CN115482965A - 一种提升透明导电氧化物电导率和蓝光过滤效率的方法 - Google Patents

一种提升透明导电氧化物电导率和蓝光过滤效率的方法 Download PDF

Info

Publication number
CN115482965A
CN115482965A CN202211128109.4A CN202211128109A CN115482965A CN 115482965 A CN115482965 A CN 115482965A CN 202211128109 A CN202211128109 A CN 202211128109A CN 115482965 A CN115482965 A CN 115482965A
Authority
CN
China
Prior art keywords
conductivity
pressure
transparent conductive
blue light
normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211128109.4A
Other languages
English (en)
Other versions
CN115482965B (zh
Inventor
杨文革
刘旭强
刘罡
李娜娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Center For High Pressure Science & Technology Advanced Research
Original Assignee
Center For High Pressure Science & Technology Advanced Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Center For High Pressure Science & Technology Advanced Research filed Critical Center For High Pressure Science & Technology Advanced Research
Priority to CN202211128109.4A priority Critical patent/CN115482965B/zh
Publication of CN115482965A publication Critical patent/CN115482965A/zh
Priority to US18/468,600 priority patent/US20240092650A1/en
Application granted granted Critical
Publication of CN115482965B publication Critical patent/CN115482965B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种提升透明导电氧化物电导率和蓝光过滤效率的方法,所述方法包括如下步骤:将基于氧化铟的透明导电材料置于高压装置的样品腔内,进行如下常温高压处理:在常温常压下对样品加压至51GPa,保持5min后卸压至常压,加压和卸压过程中检测电导率,常温高压处理前后检测蓝光过滤效率。与透明导电氧化物的传统掺杂工艺相比,通过常温高压处理使基于氧化铟的透明导电材料发生由立方结构到刚玉结构的不可逆相变,不仅可以同时提升基于氧化铟的透明导电材料的电导率和蓝光过滤效率,也可以保持在可见光的范围内460~800nm波长的透明度很高,平均透光率超过80%,满足实际应用。

Description

一种提升透明导电氧化物电导率和蓝光过滤效率的方法
技术领域
本发明涉及一种提升透明导电氧化物材料性能的方法,具体涉及一种提升透明导电氧化物材料电导率和蓝光过滤效率的方法,适用于太阳能电池、光电子器件、有机发光器件、有机光伏电池和透明场效应晶体管的透明导电氧化物材料。
背景技术
同时具有高电导率和高透明度的透明导电氧化物是现代半导体工业中最常用的透明电极材料,其广泛地用于太阳能电池、光电子器件、有机发光器件、有机光伏电池和透明场效应晶体管等领域。元素锡、钛、钼、钨、锆和氢等一种元素掺杂的氧化铟材料已经成为目前应用最广的透明导电氧化物,其作为透明电极的市场价值每年已经超过50亿美元。
目前,透明导电氧化物的研究热点是协同提高电导率和透明度,进一步提高作为透明电极的使用极限,从而减少应用于半导体器件的能耗。根据德鲁模型,电导率的大小与载流子浓度和载流子迁移率成正比。目前市场上掺杂氧化铟材料主要是在各种不同元素掺杂的氧化物或氧化物的组合前提下,采用磁控溅射、激光聚焦沉积等制备工艺,再结合热处理工艺来得到性能优异的透明导电氧化物。这种传统的制备方法在不改变氧化铟原有的立方结构的前提下,通过各种掺杂元素所引入的额外载流子来增加载流子浓度,进而提升电导率。但是,载流子浓度过高会导致强烈的光吸收,因此透明度会受限于载流子浓度。此外,尽管理论上掺杂引入的最大载流子浓度极高,电离杂质散射的过程也会导致透明导电氧化物材料的载流子迁移率受到的限制。
最近的报道表明,太阳能电池中的几种高能光诱导降解效应会降低透明导电氧化物材料作为透明电极的效率。蓝光作为一种波长为400~500nm的高能可见光,过度暴露于有害蓝光(400~460nm)可能会对视网膜中的感光细胞造成潜在的损害。因此,在评估透明导电氧化物材料的透明度时,应当重视蓝光的潜在危害。综上所述,如何克服透明导电氧化物材料中高导电性和高透明度之间的折衷并考虑蓝光过滤效率不仅是该材料设计技术的关键障碍,也成为科学家们长期以来研究的一个重要课题。
发明内容
本发明的目的是提供一种提升透明导电氧化物电导率和蓝光过滤效率的方法,使基于氧化铟的透明导电材料作为透明导电氧化物材料具有高电导率和高蓝光过滤效率,应用于太阳能电池、光电子器件、有机发光器件、有机光伏电池和透明场效应晶体管等领域。
本发明的目的是通过以下技术方案实现的:
一种提升透明导电氧化物电导率和蓝光过滤效率的方法,包括如下步骤:
将基于氧化铟的透明导电材料置于高压装置的样品腔内,进行如下常温高压处理:在常温常压下对样品加压至51GPa,保持5min后卸压至常压,加压和卸压过程中检测电导率,常温高压处理前后检测蓝光过滤效率。
本发明中,所述基于氧化铟的透明导电材料包括纯氧化铟和元素锡、钛、钼、钨、锆和氢中一种元素掺杂的氧化铟,其电导率大于10S/m,在可见光的范围内460~800nm波长的透明度的平均透光率超过75%。
本发明中,所述基于氧化铟的透明导电材料是由溶胶凝胶法制备出的立方结构的纯相钛掺杂氧化铟,具体制备方法如下:将含有原子百分比Ti/(In+Ti)=2.5at.%的钛酸四丁酯(C16H36O4Ti)的水合硝酸铟(InNO3·4.5H2O)乙醇溶液与柠檬酸(C6H8O7)乙醇溶液在室温下以体积比1:10混合;然后将混合溶液在50℃下利用磁力搅拌器搅拌,直至形成凝胶;之后将凝胶在烘箱中120℃干燥3h以去除有机物和水;最后将干燥的凝胶在空气气氛中500℃下退火9h后空冷至室温,得到钛掺杂氧化铟材料。在室温常压下,利用范德堡四探针法测试得到电导率为73.17S/m,通过在可见光的400~800nm波长范围内测试透过光谱,计算得到在400~460nm波长范围内的蓝光过滤效率是44.37%,在可见光的范围内460~800nm波长的透明度的平均透光率超过75%。
本发明中,所述高压装置为在密闭的样品腔内能够产生高压的装置,其样品腔由金刚石对顶砧(DAC)和垫片组成,垫片材料采用T301钢片,利用红宝石荧光峰标定压力的大小;垫片打孔后将样品放置于密闭样品腔中;检测电导率时无传压介质,在样品与高压装置产生短路处覆盖绝缘物质作为绝缘层,即:在垫片与金刚石对顶砧的砧面、侧棱接触处覆盖立方氮化硼作为绝缘层,选择4根直径为10μm的金线作为与钛掺杂氧化铟材料接触的电导率测试电极,外部与电导率测试系统连接的电极选择直径为170μm漆包铜线;检测蓝光过滤效率时选择硅油作为传压介质;金刚石对顶砧装置的样品腔内部压力逐步增大,进行电导率和蓝光过滤效率测试。
本发明中,所述电导率测试系统由Keithley 2182A型纳伏电压表、6221型电流源和7001转换器组成的,电导率检测使用范德堡四探针法进行高压下测试。
本发明中,所述检测蓝光过滤效率的方法为利用紫外-可见吸收分光光度计设备,先在可见光的400~800nm波长范围内测试透过光谱,然后计算在蓝光的400~460nm波长范围内的蓝光过滤效率,即:用100%减去在蓝光的400~460nm波长范围内的平均透光率,反推出钛掺杂氧化铟材料的蓝光过滤效率,平均透光率
Figure BDA0003848986550000041
(%)可以通过下式计算:
Figure BDA0003848986550000042
式中,T(λ)是特定波长λ的透光率,λ1和λ2分别是最小波长和最大波长;
在环境条件下,钛掺杂氧化铟与其他元素掺杂的氧化铟一样,通常是立方方铁锰矿型结构,这种结构的掺杂氧化铟已得到充分研究,而其他可能的亚稳态被严重忽视了。考虑到晶体结构的多晶型可以提供不同的物理特性,这些亚稳态材料可以具有热力学稳定相不具备的优异特性。因此,借助常温高压处理方法可以调整结构,从而改变电子结构来提升电导率和蓝光过滤效率。在上述常温高压处理过程中,加压17.5~40.2GPa的阶段,钛掺杂氧化铟发生结构相变,从常压方铁锰矿型结构变成高压刚玉结构;继续加压到51GPa,钛掺杂氧化铟继续保持高压刚玉结果;从51GPa卸压到常压的阶段,并没有观察到可逆的结构相变,高压刚玉结构的钛掺杂氧化铟保留至常压,成为常压下亚稳态。对比常温高压处理前后的电导率和蓝光过滤效率,发现常温高压处理后的钛掺杂氧化铟的电导率提升至6368.85S/m,较常温高压处理前提升87倍;蓝光过滤效率提升至77.02%,较常温高压处理前提升1.7倍;而且在可见光的范围内的460~800nm波长内的平均透光率仍然很高,超过80%,说明透明度很高。这种常温高压处理导致透明导电氧化物材料电导率和高蓝光过滤效率的提升不但表明压力工程是一种清洁而有效的工具,可以用于定制其他方式无法实现的功能材料,也为推进透明导电氧化技术的发展提供了一个新的方向。
相比于现有技术,本发明具有如下优点:
1、与透明导电氧化物的传统掺杂工艺相比,通过常温高压处理使基于氧化铟的透明导电材料材料发生由立方结构到刚玉结构的不可逆相变,不仅可以同时提升基于氧化铟的透明导电材料的电导率和蓝光过滤效率,也可以保持在可见光的范围内460~800nm波长的透明度很高,平均透光率超过80%,满足实际应用。
2、本发明的常温高压处理方法可以突破传统透明导电氧化技术掺杂工艺在电导率提升方面的限制,使基于氧化铟的透明导电材料具有高电导率和高蓝光过滤效率,可以作为透明导电氧化物材料,应用于太阳能电池、光电子器件、有机发光器件、有机光伏电池和透明场效应晶体管等领域。由于其具备抗电磁辐射、抗腐蚀、耐高温且不易被氧化的能力,增强了这种透明导电氧化物材料在有电磁辐射、腐蚀、高温和氧化的极端环境下的服役能力。
附图说明
图1是实施例1条件下的钛掺杂氧化铟可见光范围(400~800nm)的透过光谱结果;
图2是实施例2条件下的钛掺杂氧化铟可见光范围(400~800nm)的透过光谱结果;
图3是实施例3条件下的钛掺杂氧化铟加压过程的电导率测试结果;
图4是实施例4条件下的钛掺杂氧化铟卸压过程的电导率测试结果;
图5是实施例5条件下的钛掺杂氧化铟卸压后的电导率结果;
图6是实施例6条件下的氧化铟样品可见光范围(400~800nm)的透过光谱结果;
图7是实施例7条件下的氧化铟样品可见光范围(400~800nm)的透过光谱结果;
图8是实施例8条件下的氧化铟加压过程的电导率测试结果;
图9是实施例9条件下的氧化铟卸压过程的电导率测试结果。
具体实施方式
下面结合实施例对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
实施例1
本实施例作为对比例,基于氧化铟的透明导电材料是由溶胶凝胶法制备得到的纯相钛掺杂氧化铟粉末,将样品压实放在载玻片上进行常压室温条件下的电导率和蓝光过滤效率测试。测试结果显示常压下的电导率为73.17S/m。
在室温条件下,利用紫外-可见吸收分光光度计测试,得到钛掺杂氧化铟样品的可见光(400~800nm)范围内的透过光谱结果见图1。通过公式计算可得:400~460nm波长范围内的平均透光率为55.63%,460~800nm波长范围内的平均透光率为84.36%,400~460nm波长范围内的蓝光过滤效率为44.37%。
实施例2
本实施例采用与实施例1相同的钛掺杂氧化铟粉末。将实施例1中压实后的样品置于金刚石对顶砧密封样品腔进行常温高压处理,硅油为传压介质,利用红宝石荧光峰来标定压力的大小。
常温高压处理的步骤如下:金刚石对顶砧装置样品腔内部压力逐步从常压增大至51GPa,保持5min后,降低压力到常压,完成常温高压处理。
在室温条件下,利用紫外-可见吸收分光光度计对常温高压处理后的样品进行测试,样品在可见光(400~800nm)范围内的透过光谱结果见图2。通过公式计算可得:400~460nm波长范围内的平均透光率为22.98%,460~800nm波长范围内的平均透光率为81.31%,400~460nm波长范围内的蓝光过滤效率为77.02%。
实施例3
本实施例采用与实施例1相同的钛掺杂氧化铟粉末。将样品填满金刚石对顶砧密封样品腔进行常温高压处理,无传压介质,利用红宝石荧光峰来标定压力的大小。金刚石对顶砧装置样品腔内部压力逐步从常压增大至51GPa,在该加压过程中取几个压力点保持5min后测试样品的电导率,具体结果见图3。
由图3可以看出,从常压加压至16.7GPa的压力范围内,样品的电导率从73.17S/m逐渐降低到4.90S/m;随着金刚石对顶砧密封样品腔内压力进一步增加到40GPa,发现压力诱导结构相变,驱动样品电导率增大;随后在40~51GPa的加压过程中电导率略有减小,说明压力诱导的结构相变完成。
实施例4
将实施例3中的金刚石对顶砧装置样品腔内部压力从51GPa逐渐降低至常压,在该卸压过程中取几个压力点保持5min后测试样品的电导率,具体结果见图4。
由图4可以看出,随着金刚石对顶砧装置样品腔内部压力的逐渐降低,样品的电导率从51GPa时的17.59S/m增大至2GPa的3968.22S/m。整个卸压过程中电导率没有明显的转折,表明卸压过程中没有发生结构相变。结合加压过程中电导率变化,在整个常温高压处理中,样品发生了一个不可逆的结构相变,导致样品电导率的提升。
实施例5
将实施例4中的常温高压处理后样品在常温常压下测试电导率,与实施例1中的电导率比对,也将实施例2常温高压处理后样品的蓝光过滤效率与实施例1中的蓝光过滤效率比对,具体结果见图5。
由图5可以看出,常温高压处理前后电导率的提升显著,从73.17S/m提升至6368.85S/m,增加87倍;蓝光过滤效率从44.37%提升至77.02%,增加1.7倍;同时常温高压处理前后的样品在可见光的范围内460~800nm的平均透光率仍然很高,超过80%,维持高透明度。这些结果证明常温高压处理通过压力驱动的结构相变来提升钛掺杂氧化铟材料的电导率和蓝光过滤效率,为推进透明导电氧化物技术的发展提供了一个新的方向。
实施例6
本实施例与实施例1-5不同的是,所述基于氧化铟的透明导电材料为纯氧化铟,购买于阿拉丁药品公司,纯度大于等于99.99%。将该样品压实放在载玻片上进行常压室温条件下的电导率和蓝光过滤效率测试。测试结果显示常压下的电导率为17.62S/m。
在室温条件下,利用紫外-可见吸收分光光度计测试,得到氧化铟样品的可见光(400~800nm)范围内的透过光谱结果见图6。通过公式计算可得:400~460nm波长范围内的平均透光率为25.11%,460~800nm波长范围内的平均透光率为84.19%,400~460nm波长范围内的蓝光过滤效率为74.89%。
实施例7
本实施例采用与实施例6相同的氧化铟粉末。将实施例6中压实后的样品置于金刚石对顶砧密封样品腔进行常温高压处理,硅油为传压介质,利用红宝石荧光峰来标定压力的大小。
常温高压处理的步骤如下:金刚石对顶砧装置样品腔内部压力逐步从常压增大至51GPa,保持5min后,降低压力到常压,完成常温高压处理。
在室温条件下,利用紫外-可见吸收分光光度计对常温高压处理后的样品进行测试,样品在可见光(400~800nm)范围内的透过光谱结果见图7。通过公式计算可得:400~460nm波长范围内的平均透光率为6.85%,460~800nm波长范围内的平均透光率为80.48%,400~460nm波长范围内的蓝光过滤效率为93.15%。
实施例8
本实施例采用与实施例6相同的氧化铟粉末。将样品填满金刚石对顶砧密封样品腔进行常温高压处理,无传压介质,利用红宝石荧光峰来标定压力的大小。金刚石对顶砧装置样品腔内部压力逐步从常压增大至51GPa,在该加压过程中取几个压力点保持5min后测试样品的电导率,具体结果见图8。
由图8可以看出,从常压加压至18.7GPa的压力范围内,样品的电导率从17.62S/m逐渐降低到0.007S/m;随着金刚石对顶砧密封样品腔内压力进一步增加到30.5GPa,发现压力诱导结构相变,驱动样品电导率增大;随后在30.5~51GPa的加压过程中电导率变化稳定,说明压力诱导的结构相变完成。
实施例9
将实施例8中的金刚石对顶砧装置样品腔内部压力从51GPa逐渐降低至常压,在该卸压过程中取几个压力点保持5min后测试样品的电导率,具体结果见图9。
由图9可以看出,随着金刚石对顶砧装置样品腔内部压力的逐渐降低,样品的电导率从51GPa时的0.83S/m增大至常压的1078.10S/m。整个卸压过程中电导率没有明显的转折,表明卸压过程中没有发生结构相变。结合加压过程中电导率变化,在整个常温高压处理中,样品发生了一个不可逆的结构相变,导致样品电导率的提升。
实施例10
本实施例与实施例1-9不同的是,所述基于氧化铟的透明导电材料为锡掺杂氧化铟。

Claims (7)

1.一种提升透明导电氧化物电导率和蓝光过滤效率的方法,其特征在于所述方法包括如下步骤:
将基于氧化铟的透明导电材料置于高压装置的样品腔内,进行如下常温高压处理:在常温常压下对样品加压至51GPa,保持5min后卸压至常压。
2.根据权利要求1所述的提升透明导电氧化物电导率和蓝光过滤效率的方法,其特征在于所述基于氧化铟的透明导电材料为纯氧化铟或掺杂锡、钛、钼、钨、锆和氢中一种元素的氧化铟。
3.根据权利要求1所述的提升透明导电氧化物电导率和蓝光过滤效率的方法,其特征在于所述基于氧化铟的透明导电材料的电导率大于10S/m,在可见光的范围内460~800nm波长的透明度的平均透光率超过75%。
4.根据权利要求1所述的提升透明导电氧化物电导率和蓝光过滤效率的方法,其特征在于所述加压和卸压过程中检测电导率,常温高压处理前后检测蓝光过滤效率,利用红宝石荧光峰标定压力的大小。
5.根据权利要求1或4所述的提升透明导电氧化物电导率和蓝光过滤效率的方法,其特征在于所述检测电导率时,在样品与高压装置产生短路处覆盖绝缘物质作为绝缘层。
6.根据权利要求1或4所述的提升透明导电氧化物电导率和蓝光过滤效率的方法,其特征在于所述检测电导率的方法为范德堡四探针法。
7.根据权利要求1或4所述的提升透明导电氧化物电导率和蓝光过滤效率的方法,其特征在于所述检测蓝光过滤效率的方法为利用紫外-可见吸收分光光度计设备,先在可见光的400~800nm波长范围内测试透过光谱,然后计算在蓝光的400~460nm波长范围内的蓝光过滤效率。
CN202211128109.4A 2022-09-16 2022-09-16 一种提升透明导电氧化物电导率和蓝光过滤效率的方法 Active CN115482965B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211128109.4A CN115482965B (zh) 2022-09-16 2022-09-16 一种提升透明导电氧化物电导率和蓝光过滤效率的方法
US18/468,600 US20240092650A1 (en) 2022-09-16 2023-09-15 Method for improving conductivity and blue light filtering efficiency of transparent conducting oxide (tco)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211128109.4A CN115482965B (zh) 2022-09-16 2022-09-16 一种提升透明导电氧化物电导率和蓝光过滤效率的方法

Publications (2)

Publication Number Publication Date
CN115482965A true CN115482965A (zh) 2022-12-16
CN115482965B CN115482965B (zh) 2024-06-04

Family

ID=84424019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211128109.4A Active CN115482965B (zh) 2022-09-16 2022-09-16 一种提升透明导电氧化物电导率和蓝光过滤效率的方法

Country Status (2)

Country Link
US (1) US20240092650A1 (zh)
CN (1) CN115482965B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219315A (ja) * 1990-12-19 1992-08-10 Dowa Mining Co Ltd 酸化インジウム粉の製造方法
JPH05112866A (ja) * 1991-03-20 1993-05-07 Tosoh Corp 低温成膜用itoタ−ゲツト
JPH05239632A (ja) * 1992-02-28 1993-09-17 Hitachi Metals Ltd 高密度itoターゲットの製造方法
JPH09228036A (ja) * 1996-02-27 1997-09-02 Mitsui Mining & Smelting Co Ltd Itoスパッタリング用ターゲットの製造方法
JP2001073123A (ja) * 1999-09-02 2001-03-21 Sumitomo Metal Mining Co Ltd Itoターゲットおよびその製造方法
JP2004143484A (ja) * 2002-10-22 2004-05-20 Sumitomo Metal Mining Co Ltd 高濃度酸化スズitoターゲットとその製造方法
US20040246431A1 (en) * 2001-05-14 2004-12-09 Tadahiro Asada Liquid crystal display device and its production method
JP2005084425A (ja) * 2003-09-09 2005-03-31 Sumitomo Metal Mining Co Ltd 液晶セル
JP2012126937A (ja) * 2010-12-13 2012-07-05 Sumitomo Metal Mining Co Ltd Itoスパッタリングターゲットとその製造方法
CN103276271A (zh) * 2013-05-07 2013-09-04 常州市茂盛特合金制品有限公司 一种高纯高活性钼球及制备方法
CN108529664A (zh) * 2018-05-24 2018-09-14 吉林大学 一种新结构材料镱镁铟氧化物及其制备方法
CN109628767A (zh) * 2018-12-17 2019-04-16 中铝广西国盛稀土开发有限公司 一种常温高压离子交换制备超高纯稀土氧化物的方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219315A (ja) * 1990-12-19 1992-08-10 Dowa Mining Co Ltd 酸化インジウム粉の製造方法
JPH05112866A (ja) * 1991-03-20 1993-05-07 Tosoh Corp 低温成膜用itoタ−ゲツト
JPH05239632A (ja) * 1992-02-28 1993-09-17 Hitachi Metals Ltd 高密度itoターゲットの製造方法
JPH09228036A (ja) * 1996-02-27 1997-09-02 Mitsui Mining & Smelting Co Ltd Itoスパッタリング用ターゲットの製造方法
JP2001073123A (ja) * 1999-09-02 2001-03-21 Sumitomo Metal Mining Co Ltd Itoターゲットおよびその製造方法
US20040246431A1 (en) * 2001-05-14 2004-12-09 Tadahiro Asada Liquid crystal display device and its production method
JP2004143484A (ja) * 2002-10-22 2004-05-20 Sumitomo Metal Mining Co Ltd 高濃度酸化スズitoターゲットとその製造方法
JP2005084425A (ja) * 2003-09-09 2005-03-31 Sumitomo Metal Mining Co Ltd 液晶セル
JP2012126937A (ja) * 2010-12-13 2012-07-05 Sumitomo Metal Mining Co Ltd Itoスパッタリングターゲットとその製造方法
CN103276271A (zh) * 2013-05-07 2013-09-04 常州市茂盛特合金制品有限公司 一种高纯高活性钼球及制备方法
CN108529664A (zh) * 2018-05-24 2018-09-14 吉林大学 一种新结构材料镱镁铟氧化物及其制备方法
CN109628767A (zh) * 2018-12-17 2019-04-16 中铝广西国盛稀土开发有限公司 一种常温高压离子交换制备超高纯稀土氧化物的方法

Also Published As

Publication number Publication date
US20240092650A1 (en) 2024-03-21
CN115482965B (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
Chu et al. Improvement of the UV-sensing performance of Ga-doped ZnO nanostructures via a wet chemical solution at room temperature
Gupta et al. Preparation and characterization of nanostructured ZnO thin films for photoelectrochemical splitting of water
Tabib et al. Investigations on electrical conductivity and dielectric properties of Na doped ZnO synthesized from sol gel method
Jayachandraiah et al. Erbium induced raman studies and dielectric properties of Er-doped ZnO nanoparticles
Huang et al. Colossal permittivity and dielectric relaxation of (Li, In) Co-doped ZnO ceramics
Khan et al. Structural, dielectric and magnetic properties of (Al, Ni) co-doped ZnO nanoparticles
Liu et al. Luminescence of delafossite-type CuAlO2 fibers with Eu substitution for Al cations
Xue et al. Giant tunability of upconversion photoluminescence in Er 3+-doped (K, Na) NbO 3 single crystals
Senapati et al. Wide-range thermometry at micro/nano length scales with In2O3 octahedrons as optical probes
Mohan et al. A systematic influence of Cu doping on structural and opto-electrical properties of fabricated Yb2O3 thin films for Al/Cu-Yb2O3/p-Si Schottky diode applications
Zidi et al. Transport properties and photo electrochemical characterization of oxygen-deficient ASnO3− δ (A= Ca, Sr and Ba)
Bashir et al. The impact of laser energy on the photoresponsive characteristics of CdO/Si visible light photodetector
Singh et al. Preparation and characterization of Eu-doped SnO 2 nanostructures for hydrogen gas sensing
Sedky et al. On the dielectric behaviors of Zn1− x− y Fe x M y O ceramics for nonlinear optical and solar cell devices
Lu et al. A study for the influences of temperatures on ZnGa2O4 films and solar-blind sensing performances
Louiza et al. Structural and luminescence properties of pure and Al-doped ZnO nanopowders
Çolak et al. Studies on structural and electrical properties of copper-doped zinc oxide powders prepared by a solid state method at high temperatures
Parhoodeh et al. Synthesis, characterization and study of band gap variations of vanadium doped indium oxide nanoparticles
Liao et al. Synergistic effect of co-doping of nano-sized ZnO and Nb2O5 on the enhanced nonlinear coefficient of TiO2 varistor with low breakdown voltage
Chen et al. Effect of ZnAl2O4 content on the microstructure and electrical properties of ZnO-based compound conductive ceramics
Sinha et al. Anomalous electrical transport properties of CdSe quantum dots at and below room temperature
Shi et al. Enhanced photovoltaic property based on reduced leakage current and band gap in Nd-doped BiFeO3 films
Sun et al. Colossal dielectric behavior and dielectric anomalies in Sr 2 TiCrO 6 ceramics
CN115482965B (zh) 一种提升透明导电氧化物电导率和蓝光过滤效率的方法
Ahmad et al. Effect of hydrogen annealing on structure and dielectric properties of zinc oxide nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant