A1 (ja) * 2010-06-01 2011-12-08 千住金属工業株式会社 鉛フリーソルダペースト
CN102400121A (zh) * 2011-11-05 2012-04-04 上海上大瑞沪微系统集成技术有限公司 用于强化复合无铅焊料的纳米陶瓷颗粒的制备工艺
CN102513732A (zh) * 2011-12-15 2012-06-27 中南大学 一种松香型无卤素免清洗助焊剂及其制备和应用
KR20130072400A (ko) * 2011-12-22 2013-07-02 울산대학교 산학협력단 전기전도성, 열안정성 및 기계적 특성이 향상된 고분자 복합체 및 이를 포함하는 무연 솔더
CN104400257A (zh) * 2014-10-29 2015-03-11 重庆理工大学 一种免清洗无铅低银焊膏用助焊剂
CN104889595A (zh) * 2015-06-09 2015-09-09 郴州市金贵银业股份有限公司 一种氧化石墨烯/纳米银复合钎焊材料及其制备方法
US20150343569A1 (en) * 2013-01-28 2015-12-03 Mitsubishi Materials Corporation Sn-ag-cu-based solder powder and solder paste using said powder
CN111014718A (zh) * 2019-12-17 2020-04-17 昆明理工大学 一种简易条件下制备纳米银线的方法
CN111151912A (zh) * 2020-03-23 2020-05-15 东北石油大学 一种用于SiC陶瓷钎焊的Sn基钎料及其制备方法
CN111618475A (zh) * 2020-06-04 2020-09-04 重庆大学 焊膏材料、焊膏材料的制备方法和电子元件的封装方法
CN112935615A (zh) * 2021-03-26 2021-06-11 云南锡业集团(控股)有限责任公司研发中心 一种添加抗跌落颗粒的低温焊膏

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101279405A (zh) * 2008-05-23 2008-10-08 北京工业大学 纳米结构增强的锡银铜基无铅复合钎料及其制备方法
CN101462209A (zh) * 2009-01-16 2009-06-24 深圳市唯特偶化工开发实业有限公司 一种适用于低银无铅焊膏制备用松香型无卤素助焊剂
CN101564805A (zh) * 2009-05-27 2009-10-28 北京工业大学 低银SnAgCu无铅焊膏用新型环保型助焊剂
JP2011104649A (ja) * 2009-11-12 2011-06-02 Tamura Seisakusho Co Ltd 鉛フリーはんだナノ粒子を使用したソルダーペースト
WO2011151894A1 (ja) * 2010-06-01 2011-12-08 千住金属工業株式会社 鉛フリーソルダペースト
CN102400121A (zh) * 2011-11-05 2012-04-04 上海上大瑞沪微系统集成技术有限公司 用于强化复合无铅焊料的纳米陶瓷颗粒的制备工艺
CN102513732A (zh) * 2011-12-15 2012-06-27 中南大学 一种松香型无卤素免清洗助焊剂及其制备和应用
KR20130072400A (ko) * 2011-12-22 2013-07-02 울산대학교 산학협력단 전기전도성, 열안정성 및 기계적 특성이 향상된 고분자 복합체 및 이를 포함하는 무연 솔더
US20150343569A1 (en) * 2013-01-28 2015-12-03 Mitsubishi Materials Corporation Sn-ag-cu-based solder powder and solder paste using said powder
CN104400257A (zh) * 2014-10-29 2015-03-11 重庆理工大学 一种免清洗无铅低银焊膏用助焊剂
CN104889595A (zh) * 2015-06-09 2015-09-09 郴州市金贵银业股份有限公司 一种氧化石墨烯/纳米银复合钎焊材料及其制备方法
CN111014718A (zh) * 2019-12-17 2020-04-17 昆明理工大学 一种简易条件下制备纳米银线的方法
CN111151912A (zh) * 2020-03-23 2020-05-15 东北石油大学 一种用于SiC陶瓷钎焊的Sn基钎料及其制备方法
CN111618475A (zh) * 2020-06-04 2020-09-04 重庆大学 焊膏材料、焊膏材料的制备方法和电子元件的封装方法
CN112935615A (zh) * 2021-03-26 2021-06-11 云南锡业集团(控股)有限责任公司研发中心 一种添加抗跌落颗粒的低温焊膏

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BRIDGES DENZEL: "Diffusion and wetting behaviors of Ag nanoparticle and Ag nanowire pastes for laser brazing of Inconel 718", WELDING IN THE WORLD, vol. 62, no. 1, pages 169 - 176 *
LI ZHI HAO: "Influence of copper nanowires on properties and microstructure of low-Ag Sn-1Ag-0.5Cu solders", JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS, vol. 33, no. 10, pages 7923 - 7932, XP037779251, DOI: 10.1007/s10854-022-07941-3 *
甘贵生;杜长华;许惠斌;杨滨;李镇康;王涛;黄文超;: "纳米Ni颗粒增强无铅Sn-Cu-Ag复合钎料搅拌辅助低温钎焊技术", 中国有色金属学报, no. 10, pages 161 - 167 *
白海龙等: "不同长径比纳米银线对焊料金属间化合物形貌及厚度的影响", 有色金属工程, vol. 12, pages 12 - 21 *
赵智力;刘鑫;李睿;王鹏;: "纳米颗粒增强SAC0307锡膏焊点的分析", 焊接学报, no. 09, pages 95 - 98 *

Also Published As

Publication number Publication date
CN115488546B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
Zhao et al. Effect of γ-Fe2O3 nanoparticles size on the properties of Sn-1.0 Ag–0.5 Cu nano-composite solders and joints
Pandher et al. Drop shock reliability of lead-free alloys-effect of micro-additives
Yao et al. Effects of multiple reflows on intermetallic morphology and shear strength of SnAgCu–xNi composite solder joints on electrolytic Ni/Au metallized substrate
Sujan et al. Interfacial reaction, ball shear strength and fracture surface analysis of lead-free solder joints prepared using cobalt nanoparticle doped flux
Bang et al. Intermetallic compound growth between Sn-Cu-Cr lead-free solder and Cu substrate
Bashir et al. Effect of Ni and Co nanoparticle-doped flux on microstructure of SAC305 solder matrix
Wang et al. A novel antioxidant and low-temperature Sn-Zn solder paste based on Zn@ Sn core-shell structure
JPWO2002034969A1 (ja) はんだ合金およびはんだ接合部
CN113492277B (zh) 一种具有金属镀层碳纳米管增强的低温锡膏材料及其制备方法
CN105057911A (zh) 一种二氧化钛纳米颗粒增强型锡银铜复合焊膏及制备方法
Aspalter et al. Hybrid solder joints: morphology and shear strength of Sn–3.0 Ag–0.5 Cu solder joints by adding ceramic nanoparticles through flux doping
Xu et al. Effect of CNTs on the intermetallic compound growth between Sn solder and Cu substrate during aging and reflowing
CN114293066A (zh) 一种含Ni的无铅低温焊料合金材料及其制备方法
CN115488546B (zh) 一种银纳米线改性锡银铜复合焊膏及其制备方法
CN110153587A (zh) 一种Sn基焊料及其制备方法
Fallahi et al. Modifying the mechanical properties of lead-free solder by adding iron and indium and using a lap joint test
CN1281372C (zh) SnZn系无铅钎料
CN101224526A (zh) Ni颗粒增强锡银基无铅复合钎料及其制备方法
Tay et al. Effect of addition Cobalt nanoparticles on Sn-Ag-Cu lead-free solder
TWI728842B (zh) 無鉛焊料及其製造方法
CN105935845B (zh) 一种碲化铋纳米颗粒强化锡银铜焊料及其使用方法
Chen et al. Investigation on the melting and tensile properties of Bi-containing SAC105 lead-free solder alloys
Wodak et al. Hybrid Solder Joints: Morphology and Mechanical Properties of lead-free Sn-based Solders with nano-sized Fe doped Flux
Wei et al. Effect of nano-Ag 3 Sn additions on wettability, interfacial intermetallic growth and mechanical properties of Zn–30Sn–1Ge solders on Cu substrates
Chen et al. Effects of alloying elements on the characteristics of Sn-Zn lead-free solder

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant