CN115459923A - A memristor-based ring oscillator PUF circuit and its application method - Google Patents
A memristor-based ring oscillator PUF circuit and its application method Download PDFInfo
- Publication number
- CN115459923A CN115459923A CN202211057814.XA CN202211057814A CN115459923A CN 115459923 A CN115459923 A CN 115459923A CN 202211057814 A CN202211057814 A CN 202211057814A CN 115459923 A CN115459923 A CN 115459923A
- Authority
- CN
- China
- Prior art keywords
- terminal
- memristor
- ring oscillator
- module
- oscillator circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000004044 response Effects 0.000 claims abstract description 34
- 230000005284 excitation Effects 0.000 claims abstract description 18
- 101100283966 Pectobacterium carotovorum subsp. carotovorum outN gene Proteins 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims 1
- 238000010801 machine learning Methods 0.000 abstract description 15
- 230000009471 action Effects 0.000 abstract description 3
- 230000010355 oscillation Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000013178 mathematical model Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 102100038740 Activator of RNA decay Human genes 0.000 description 1
- 101000741919 Homo sapiens Activator of RNA decay Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3271—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using challenge-response
- H04L9/3278—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using challenge-response using physically unclonable functions [PUF]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/70—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
- G06F21/71—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
- G06F21/73—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information by creating or determining hardware identification, e.g. serial numbers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/12—Details relating to cryptographic hardware or logic circuitry
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Manipulation Of Pulses (AREA)
Abstract
本发明涉及一种基于忆阻器的环形振荡器PUF电路及其使用方法。其技术方案是:所述环形振荡器PUF电路由随机延迟电路(101)、第1环形振荡器电路(102)、第2环形振荡器电路(106)、第1计数器(103)、第2计数器(105)和数字比较器(104)组成。两个环形振荡电路所产生的方波频率取决于忆阻器模块(304)中模块忆阻器(404)的阻值。本发明以忆阻器模块(304)中模块忆阻器(404)高阻分布的随机性作为主要熵源,在随机延迟电路(101)的作用下,根据输入的激励电压信号选中模块忆阻器(404),随机减小所选中模块忆阻器(404)的阻值,然后对两个环形振荡器电路产生的方波频率进行比较得出响应。本发明具有抗机器学习能力强、硬件消耗小和核心性能指标良好的特点。
The invention relates to a memristor-based ring oscillator PUF circuit and a method for using the same. Its technical scheme is: described ring oscillator PUF circuit is made of random delay circuit (101), the 1st ring oscillator circuit (102), the 2nd ring oscillator circuit (106), the 1st counter (103), the 2nd counter (105) and a digital comparator (104). The frequency of the square wave generated by the two ring oscillating circuits depends on the resistance value of the module memristor (404) in the memristor module (304). In the present invention, the randomness of the high-resistance distribution of the module memristor (404) in the memristor module (304) is used as the main entropy source, and under the action of the random delay circuit (101), the module memristor is selected according to the input excitation voltage signal The memristor (404) randomly reduces the resistance value of the selected module memristor (404), and then compares the square wave frequencies generated by the two ring oscillator circuits to obtain a response. The invention has the characteristics of strong anti-machine learning ability, low hardware consumption and good core performance index.
Description
技术领域technical field
本发明属于PUF电路技术领域。具体涉及一种基于忆阻器的环形振荡器PUF电路及其使用方法。The invention belongs to the technical field of PUF circuits. In particular, it relates to a memristor-based ring oscillator PUF circuit and a method for using the same.
背景技术Background technique
物理不可克隆函数(PhysicallyUnclonable Function,PUF)在硬件安全领域作为一种全新的硬件安全保护方案备受人们的广泛关注。PUF是研究人员受人体指纹启发而创造出的概念,每个人的指纹都不同,因而指纹可以作为人体的唯一标识符,硬件设备在相同的生产工艺下所生产的同一批产品在参数上会存在微小的差异,这种差异是随机的,不可控的,PUF则是提取这种差异作为硬件设备的指纹,也就是硬件设备的唯一标识符。PUF具有输入和输出信号,它的输入信号被称作激励(Challenge),输出信号被称为响应(Response)。输入任意激励都将产生独特且不可预测的响应,每个激励都有其唯一对应的响应。一个激励和其对应的响应称为激励响应对(Challenge Response Pairs:CRPs)。PUF具有唯一性和随机性等特性,即PUF一旦生产出来便是独一无二的,连生产厂家也无法复制,利用这些性质,PUF主要用于硬件安全领域,尤其是在硬件设备身份认证和防克隆等安全问题上具有独特的优势。Physically Unclonable Function (Physically Unclonable Function, PUF) has attracted widespread attention as a new hardware security protection scheme in the field of hardware security. PUF is a concept created by researchers inspired by human fingerprints. Everyone's fingerprints are different, so fingerprints can be used as the unique identifier of the human body. The same batch of products produced by hardware devices under the same production process will have different parameters. Small differences, this difference is random and uncontrollable, PUF extracts this difference as the fingerprint of the hardware device, which is the unique identifier of the hardware device. PUF has input and output signals, its input signal is called challenge (Challenge), and the output signal is called response (Response). Inputting any stimulus will produce a unique and unpredictable response, and each stimulus has its own unique response. A stimulus and its corresponding response are called Challenge Response Pairs (CRPs). PUF has the characteristics of uniqueness and randomness, that is, once PUF is produced, it is unique and cannot be copied by the manufacturer. Taking advantage of these properties, PUF is mainly used in the field of hardware security, especially in hardware device authentication and anti-cloning. It has a unique advantage in security issues.
PUF根据CRPs的数量可以分为强PUF和弱PUF,强PUF拥有大量的CRPs,一般应用在身份认证中;弱PUF一般只有少量的CRPs,应用在密钥生成中。环形振荡器PUF(RO PUF)是一种经典的强PUF。RO PUF具有较高的可靠性,并且在电路结构上不要求严格的对称,这就减小了生产制造的难度,但是RO PUF每次产生不同的响应时需要选择不同的两个环形振荡电路进行比较,因此,RO PUF具有较大的硬件消耗和功耗。PUF can be divided into strong PUF and weak PUF according to the number of CRPs. Strong PUF has a large number of CRPs and is generally used in identity authentication; weak PUF generally only has a small amount of CRPs and is used in key generation. Ring oscillator PUF (RO PUF) is a classic strong PUF. RO PUF has high reliability and does not require strict symmetry in the circuit structure, which reduces the difficulty of manufacturing, but RO PUF needs to select two different ring oscillation circuits each time it produces a different response. In comparison, therefore, RO PUF has larger hardware consumption and power consumption.
无论是强PUF还是弱PUF,一旦对手能够高精度地预测其CRPs,那么它们都不再安全。机器学习可以实现PUF数学模型的克隆,以高精度地预测其CRPs,特别是电路线性结构较强和CRPs对较多的大多数强PUF,机器学习建模攻击的效果更好。研究人员通过实验发现,对于现有的主要强PUF,如Arbiter PUF和RO PUF等,机器学习建模的准确率可达90%以上。Regardless of whether it is a strong PUF or a weak PUF, once the adversary can predict its CRPs with high precision, they are no longer safe. Machine learning can realize the cloning of PUF mathematical models to predict its CRPs with high precision, especially for most strong PUFs with strong circuit linear structure and more CRPs pairs, the effect of machine learning modeling attack is better. The researchers found through experiments that for the existing main strong PUFs, such as Arbiter PUF and RO PUF, the accuracy rate of machine learning modeling can reach more than 90%.
Loong J T H等人(Loong J T H,HashimNAN,HamidM S,et al.Performanceanalysis of CMOS-memristorhybridring oscillatorPhysically Unclonable Function(RO-PUF)[C]//2016IEEE International Conference on Semiconductor Electronics(ICSE).IEEE,2016:304-307.)提出了一种基于忆阻器的RO PUF电路。该设计使用忆阻器代替传统RO PUF电路中CMOS反相器的PMOS晶体管,利用忆阻器阻值变化具有非线性的特点,使得振荡器的振荡频率更随机,PUF电路具有更好的随机性。但该PUF电路仍具有传统ROPUF电路难以抵抗机器学习建模攻击的缺点。Loong J T H et al. (Loong J T H, HashimNAN, Hamid M S, et al.Performance analysis of CMOS-memristorhybridring oscillatorPhysically Unclonable Function(RO-PUF)[C]//2016IEEE International Conference on Semiconductor Electronics(ICSE).IEEE,2016:304- 307.) proposed a memristor-based RO PUF circuit. This design uses a memristor to replace the PMOS transistor of the CMOS inverter in the traditional RO PUF circuit, and uses the non-linear characteristics of the resistance change of the memristor to make the oscillation frequency of the oscillator more random, and the PUF circuit has better randomness . However, the PUF circuit still has the disadvantage that traditional ROPUF circuits are difficult to resist machine learning modeling attacks.
“一种基于忆阻器的强PUF”(CN 109495272 A)专利技术,该技术利用2T2R作为忆阻器阵列的基本单元,通过比较忆阻器阵列中两列通路的电流产生唯一的响应值,拥有面积利用率高,可配置和重复利用的特征,具有优异的随机性和抗建模攻击能力。但是该强PUF电路需要采用2T2R忆阻器阵列,其电流比较方式对于读取电路的精度要求较高;同时,其对于模型的抗攻击能力只是通过较强的随机性实现,事实上并不能完全规避机器学习的攻击。"A strong PUF based on memristor" (CN 109495272 A) patent technology, which uses 2T2R as the basic unit of the memristor array, and generates a unique response value by comparing the currents of the two columns of the memristor array, It has the characteristics of high area utilization, configurability and reuse, and has excellent randomness and resistance to modeling attacks. However, this strong PUF circuit needs to use a 2T2R memristor array, and its current comparison method requires high precision for the reading circuit; at the same time, its anti-attack ability to the model is only realized through strong randomness, and in fact it cannot be completely Avoid machine learning attacks.
“一种基于RRAM的高效可重构环形振荡器PUF电路”(CN 113707201 A)专利技术,该技术将RRAM阵列和环形振荡PUF电路相结合,利用RRAM处于高阻态时阻值的随机分布作为PUF电路熵源。该PUF电路根据施加的激励通过行解码器和列选择器在RRAM阵列中选择相应的RRAM参与到环形振荡器电路中,最后分别利用两个计数器对环形振荡器电路所产生的脉冲信号进行计数,通过比较计数值的大小得出响应。该电路设计利用RRAM阵列这种形式虽大大缩小了电路面积并且通过重构实现了抗机器学习的能力。但是该PUF电路是根据激励每次选中RRAM阵列中的部分RRAM参与到环形振荡器电路中,未选中的RRAM会造成熵源的浪费,核心性能指标差。"A high-efficiency reconfigurable ring oscillator PUF circuit based on RRAM" (CN 113707201 A) patented technology, which combines the RRAM array and the ring oscillator PUF circuit, and uses the random distribution of resistance when RRAM is in a high-impedance state as a PUF circuit entropy source. According to the applied excitation, the PUF circuit selects the corresponding RRAM in the RRAM array through the row decoder and the column selector to participate in the ring oscillator circuit, and finally uses two counters to count the pulse signals generated by the ring oscillator circuit. Response is obtained by comparing the magnitude of the count value. The circuit design uses the form of RRAM array to greatly reduce the circuit area and realize the ability of anti-machine learning through reconfiguration. However, the PUF circuit selects part of the RRAMs in the RRAM array to participate in the ring oscillator circuit each time according to the incentive, and the unselected RRAMs will cause waste of entropy sources and poor core performance indicators.
“变频环形振荡器PUF电路”(CN 106372539 A)专利技术,该技术可以通过配置环形振荡器中反相器的个数来改变振荡器产生的振荡频率,由于振荡器的振荡频率不固定,攻击者很难通过数学建模的方法建立其对应的数学模型,使得该PUF电路具有较强的抗机器学习能力。但该PUF电路每次产生不同的响应时需要选择不同的两个环形振荡器进行比较,并且需要额外的资源实现对环形振荡器的配置,因此该PUF电路硬件消耗较大。"Frequency Variable Ring Oscillator PUF Circuit" (CN 106372539 A) patented technology, which can change the oscillation frequency generated by the oscillator by configuring the number of inverters in the ring oscillator. Since the oscillation frequency of the oscillator is not fixed, the attack It is difficult for the author to establish its corresponding mathematical model through the method of mathematical modeling, so that the PUF circuit has a strong ability to resist machine learning. However, each time the PUF circuit generates different responses, two different ring oscillators need to be selected for comparison, and additional resources are required to configure the ring oscillators, so the hardware consumption of the PUF circuit is large.
发明内容Contents of the invention
本发明旨在克服现有技术的缺陷,目的是提出一种具有抗机器学习能力强、硬件消耗小和核心性能指标良好的基于忆阻器的环形振荡器PUF电路及其使用方法。The present invention aims to overcome the defects of the prior art, and aims to propose a memristor-based ring oscillator PUF circuit with strong anti-machine learning ability, low hardware consumption and good core performance indicators and its application method.
为实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
所述基于忆阻器的环形振荡器PUF电路由随机延迟电路、第1环形振荡器电路、第2环形振荡器电路、第1计数器、第2计数器和数字比较器组成。The memristor-based ring oscillator PUF circuit is composed of a random delay circuit, a first ring oscillator circuit, a second ring oscillator circuit, a first counter, a second counter and a digital comparator.
随机延迟电路的端子Vpulse与电压输入端子Vpl连接,随机延迟电路的端子Vc12、……、Vci2、……、VcN2与对应的电压输入端子Vc1、……、Vci、……、VcN连接;随机延迟电路的端子Vdelay与第1环形振荡器电路的端子Adly1、第2环形振荡器电路的端子Adly2分别连接。The terminal V pulse of the random delay circuit is connected to the voltage input terminal V pl , and the terminals V c12 , ..., V ci2 , ..., V cN2 of the random delay circuit are connected to the corresponding voltage input terminals V c1 , ..., V ci , ... . . . are connected to V cN ; the terminal V delay of the random delay circuit is connected to the terminal A dly1 of the first ring oscillator circuit and the terminal A dly2 of the second ring oscillator circuit, respectively.
第1环形振荡器电路的端子Avdd1、第2环形振荡器电路的端子Avdd2分别与电压输入端子Vvdd连接,第1环形振荡器电路的端子Achlg1、第2环形振荡器电路的端子Achlg2分别与电压输入端子Vchlg连接,第1环形振荡器电路的端子Ard1、第2环形振荡器电路的端子Ard2分别与电压输入端子Vrd连接,第1环形振荡器电路的端子Acr01、第2环形振荡器电路的端子Acr02分别与电压输入端子Vcr0连接,第1环形振荡器电路的端子Acr11、第2环形振荡器电路的端子Acr12分别与电压输入端子Vcr1连接;第1环形振荡器电路的端子Ac11、……、Aci1、……、AcN1与对应的电压输入端子Vc1、……、Vci、……、VcN连接,第2环形振荡器电路的端子Ac12、……、Aci2、……、AcN2与对应的电压输入端子Vc1、……、Vci、……、VcN连接;第1环形振荡器电路的端子Ars1、第2环形振荡器电路的端子Ars2分别与电压输入端子Vrs连接;第1环形振荡器电路的端子Acr21、第2环形振荡器电路的端子Acr22分别与电压输入端子Vcr2连接;第1环形振荡器电路的端子fout1与第1计数器的端子A10连接,第2环形振荡器电路的端子fout2与第2计数器的端子A20连接。The terminal A vdd1 of the first ring oscillator circuit and the terminal A vdd2 of the second ring oscillator circuit are respectively connected to the voltage input terminal V vdd , and the terminal A chlg1 of the first ring oscillator circuit and the terminal A of the second ring oscillator circuit chlg2 is respectively connected to the voltage input terminal V chlg , the terminal Ard1 of the first ring oscillator circuit, the terminal Arrd2 of the second ring oscillator circuit are respectively connected to the voltage input terminal V rd , and the terminal A cr01 of the first ring oscillator circuit , the terminal A cr02 of the second ring oscillator circuit is respectively connected to the voltage input terminal V cr0 , the terminal A cr11 of the first ring oscillator circuit, and the terminal A cr12 of the second ring oscillator circuit are respectively connected to the voltage input terminal V cr1 ; Terminals A c11 , ..., A ci1 , ..., A cN1 of the first ring oscillator circuit are connected to corresponding voltage input terminals V c1 , ..., V ci , ..., V cN , and the second ring oscillator circuit The terminals A c12 , ..., A ci2 , ..., A cN2 are connected to the corresponding voltage input terminals V c1 , ..., V ci , ..., V cN ; the terminals A rs1 , the terminals A rs1 of the first ring oscillator circuit 2 The terminals A rs2 of the ring oscillator circuit are respectively connected to the voltage input terminal V rs ; the terminals A cr21 of the first ring oscillator circuit and the terminals A cr22 of the second ring oscillator circuit are respectively connected to the voltage input terminal V cr2 ; The terminal f out1 of the ring oscillator circuit is connected to the terminal A10 of the first counter, and the terminal f out2 of the second ring oscillator circuit is connected to the terminal A20 of the second counter.
第1计数器的端子A11与数字比较器的端子IN0连接,第2计数器的端子A21与数字比较器的端子IN1连接,数字比较器的端子Rout输出响应电压。The terminal A 11 of the first counter is connected to the terminal IN 0 of the digital comparator, the terminal A 21 of the second counter is connected to the terminal IN 1 of the digital comparator, and the terminal R out of the digital comparator outputs a response voltage.
在电压输入端子Vpl、Vvdd、Vchlg、Vrd、Vcr0、Vcr1、Vrs、Vcr2与端子GND之间施加对应的电压信号Upl、Uvdd、Uchlg、Urd、Ucr0、Ucr1、Urs、Ucr2,在电压输入端子Vc1、……、Vci、……、VcN与端子GND之间施加对应的电压信号Uc1、……、Uci、……、UcN。 Apply corresponding voltage signals U pl , U vdd , U chlg , U rd , U between voltage input terminals V pl , V vdd , V chlg , V rd , V cr0 , V cr1, V rs , V cr2 and terminal GND cr0 , U cr1 , U rs , U cr2 , apply corresponding voltage signals U c1 , ..., U ci , ... between voltage input terminals V c1 , ..., V ci , ..., V cN and terminal GND , U cN .
数字比较器的端子Rout输出响应电压。The terminal R out of the digital comparator outputs a response voltage.
所述随机延迟电路由N个延迟单元和NMOS晶体管组成,N为奇数;第1延迟单元的端子OUT与第2延迟单元的端子IN连接,……,第i-1延迟单元的端子OUT与第i延迟单元的端子IN连接,……,第N-1延迟单元的端子OUT与第N延迟单元的端子IN连接,第N延迟单元的端子OUT与NMOS晶体管的漏极连接。The random delay circuit is composed of N delay units and NMOS transistors, N is an odd number; the terminal OUT of the first delay unit is connected to the terminal IN of the second delay unit, ..., the terminal OUT of the i-1th delay unit is connected to the terminal IN of the i-1th delay unit The terminal IN of the i delay unit is connected, ..., the terminal OUT of the N-1th delay unit is connected to the terminal IN of the Nth delay unit, and the terminal OUT of the Nth delay unit is connected to the drain of the NMOS transistor.
第1延迟单元的端子IN分别与两个延迟电路忆阻器的端子AR0连接,两个延迟电路忆阻器的端子AR1与第1延迟电路选通器的端子1_CHAN和端子0_CHAN对应连接;所述第2延迟单元、……、第i延迟单元、……、第N延迟单元与第1延迟单元的结构相同。The terminal IN of the first delay unit is respectively connected to the terminal A R0 of the two delay circuit memristors, and the terminal A R1 of the two delay circuit memristors is correspondingly connected to the terminal 1_CHAN and the terminal 0_CHAN of the first delay circuit selector; The second delay unit, ..., the i-th delay unit, ..., the N-th delay unit have the same structure as the first delay unit.
第1延迟单元的端子IN与随机延迟电路的端子Vpulse连接,第N延迟单元的端子OUT与随机延迟电路的端子Vdelay连接;第1延迟单元的端子SEL、……、第i延迟单元的端子SEL、……、第N延迟单元的端子SEL与对应的随机延迟电路的端子Vc12、……、Vci2、……、VcN2连接。The terminal IN of the first delay unit is connected to the terminal V pulse of the random delay circuit, and the terminal OUT of the Nth delay unit is connected to the terminal V delay of the random delay circuit; the terminals SEL of the first delay unit, ..., the terminals of the i delay unit The terminals SEL, ..., the terminal SEL of the Nth delay unit are connected to the terminals V c12 , ..., V ci2 , ..., V cN2 of the corresponding random delay circuit.
所述第1环形振荡器电路由N个反相器和N个忆阻器模块组成,N为奇数;第1反相器的端子OUT与第2反相器的端子IN连接,……,第i-1反相器的端子OUT与第i反相器的端子IN连接,……,第N-1反相器的端子OUT与第N反相器的端子IN连接;第1反相器的端子IN与第N反相器的端子OUT连接,第N反相器的端子OUT与第1环形振荡器电路的端子fout1连接。The first ring oscillator circuit is composed of N inverters and N memristor modules, where N is an odd number; the terminal OUT of the first inverter is connected to the terminal IN of the second inverter, ..., the first The terminal OUT of the i-1 inverter is connected to the terminal IN of the i inverter, ..., the terminal OUT of the N-1 inverter is connected to the terminal IN of the N inverter; The terminal IN is connected to the terminal OUT of the Nth inverter, and the terminal OUT of the Nth inverter is connected to the terminal f out1 of the first ring oscillator circuit.
第1反相器的NMOS晶体管的源极、……、第i反相器的NMOS晶体管的源极、……、第N反相器的NMOS晶体管的源极与对应的第1忆阻器模块的端子Iout1、……、第i忆阻器模块的端子Iouti、……、第N忆阻器模块的端子IoutN连接;第1反相器的PMOS晶体管的源极、……、第i反相器的PMOS晶体管的源极、……、第N反相器的PMOS晶体管的源极分别与第1环形振荡器电路的端子Avdd1连接。The source of the NMOS transistor of the first inverter, ..., the source of the NMOS transistor of the i inverter, ..., the source of the NMOS transistor of the N inverter and the corresponding first memristor module The terminal I out1 of the i-th memristor module, ..., the terminal I outi of the i-th memristor module, ..., the terminal I outN of the N-th memristor module are connected; the source of the PMOS transistor of the first inverter, ..., the first The source of the PMOS transistor of the i inverter, . . . , the source of the PMOS transistor of the Nth inverter are respectively connected to the terminal A vdd1 of the first ring oscillator circuit.
第1忆阻器模块的端子Vchlg1、……、第i忆阻器模块的端子Vchlgi、……、第N忆阻器模块的端子VchlgN分别与第1环形振荡器电路的端子Achlg1连接,第1忆阻器模块的端子Vrd1、……、第i忆阻器模块的端子Vrdi、……、第N忆阻器模块的端子VrdN分别与第1环形振荡器电路的端子Ard1连接,第1忆阻器模块的端子Vcr01、……、第i忆阻器模块的端子Vcr0i、……、第N忆阻器模块的端子Vcr0N分别与第1环形振荡器电路的端子Acr01连接,第1忆阻器模块的端子Vdly1、……、第i忆阻器模块的端子Vdlyi、……、第N忆阻器模块的端子VdlyN分别与第1环形振荡器电路的端子Adly1连接,第1忆阻器模块的端子Vcr11、……、第i忆阻器模块的端子Vcr1i、……、第N忆阻器模块的端子Vcr1N分别与第1环形振荡器电路的端子Acr11连接,第1忆阻器模块的端子Vc11、……、第i忆阻器模块的端子Vci1、……、第N忆阻器模块的端子VcN1与对应的第1环形振荡器电路的端子Ac11、……、Aci1、……、AcN1连接;第1忆阻器模块的端子Vrs1、……、第i忆阻器模块的端子Vrsi、……、第N忆阻器模块的端子VrsN分别与第1环形振荡器电路的端子Ars1连接,第1忆阻器模块的端子Vcr21、……、第i忆阻器模块的端子Vcr2i、……、第N忆阻器模块的端子Vcr2N分别与第1环形振荡器电路的端子Acr21连接。The terminals V chlg1 , . connection, the terminals V rd1 , ... of the first memristor module, the terminals V rdi , ... A rd1 is connected, the terminals V cr01 , ... of the first memristor module, the terminals V cr0i , ... The terminals A cr01 of the first memristor module are connected, the terminals V dly1 , ... of the first memristor module, the terminals V dlyi , ... The terminal A dly1 of the memristor circuit is connected, the terminal V cr11 of the first memristor module, ..., the terminal V cr1i of the i-th memristor module, ..., the terminal V cr1N of the Nth memristor The terminal A cr11 of the ring oscillator circuit is connected, and the terminals V c11 , . . . of the first memristor module, the terminals V ci1 , . . . Terminals A c11 , ..., A ci1 , ..., A cN1 of the first ring oscillator circuit are connected; terminals V rs1 , ... of the first memristor module, terminals V rsi , ..., the terminal V rsN of the Nth memristor module are respectively connected to the terminal A rs1 of the first ring oscillator circuit, the terminal V cr21 of the first memristor module, ..., the terminal V of the i-th memristor module cr2i , . . . , terminals V cr2N of the Nth memristor module are connected to terminals A cr21 of the first ring oscillator circuit, respectively.
所述第2环形振荡器电路与第1环形振荡器电路结构相同。The second ring oscillator circuit has the same structure as the first ring oscillator circuit.
所述第1忆阻器模块的结构是,第1选通器的端子OUT与第2选通器的端子0_CHAN连接,第2选通器的端子1_CHAN与GND连接,第2选通器的端子OUT与第3选通器的端子1_CHAN连接,第3选通器的端子0_CHAN与GND连接,第3选通器的端子OUT与模块忆阻器的端子RM0连接;NMOS晶体管的漏极与模块忆阻器的端子RM0连接,NMOS晶体管的源极与模块忆阻器的端子RM1连接;第1分路器的端子IN与模块忆阻器的端子RM1连接,第1分路器的端子1_CHAN与第2分路器的端子IN连接;第2分路器的端子1_CHAN与镜像电流源的端子Iref连接,第2分路器的端子0_CHAN与限流电阻的端子R0连接,限流电阻的端子R1与GND连接。The structure of the first memristor module is that the terminal OUT of the first selector is connected to the terminal 0_CHAN of the second selector, the terminal 1_CHAN of the second selector is connected to GND, and the terminal of the second selector OUT is connected to terminal 1_CHAN of the third strobe, terminal 0_CHAN of the third strobe is connected to GND, terminal OUT of the third strobe is connected to terminal R M0 of the module memristor; the drain of the NMOS transistor is connected to the module The terminal R M0 of the memristor is connected, the source of the NMOS transistor is connected to the terminal R M1 of the module memristor; the terminal IN of the first splitter is connected to the terminal R M1 of the module memristor, and the terminal IN of the first splitter is connected to the terminal R M1 of the module memristor. The terminal 1_CHAN is connected to the terminal IN of the second shunt; the terminal 1_CHAN of the second shunt is connected to the terminal I ref of the mirror current source, and the terminal 0_CHAN of the second shunt is connected to the terminal R 0 of the current limiting resistor. Terminal R1 of the flow resistor is connected to GND.
第1选通器的端子1_CHAN、0_CHAN、SEL与第1忆阻器模块对应的端子Vchlg1、Vrd1、Vcr01连接,第2选通器的端子SEL与第1忆阻器模块的端子Vdly1连接,第3选通器的端子SEL与第1忆阻器模块的端子Vcr11连接;NMOS晶体管的栅极与第1忆阻器模块的端子Vc11连接;第1分路器的端子SEL与第1忆阻器模块的端子Vcr11连接,第1分路器的端子0_CHAN与第1忆阻器模块的端子Vrs1连接,第2分路器的端子SEL与第1忆阻器模块的端子Vcr21连接;镜像电流源的端子Iout与第1忆阻器模块的端子Iout1连接。The terminals 1_CHAN, 0_CHAN, and SEL of the first gate are connected to the corresponding terminals V chlg1 , V rd1 , and V cr01 of the first memristor module, and the terminal SEL of the second gate is connected to the terminal V of the first memristor module. dly1 connection, the terminal SEL of the third strobe is connected to the terminal V cr11 of the first memristor module; the gate of the NMOS transistor is connected to the terminal V c11 of the first memristor module; the terminal SEL of the first splitter It is connected to the terminal V cr11 of the first memristor module, the terminal 0_CHAN of the first shunt is connected to the terminal V rs1 of the first memristor module, and the terminal SEL of the second shunt is connected to the terminal of the first memristor module. The terminal V cr21 is connected; the terminal I out of the mirror current source is connected to the terminal I out1 of the first memristor module.
所述第2忆阻器模块、……、第i忆阻器模块、……、第N忆阻器模块均与第1忆阻器模块的结构相同。The structure of the second memristor module, ..., the i-th memristor module, ..., and the N-th memristor module is the same as that of the first memristor module.
所述的延迟电路忆阻器和模块忆阻器相同,均为具有阈值电压的忆阻器;延迟电路忆阻器和模块忆阻器的初始状态均处于高阻态。The delay circuit memristor and the module memristor are the same, and both are memristors with a threshold voltage; the initial states of the delay circuit memristor and the module memristor are both in a high-impedance state.
所述基于忆阻器的环形振荡器PUF电路的使用方法:The method of using the memristor-based ring oscillator PUF circuit:
步骤一、所有忆阻器复位
在电压输入端子Vcr1与端子GND之间施加低电平的电压信号Ucr1,在电压输入端子Vrs与端子GND之间施加高电平的电压信号Urs,其余电压输入端子与端子GND之间不施加任何电压信号。Apply a low-level voltage signal U cr1 between the voltage input terminal V cr1 and the terminal GND, apply a high-level voltage signal U rs between the voltage input terminal V rs and the terminal GND, and apply a high-level voltage signal U rs between the voltage input terminal V cr1 and the terminal GND. No voltage signal is applied between them.
步骤二、施加激励Step 2. Apply incentives
在电压输入端子Vpl、Vchlg、Vcr0、Vcr1与端子GND之间施加对应的高电平的电压信号Upl、Uchlg、Ucr0、Ucr1,在电压输入端子Vc1、……、Vci、……、VcN与端子GND之间施加对应的高电平或低电平的激励电压信号Uc1、……、Uci、……、UcN;在电压输入端子Vcr2与端子GND之间施加低电平的电压信号Ucr2,其余电压输入端子与端子GND之间不施加任何电压信号。Apply corresponding high-level voltage signals U pl , U chlg , U cr0 , U cr1 between the voltage input terminals V pl , V chlg , V cr0 , V cr1 and the terminal GND. , V ci , ..., V cN and terminal GND apply corresponding high-level or low-level excitation voltage signals U c1 , ..., U ci , ..., U cN ; between voltage input terminals V cr2 and A low-level voltage signal U cr2 is applied between the terminals GND, and no voltage signal is applied between the other voltage input terminals and the terminal GND.
步骤三、响应输出
在电压输入端子Vvdd、Vrd、Vcr1、Vcr2与端子GND之间施加对应的高电平的电压信号Uvdd、Urd、Ucr1、Ucr2,在电压输入端子Vcr0与端子GND之间施加低电平的电压信号Ucr0,其余电压输入端子与端子GND之间不施加任何电压信号。Apply corresponding high-level voltage signals U vdd , U rd , U cr1 , U cr2 between the voltage input terminals V vdd , V rd , V cr1 , V cr2 and the terminal GND, and between the voltage input terminals V cr0 and the terminal GND A low-level voltage signal U cr0 is applied between them, and no voltage signal is applied between the other voltage input terminals and the terminal GND.
数字比较器的端子Rout输出响应电压。The terminal R out of the digital comparator outputs a response voltage.
本发明以模块忆阻器处于高阻态时阻值分布的随机性作为基于忆阻器的环形振荡器PUF电路的主要熵源,在步骤一中,给忆阻器模块施加相关电压信号,使基于忆阻器的环形振荡器PUF电路中的所有模块忆阻器均复位为高阻态。在步骤二中,基于忆阻器的环形振荡器PUF电路根据输入的激励电压信号选中第1环形振荡器电路和第2环形振荡器电路中的部分模块忆阻器,对选中的模块忆阻器施加高电平的电压信号Uchlg,在随机延迟电路的作用下使高电平的电压信号Uchlg施加在模块忆阻器上的持续时间随机,被选中的模块忆阻器在高阻状态下进行一次随机的阻值减小。在步骤三中,第1环形振荡器电路和第2环形振荡器电路开始振荡,通过第1计数器和第2计数器分别对第1环形振荡器电路和第2环形振荡器电路所产生方波的脉冲进行计数,最后通过数字比较器比较计数值得出响应。In the present invention, the randomness of the resistance value distribution when the module memristor is in a high-impedance state is used as the main entropy source of the memristor-based ring oscillator PUF circuit. In
由于采用上述技术方案,本发明具有如下积极效果:Owing to adopting above-mentioned technical scheme, the present invention has following positive effect:
本发明在步骤二时,基于忆阻器的环形振荡器PUF电路根据施加的激励电压信号选中忆阻器模块中的模块忆阻器,并对选中的模块忆阻器进行一次随机的阻值减小,激励电压信号不同,所选中的模块忆阻器也不同,选中模块忆阻器的阻值减小量也不同,导致激励电压信号不同时,基于忆阻器的环形振荡器PUF电路中模块忆阻器的阻值也不同,即基于忆阻器的环形振荡器PUF电路的参数不同,随着激励电压信号的变化,基于忆阻器的环形振荡器PUF电路的参数也随之变化,这使机器学习算法难以准确的建立基于忆阻器的环形振荡器PUF电路的数学模型,因而具有显著的抗机器学习能力。In the second step of the present invention, the memristor-based ring oscillator PUF circuit selects the module memristor in the memristor module according to the applied excitation voltage signal, and performs a random resistance reduction on the selected module memristor Small, the excitation voltage signal is different, the selected module memristor is also different, and the resistance reduction of the selected module memristor is also different, resulting in different excitation voltage signals, the module in the memristor-based ring oscillator PUF circuit The resistance value of the memristor is also different, that is, the parameters of the ring oscillator PUF circuit based on the memristor are different. As the excitation voltage signal changes, the parameters of the ring oscillator PUF circuit based on the memristor also change accordingly. It makes it difficult for the machine learning algorithm to accurately establish the mathematical model of the memristor-based ring oscillator PUF circuit, so it has significant anti-machine learning ability.
本发明除了忆阻器模块中的模块忆阻器处于高阻态时阻值分布的随机性作为基于忆阻器的环形振荡器PUF电路的熵源,随机延迟电路中的延迟电路忆阻器处于高阻态时阻值分布的随机性也作为基于忆阻器的环形振荡器PUF电路的熵源,因而具有双重熵源,核心性能指标良好。In the present invention, the randomness of the resistance value distribution when the module memristor in the memristor module is in a high-impedance state is used as the entropy source of the ring oscillator PUF circuit based on the memristor, and the delay circuit memristor in the random delay circuit is in the The randomness of the resistance value distribution in the high-impedance state is also used as the entropy source of the ring oscillator PUF circuit based on the memristor, so it has dual entropy sources and the core performance index is good.
本发明只需要两个环形振荡器电路就可以产生多位的CRP对,增加CRP对的位数只需要增加第1环形振荡器电路和第2环形振荡器电路中反相器和反相器所对应忆阻器模块的个数,因此扩展性强和硬件消耗小。The present invention only needs two ring oscillator circuits to generate multi-bit CRP pairs, and increasing the number of CRP pairs only needs to increase the number of inverters and inverters in the first ring oscillator circuit and the second ring oscillator circuit. Corresponds to the number of memristor modules, so the expandability is strong and the hardware consumption is small.
因此,本发明具有抗机器学习能力强、硬件消耗小和核心性能指标良好的特点。Therefore, the present invention has the characteristics of strong anti-machine learning ability, low hardware consumption and good core performance index.
附图说明Description of drawings
图1是本发明的一种结构示意图;Fig. 1 is a kind of structural representation of the present invention;
图2是图1中随机延迟电路101的一种结构示意图;Fig. 2 is a kind of structural representation of
图3是图1中第1环形振荡器电路102的一种结构示意图;FIG. 3 is a schematic structural diagram of the first
图4是图3中第1忆阻器模块304的一种结构示意图;FIG. 4 is a schematic structural view of the first
图5为本发明的另一种结构示意图;Fig. 5 is another kind of structural representation of the present invention;
图6为图5所示随机延迟电路101的一种结构示意图;FIG. 6 is a schematic structural diagram of the
图7为图5所示第1环形振荡器电路102的一种结构示意图;FIG. 7 is a schematic structural diagram of the first
图8为本发明的又一种结构示意图;Fig. 8 is another kind of structural representation of the present invention;
图9为图8所示随机延迟电路101的一种结构示意图;FIG. 9 is a schematic structural diagram of the
图10为图8所示第1环形振荡器电路102的一种结构示意图;FIG. 10 is a schematic structural diagram of the first
具体实施方式detailed description
下面结合附图和具体实施方式对本发明作进一步的描述,并非对其保护范围的限制。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, which is not intended to limit its protection scope.
一种基于忆阻器的环形振荡器PUF电路及其使用方法。A memristor-based ring oscillator PUF circuit and a method of use thereof.
如图1所示,所述基于忆阻器的环形振荡器PUF电路由随机延迟电路101、第1环形振荡器电路102、第2环形振荡器电路106、第1计数器103、第2计数器105和数字比较器104组成。As shown in Figure 1, the ring oscillator PUF circuit based on the memristor is composed of a
如图1所示,随机延迟电路101的端子Vpulse与电压输入端子Vpl连接,随机延迟电路101的端子Vc12、……、Vci2、……、VcN2与对应的电压输入端子Vc1、……、Vci、……、VcN连接;随机延迟电路101的端子Vdelay与第1环形振荡器电路102的端子Adly1、第2环形振荡器电路106的端子Adly2分别连接。As shown in Figure 1, the terminal V pulse of the
第1环形振荡器电路102的端子Avdd1、第2环形振荡器电路106的端子Avdd2分别与电压输入端子Vvdd连接,第1环形振荡器电路102的端子Achlg1、第2环形振荡器电路106的端子Achlg2分别与电压输入端子Vchlg连接,第1环形振荡器电路102的端子Ard1、第2环形振荡器电路106的端子Ard2分别与电压输入端子Vrd连接,第1环形振荡器电路102的端子Acr01、第2环形振荡器电路106的端子Acr02分别与电压输入端子Vcr0连接,第1环形振荡器电路102的端子Acr11、第2环形振荡器电路106的端子Acr12分别与电压输入端子Vcr1连接;第1环形振荡器电路102的端子Ac11、……、Aci1、……、AcN1与对应的电压输入端子Vc1、……、Vci、……、VcN连接,第2环形振荡器电路106的端子Ac12、……、Aci2、……、AcN2与对应的电压输入端子Vc1、……、Vci、……、VcN连接;第1环形振荡器电路102的端子Ars1、第2环形振荡器电路106的端子Ars2分别与电压输入端子Vrs连接;第1环形振荡器电路102的端子Acr21、第2环形振荡器电路106的端子Acr22分别与电压输入端子Vcr2连接;第1环形振荡器电路102的端子fout1与第1计数器103的端子A10连接,第2环形振荡器电路106的端子fout2与第2计数器105的端子A20连接。The terminal A vdd1 of the first
第1计数器103的端子A11与数字比较器104的端子IN0连接,第2计数器105的端子A21与数字比较器104的端子IN1连接,数字比较器104的端子Rout输出响应电压。The terminal A11 of the
在电压输入端子Vpl、Vvdd、Vchlg、Vrd、Vcr0、Vcr1、Vrs、Vcr2与端子GND之间施加对应的电压信号Upl、Uvdd、Uchlg、Urd、Ucr0、Ucr1、Urs、Ucr2,在电压输入端子Vc1、……、Vci、……、VcN与端子GND之间施加对应的电压信号Uc1、……、Uci、……、UcN。 Apply corresponding voltage signals U pl , U vdd , U chlg , U rd , U between voltage input terminals V pl , V vdd , V chlg , V rd , V cr0 , V cr1, V rs , V cr2 and terminal GND cr0 , U cr1 , U rs , U cr2 , apply corresponding voltage signals U c1 , ..., U ci , ... between voltage input terminals V c1 , ..., V ci , ..., V cN and terminal GND , U cN .
数字比较器104的端子Rout输出响应电压。The terminal R out of the
如图2所示,所述随机延迟电路101由N个延迟单元202和NMOS晶体管204组成,N为奇数;第1延迟单元202的端子OUT与第2延迟单元202的端子IN连接,……,第i-1延迟单元202的端子OUT与第i延迟单元202的端子IN连接,……,第N-1延迟单元202的端子OUT与第N延迟单元202的端子IN连接,第N延迟单元202的端子OUT与NMOS晶体管204的漏极连接。As shown in FIG. 2 , the
如图2所示,第1延迟单元202的端子IN分别与两个延迟电路忆阻器201的端子AR0连接,两个延迟电路忆阻器201的端子AR1与第1延迟电路选通器203的端子1_CHAN和端子0_CHAN对应连接;所述第2延迟单元202、……、第i延迟单元202、……、第N延迟单元202与第1延迟单元202的结构相同。As shown in Figure 2, the terminal IN of the
如图2所示,第1延迟单元202的端子IN与随机延迟电路101的端子Vpulse连接,第N延迟单元202的端子OUT与随机延迟电路101的端子Vdelay连接;第1延迟单元202的端子SEL、……、第i延迟单元202的端子SEL、……、第N延迟单元202的端子SEL与对应的随机延迟电路101的端子Vc12、……、Vci2、……、VcN2连接。As shown in Figure 2, the terminal IN of the
如图3所示,所述第1环形振荡器电路102由N个反相器301和N个忆阻器模块304组成,N为奇数;第1反相器301的端子OUT与第2反相器301的端子IN连接,……,第i-1反相器301的端子OUT与第i反相器301的端子IN连接,……,第N-1反相器301的端子OUT与第N反相器301的端子IN连接;第1反相器301的端子IN与第N反相器301的端子OUT连接,第N反相器301的端子OUT与第1环形振荡器电路102的端子fout1连接。As shown in Figure 3, the first
如图3所示,第1反相器301的NMOS晶体管303的源极、……、第i反相器301的NMOS晶体管303的源极、……、第N反相器301的NMOS晶体管303的源极与对应的第1忆阻器模块304的端子Iout1、……、第i忆阻器模块304的端子Iouti、……、第N忆阻器模块304的端子IoutN连接;第1反相器301的PMOS晶体管302的源极、……、第i反相器301的PMOS晶体管302的源极、……、第N反相器301的PMOS晶体管302的源极分别与第1环形振荡器电路102的端子Avdd1连接。As shown in Figure 3, the source of the
如图3所示,第1忆阻器模块304的端子Vchlg1、……、第i忆阻器模块304的端子Vchlgi、……、第N忆阻器模块304的端子VchlgN分别与第1环形振荡器电路102的端子Achlg1连接,第1忆阻器模块304的端子Vrd1、……、第i忆阻器模块304的端子Vrdi、……、第N忆阻器模块304的端子VrdN分别与第1环形振荡器电路102的端子Ard1连接,第1忆阻器模块304的端子Vcr01、……、第i忆阻器模块304的端子Vcr0i、……、第N忆阻器模块304的端子Vcr0N分别与第1环形振荡器电路102的端子Acr01连接,第1忆阻器模块304的端子Vdly1、……、第i忆阻器模块304的端子Vdlyi、……、第N忆阻器模块304的端子VdlyN分别与第1环形振荡器电路102的端子Adly1连接,第1忆阻器模块304的端子Vcr11、……、第i忆阻器模块304的端子Vcr1i、……、第N忆阻器模块304的端子Vcr1N分别与第1环形振荡器电路102的端子Acr11连接,第1忆阻器模块304的端子Vc11、……、第i忆阻器模块304的端子Vci1、……、第N忆阻器模块304的端子VcN1与对应的第1环形振荡器电路102的端子Ac11、……、Aci1、……、AcN1连接;第1忆阻器模块304的端子Vrs1、……、第i忆阻器模块304的端子Vrsi、……、第N忆阻器模块304的端子VrsN分别与第1环形振荡器电路102的端子Ars1连接,第1忆阻器模块304的端子Vcr21、……、第i忆阻器模块304的端子Vcr2i、……、第N忆阻器模块304的端子Vcr2N分别与第1环形振荡器电路102的端子Acr21连接。As shown in FIG. 3 , the terminals V chlg1 , . . . of the first
所述第2环形振荡器电路106与第1环形振荡器电路102结构相同。The second
如图4所示,所述第1忆阻器模块304的结构是,第1选通器401的端子OUT与第2选通器402的端子0_CHAN连接,第2选通器402的端子1_CHAN与GND连接,第2选通器402的端子OUT与第3选通器403的端子1_CHAN连接,第3选通器403的端子0_CHAN与GND连接,第3选通器403的端子OUT与模块忆阻器404的端子RM0连接;NMOS晶体管409的漏极与模块忆阻器404的端子RM0连接,NMOS晶体管409的源极与模块忆阻器404的端子RM1连接;第1分路器405的端子IN与模块忆阻器404的端子RM1连接,第1分路器405的端子1_CHAN与第2分路器406的端子IN连接;第2分路器406的端子1_CHAN与镜像电流源407的端子Iref连接,第2分路器406的端子0_CHAN与限流电阻408的端子R0连接,限流电阻408的端子R1与GND连接。As shown in Figure 4, the structure of the first
如图4所示,第1选通器401的端子1_CHAN、0_CHAN、SEL与第1忆阻器模块304对应的端子Vchlg1、Vrd1、Vcr01连接,第2选通器402的端子SEL与第1忆阻器模块304的端子Vdly1连接,第3选通器403的端子SEL与第1忆阻器模块304的端子Vcr11连接;NMOS晶体管409的栅极与第1忆阻器模块304的端子Vc11连接;第1分路器405的端子SEL与第1忆阻器模块304的端子Vcr11连接,第1分路器405的端子0_CHAN与第1忆阻器模块304的端子Vrs1连接,第2分路器406的端子SEL与第1忆阻器模块304的端子Vcr21连接;镜像电流源407的端子Iout与第1忆阻器模块304的端子Iout1连接。As shown in FIG. 4 , the terminals 1_CHAN, 0_CHAN, and SEL of the
所述第2忆阻器模块304、……、第i忆阻器模块304、……、第N忆阻器模块304均与第1忆阻器模块304的结构相同。The structure of the second
所述的延迟电路忆阻器201和模块忆阻器404相同,均为具有阈值电压的忆阻器;延迟电路忆阻器201和模块忆阻器404的初始状态均处于高阻态。The
所述基于忆阻器的环形振荡器PUF电路的使用方法:The method of using the memristor-based ring oscillator PUF circuit:
步骤一、所有忆阻器复位
在电压输入端子Vcr1与端子GND之间施加低电平的电压信号Ucr1,在电压输入端子Vrs与端子GND之间施加高电平的电压信号Urs,其余电压输入端子与端子GND之间不施加任何电压信号。Apply a low-level voltage signal U cr1 between the voltage input terminal V cr1 and the terminal GND, apply a high-level voltage signal U rs between the voltage input terminal V rs and the terminal GND, and apply a high-level voltage signal U rs between the voltage input terminal V cr1 and the terminal GND. No voltage signal is applied between them.
步骤二、施加激励Step 2. Apply incentives
在电压输入端子Vpl、Vchlg、Vcr0、Vcr1与端子GND之间施加对应的高电平的电压信号Upl、Uchlg、Ucr0、Ucr1,在电压输入端子Vc1、……、Vci、……、VcN与端子GND之间施加对应的高电平或低电平的激励电压信号Uc1、……、Uci、……、UcN;在电压输入端子Vcr2与端子GND之间施加低电平的电压信号Ucr2,其余电压输入端子与端子GND之间不施加任何电压信号。Apply corresponding high-level voltage signals U pl , U chlg , U cr0 , U cr1 between the voltage input terminals V pl , V chlg , V cr0 , V cr1 and the terminal GND. , V ci , ..., V cN and terminal GND apply corresponding high-level or low-level excitation voltage signals U c1 , ..., U ci , ..., U cN ; between voltage input terminals V cr2 and A low-level voltage signal U cr2 is applied between the terminals GND, and no voltage signal is applied between the other voltage input terminals and the terminal GND.
步骤三、响应输出
在电压输入端子Vvdd、Vrd、Vcr1、Vcr2与端子GND之间施加对应的高电平的电压信号Uvdd、Urd、Ucr1、Ucr2,在电压输入端子Vcr0与端子GND之间施加低电平的电压信号Ucr0,其余电压输入端子与端子GND之间不施加任何电压信号。Apply corresponding high-level voltage signals U vdd , U rd , U cr1 , U cr2 between the voltage input terminals V vdd , V rd , V cr1 , V cr2 and the terminal GND, and between the voltage input terminals V cr0 and the terminal GND A low-level voltage signal U cr0 is applied between them, and no voltage signal is applied between the other voltage input terminals and the terminal GND.
数字比较器104的端子Rout输出响应电压。The terminal R out of the
实施例1Example 1
一种基于忆阻器的环形振荡器PUF电路及其使用方法。A memristor-based ring oscillator PUF circuit and a method of use thereof.
如图5所示,所述基于忆阻器的环形振荡器PUF电路由随机延迟电路101、第1环形振荡器电路102、第2环形振荡器电路106、第1计数器103、第2计数器105和数字比较器104组成。As shown in Figure 5, the ring oscillator PUF circuit based on memristor is composed of
如图5所示,随机延迟电路101的端子Vpulse与电压输入端子Vpl连接,随机延迟电路101的端子Vc12、Vc22、Vc32与对应的电压输入端子Vc1、Vc2、Vc3连接;随机延迟电路101的端子Vdelay与第1环形振荡器电路102的端子Adly1、第2环形振荡器电路106的端子Adly2分别连接。As shown in Figure 5, the terminal V pulse of the
第1环形振荡器电路102的端子Avdd1、第2环形振荡器电路106的端子Avdd2分别与电压输入端子Vvdd连接,第1环形振荡器电路102的端子Achlg1、第2环形振荡器电路106的端子Achlg2分别与电压输入端子Vchlg连接,第1环形振荡器电路102的端子Ard1、第2环形振荡器电路106的端子Ard2分别与电压输入端子Vrd连接,第1环形振荡器电路102的端子Acr01、第2环形振荡器电路106的端子Acr02分别与电压输入端子Vcr0连接,第1环形振荡器电路102的端子Acr11、第2环形振荡器电路106的端子Acr12分别与电压输入端子Vcr1连接;第1环形振荡器电路102的端子Ac11、Ac21、Ac31与对应的电压输入端子Vc1、Vc2、Vc3连接,第2环形振荡器电路106的端子Ac12、Ac22、Ac32与对应的电压输入端子Vc1、Vc2、Vc3连接;第1环形振荡器电路102的端子Ars1、第2环形振荡器电路106的端子Ars2分别与电压输入端子Vrs连接;第1环形振荡器电路102的端子Acr21、第2环形振荡器电路106的端子Acr22分别与电压输入端子Vcr2连接;第1环形振荡器电路102的端子fout1与第1计数器103的端子A10连接,第2环形振荡器电路106的端子fout2与第2计数器105的端子A20连接。The terminal A vdd1 of the first ring oscillator circuit 102 and the terminal A vdd2 of the second ring oscillator circuit 106 are respectively connected to the voltage input terminal V vdd , and the terminal A chlg1 of the first ring oscillator circuit 102 and the second ring oscillator circuit The terminal A chlg2 of 106 is respectively connected to the voltage input terminal V chlg , the terminal A rd1 of the first ring oscillator circuit 102, and the terminal A rd2 of the second ring oscillator circuit 106 are respectively connected to the voltage input terminal V rd , and the first ring oscillator circuit The terminal A cr01 of the oscillator circuit 102 and the terminal A cr02 of the second ring oscillator circuit 106 are connected to the voltage input terminal V cr0 respectively, and the terminal A cr11 of the first ring oscillator circuit 102 and the terminal A of the second ring oscillator circuit 106 cr12 are connected to voltage input terminals V cr1 respectively; terminals A c11 , A c21 , and A c31 of the first ring oscillator circuit 102 are connected to corresponding voltage input terminals V c1 , V c2 , and V c3 , and the second ring oscillator circuit 106 The terminals A c12 , A c22 , and A c32 are connected to the corresponding voltage input terminals V c1 , V c2 , and V c3 ; the terminal A rs1 of the first ring oscillator circuit 102 and the terminal A rs2 of the second ring oscillator circuit 106 are respectively connected to the voltage input terminal V rs ; the terminal A cr21 of the first ring oscillator circuit 102 and the terminal A cr22 of the second ring oscillator circuit 106 are respectively connected to the voltage input terminal V cr2 ; the terminal f of the first ring oscillator circuit 102 out1 is connected to the terminal A10 of the first counter 103 , and the terminal f out2 of the second ring oscillator circuit 106 is connected to the terminal A20 of the second counter 105 .
第1计数器103的端子A11与数字比较器104的端子IN0连接,第2计数器105的端子A21与数字比较器104的端子IN1连接,数字比较器104的端子Rout输出响应电压。The terminal A11 of the
在电压输入端子Vpl、Vvdd、Vchlg、Vrd、Vcr0、Vcr1、Vrs、Vcr2与端子GND之间施加对应的电压信号Upl、Uvdd、Uchlg、Urd、Ucr0、Ucr1、Urs、Ucr2在电压输入端子Vc1、Vc2、Vc3与端子GND之间施加对应的电压信号Uc1、Uc2、Uc3。 Apply corresponding voltage signals U pl , U vdd , U chlg , U rd , U between voltage input terminals V pl , V vdd , V chlg , V rd , V cr0 , V cr1, V rs , V cr2 and terminal GND cr0 , U cr1 , U rs , U cr2 apply corresponding voltage signals U c1 , U c2 , U c3 between the voltage input terminals V c1 , V c2 , V c3 and the terminal GND.
数字比较器104的端子Rout输出响应电压。The terminal R out of the
如图6所示,所述随机延迟电路101由3个延迟单元202和NMOS晶体管204组成;第1延迟单元202的端子OUT与第2延迟单元202的端子IN连接,第2延迟单元202的端子OUT与第3延迟单元202的端子IN连接,第3延迟单元202的端子OUT与NMOS晶体管204的漏极连接。As shown in Figure 6, the
如图6所示,第1延迟单元202的端子IN分别与两个延迟电路忆阻器201的端子AR0连接,两个延迟电路忆阻器201的端子AR1与第1延迟电路选通器203的端子1_CHAN和端子0_CHAN对应连接;所述第2延迟单元202、第3延迟单元202与第1延迟单元202的结构相同。As shown in Figure 6, the terminal IN of the
如图6所示,第1延迟单元202的端子IN与随机延迟电路101的端子Vpulse连接,第3延迟单元202的端子OUT与随机延迟电路101的端子Vdelay连接;第1延迟单元202的端子SEL、第2延迟单元202的端子SEL、第3延迟单元202的端子SEL与对应的随机延迟电路101的端子Vc12、Vc22、Vc32连接。As shown in Figure 6, the terminal IN of the
如图7所示,所述第1环形振荡器电路102由3个反相器301和3个忆阻器模块304组成;第1反相器301的端子OUT与第2反相器301的端子IN连接,第2反相器301的端子OUT与第3反相器301的端子IN连接;第1反相器301的端子IN与第3反相器301的端子OUT连接,第3反相器301的端子OUT与第1环形振荡器电路102的端子fout1连接。As shown in Figure 7, the first
如图7所示,第1反相器301的NMOS晶体管303的源极、第2反相器301的NMOS晶体管303的源极、第3反相器301的NMOS晶体管303的源极与对应的第1忆阻器模块304的端子Iout1、第2忆阻器模块304的端子Iout2、第3忆阻器模块304的端子Iout3连接;第1反相器301的PMOS晶体管302的源极、第2反相器301的PMOS晶体管302的源极、第3反相器301的PMOS晶体管302的源极分别与第1环形振荡器电路102的端子Avdd1连接。As shown in Figure 7, the source of the
如图7所示,第1忆阻器模块304的端子Vchlg1、第2忆阻器模块304的端子Vchlg2、第3忆阻器模块304的端子Vchlg3分别与第1环形振荡器电路102的端子Achlg1连接,第1忆阻器模块304的端子Vrd1、第2忆阻器模块304的端子Vrd2、第3忆阻器模块304的端子Vrd3分别与第1环形振荡器电路102的端子Ard1连接,第1忆阻器模块304的端子Vcr01、第2忆阻器模块304的端子Vcr02、第3忆阻器模块304的端子Vcr03分别与第1环形振荡器电路102的端子Acr01连接,第1忆阻器模块304的端子Vdly1、第2忆阻器模块304的端子Vdly2、第3忆阻器模块304的端子Vdly3分别与第1环形振荡器电路102的端子Adly1连接,第1忆阻器模块304的端子Vcr11、第2忆阻器模块304的端子Vcr12、第3忆阻器模块304的端子Vcr13分别与第1环形振荡器电路102的端子Acr11连接,第1忆阻器模块304的端子Vc11、第2忆阻器模块304的端子Vc21、第3忆阻器模块304的端子Vc31与对应的第1环形振荡器电路102的端子Ac11、Ac21、Ac31连接;第1忆阻器模块304的端子Vrs1、第2忆阻器模块304的端子Vrs2、第3忆阻器模块304的端子Vrs3分别与第1环形振荡器电路102的端子Ars1连接,第1忆阻器模块304的端子Vcr21、第2忆阻器模块304的端子Vcr22、第3忆阻器模块304的端子Vcr23分别与第1环形振荡器电路102的端子Acr21连接。As shown in FIG. 7 , the terminal V chlg1 of the first
所述第2环形振荡器电路106与第1环形振荡器电路102结构相同。The second
如图4所示,所述第1忆阻器模块304的结构是,第1选通器401的端子OUT与第2选通器402的端子0_CHAN连接,第2选通器402的端子1_CHAN与GND连接,第2选通器402的端子OUT与第3选通器403的端子1_CHAN连接,第3选通器403的端子0_CHAN与GND连接,第3选通器403的端子OUT与模块忆阻器404的端子RM0连接;NMOS晶体管409的漏极与模块忆阻器404的端子RM0连接,NMOS晶体管409的源极与模块忆阻器404的端子RM1连接;第1分路器405的端子IN与模块忆阻器404的端子RM1连接,第1分路器405的端子1_CHAN与第2分路器406的端子IN连接;第2分路器406的端子1_CHAN与镜像电流源407的端子Iref连接,第2分路器406的端子0_CHAN与限流电阻408的端子R0连接,限流电阻408的端子R1与GND连接。As shown in Figure 4, the structure of the first
如图4所示,第1选通器401的端子1_CHAN、0_CHAN、SEL与第1忆阻器模块304对应的端子Vchlg1、Vrd1、Vcr01连接,第2选通器402的端子SEL与第1忆阻器模块304的端子Vdly1连接,第3选通器403的端子SEL与第1忆阻器模块304的端子Vcr11连接;NMOS晶体管409的栅极与第1忆阻器模块304的端子Vc11连接;第1分路器405的端子SEL与第1忆阻器模块304的端子Vcr11连接,第1分路器405的端子0_CHAN与第1忆阻器模块304的端子Vrs1连接,第2分路器406的端子SEL与第1忆阻器模块304的端子Vcr21连接;镜像电流源407的端子Iout与第1忆阻器模块304的端子Iout1连接。As shown in FIG. 4 , the terminals 1_CHAN, 0_CHAN, and SEL of the
所述第2忆阻器模块304、第3忆阻器模块304均与第1忆阻器模块304的结构相同。Both the second
所述的延迟电路忆阻器201和模块忆阻器404相同,均为具有阈值电压的忆阻器;延迟电路忆阻器201和模块忆阻器404的初始状态均处于高阻态。The
所述基于忆阻器的环形振荡器PUF电路的使用方法:The method of using the memristor-based ring oscillator PUF circuit:
步骤一、所有忆阻器复位
在电压输入端子Vcr1与端子GND之间施加低电平的电压信号Ucr1=0V;在电压输入端子Vrs与端子GND之间施加高电平的电压信号Urs=2V;其余电压输入端子与端子GND之间不施加任何电压信号。Apply a low-level voltage signal U cr1 = 0V between the voltage input terminal V cr1 and the terminal GND; apply a high-level voltage signal U rs = 2V between the voltage input terminal V rs and the terminal GND; other voltage input terminals Do not apply any voltage signal to terminal GND.
步骤一中,第1环形振荡器电路102和第2环形振荡器电路106中的所有模块忆阻器404复位为高阻态:In step one, all
第1环形振荡器电路102中:第1忆阻器模块304、第2忆阻器模块304、第3忆阻器模块304中各自的模块忆阻器404的阻值依次为9474Ω、10502Ω、11121Ω;In the first ring oscillator circuit 102: the resistance values of the
第2环形振荡器电路106中:第1忆阻器模块304、第2忆阻器模块304、第3忆阻器模块304中各自的模块忆阻器404的阻值依次为8325Ω、11718Ω、11103Ω。In the second ring oscillator circuit 106: the resistance values of the
步骤二、施加激励Step 2. Apply incentives
在电压输入端子Vpl、Vchlg、Vcr0、Vcr1与端子GND之间施加对应的高电平的电压信号Upl=2V、Uchlg=2V、Ucr0=1.8V、Ucr2=1.8V;在电压输入端子Vc1、Vc2、Vc3与端子GND之间施加对应的高电平或低电平的激励电压信号Uc1=1.8V、Uc2=1.8V、Uc3=1.8V;在电压输入端子Vcr2与端子GND之间施加低电平的电压信号Ucr2=0V;其余电压输入端子与端子GND之间不施加任何电压信号。Apply corresponding high-level voltage signals U pl =2V, U chlg =2V, U cr0 =1.8V, U cr2 =1.8V between the voltage input terminals V pl , V chlg , V cr0 , V cr1 and the terminal GND ;Apply corresponding high-level or low-level excitation voltage signals U c1 =1.8V, U c2 =1.8V, U c3 =1.8V between the voltage input terminals V c1 , V c2 , V c3 and the terminal GND; A low-level voltage signal U cr2 =0V is applied between the voltage input terminal V cr2 and the terminal GND; no voltage signal is applied between the other voltage input terminals and the terminal GND.
步骤二中,第1环形振荡器电路102和第2环形振荡器电路106中的所有模块忆阻器404的阻值随机减小,减小后的阻值为:In step 2, the resistance values of all the
第1环形振荡器电路102中:第1忆阻器模块304、第2忆阻器模块304、第3忆阻器模块304中各自的模块忆阻器404的阻值依次为9275Ω、10252Ω、10837Ω;In the first ring oscillator circuit 102: the resistance values of the
第2环形振荡器电路106中:第1忆阻器模块304、第1忆阻器模块304、第3忆阻器模块304中各自的模块忆阻器404的阻值依次为8175Ω、11399Ω、10820Ω。In the second ring oscillator circuit 106: the resistance values of the
步骤三、响应输出
在电压输入端子Vvdd、Vrd、Vcr1、Vcr2与端子GND之间施加对应的高电平的电压信号Uvdd=5V、Urd=1.5V、Ucr1=1.8V、Ucr2=1.8V;在电压输入端子Vcr0与端子GND之间施加低电平的电压信号Ucr0=0V;其余电压输入端子与端子GND之间不施加任何电压信号。Apply corresponding high-level voltage signals U vdd =5V, U rd =1.5V, U cr1 =1.8V, U cr2 =1.8 between the voltage input terminals V vdd , V rd , V cr1 , V cr2 and the terminal GND V; a low-level voltage signal U cr0 =0V is applied between the voltage input terminal V cr0 and the terminal GND; no voltage signal is applied between the other voltage input terminals and the terminal GND.
数字比较器104的端子Rout输出响应电压。The terminal R out of the
步骤三中,第1环形振荡器电路102所产生方波的振荡频率f1=2.468KHZ,第2环形振荡器电路106所产生方波的振荡频率f2=2.471KHZ。In step three, the oscillation frequency of the square wave generated by the first
数字比较器104的端子Rout输出响应电压为0V。The terminal R out of the
实施例2Example 2
一种基于忆阻器的环形振荡器PUF电路及其使用方法。A memristor-based ring oscillator PUF circuit and a method of use thereof.
如图8所示,所述基于忆阻器的环形振荡器PUF电路由随机延迟电路101、第1环形振荡器电路102、第2环形振荡器电路106、第1计数器103、第2计数器105和数字比较器104组成。As shown in Figure 8, the ring oscillator PUF circuit based on memristor is composed of
如图8所示,随机延迟电路101的端子Vpulse与电压输入端子Vp1连接,随机延迟电路101的端子Vc12、Vc22、Vc32、Vc42、Vc52与对应的电压输入端子Vc1、Vc2、Vc3、Vc4、Vc5连接;随机延迟电路101的端子Vdelay与第1环形振荡器电路102的端子Adly1、第2环形振荡器电路106的端子Adly2分别连接。As shown in FIG. 8 , the terminal V pulse of the
第1环形振荡器电路102的端子Avdd1、第2环形振荡器电路106的端子Avdd2分别与电压输入端子Vvdd连接,第1环形振荡器电路102的端子Achlg1、第2环形振荡器电路106的端子Achlg2分别与电压输入端子Vchlg连接,第1环形振荡器电路102的端子Ard1、第2环形振荡器电路106的端子Ard2分别与电压输入端子Vrd连接,第1环形振荡器电路102的端子Acr01、第2环形振荡器电路106的端子Acr02分别与电压输入端子Vcr0连接,第1环形振荡器电路102的端子Acr11、第2环形振荡器电路106的端子Acr12分别与电压输入端子Vcr1连接;第1环形振荡器电路102的端子Ac11、Ac21、Ac31、Ac41、Ac51与对应的电压输入端子Vc1、Vc2、Vc3、Vc4、Vc5连接,第2环形振荡器电路106的端子Ac12、Ac22、Ac32、Ac42、Ac52与对应的电压输入端子Vc1、Vc2、Vc3、Vc4、Vc5连接;第1环形振荡器电路102的端子Ars1、第2环形振荡器电路106的端子Ars2分别与电压输入端子Vrs连接;第1环形振荡器电路102的端子Acr21、第2环形振荡器电路106的端子Acr22分别与电压输入端子Vcr2连接;第1环形振荡器电路102的端子fout1与第1计数器103的端子A10连接,第2环形振荡器电路106的端子fout2与第2计数器105的端子A20连接。The terminal A vdd1 of the first ring oscillator circuit 102 and the terminal A vdd2 of the second ring oscillator circuit 106 are respectively connected to the voltage input terminal V vdd , and the terminal A chlg1 of the first ring oscillator circuit 102 and the second ring oscillator circuit The terminal A chlg2 of 106 is respectively connected to the voltage input terminal V chlg , the terminal A rd1 of the first ring oscillator circuit 102, and the terminal A rd2 of the second ring oscillator circuit 106 are respectively connected to the voltage input terminal V rd , and the first ring oscillator circuit The terminal A cr01 of the oscillator circuit 102 and the terminal A cr02 of the second ring oscillator circuit 106 are connected to the voltage input terminal V cr0 respectively, and the terminal A cr11 of the first ring oscillator circuit 102 and the terminal A of the second ring oscillator circuit 106 cr12 are respectively connected to voltage input terminals V cr1 ; terminals A c11 , A c21 , A c31 , A c41 , A c51 of the first ring oscillator circuit 102 are connected to corresponding voltage input terminals V c1 , V c2 , V c3 , V c4 , V c5 are connected, the terminals A c12 , A c22 , A c32 , A c42 , A c52 of the second ring oscillator circuit 106 are connected to the corresponding voltage input terminals V c1 , V c2 , V c3 , V c4 , V c5 ; The terminal A rs1 of the first ring oscillator circuit 102 and the terminal A rs2 of the second ring oscillator circuit 106 are respectively connected to the voltage input terminal V rs ; the terminal A cr21 of the first ring oscillator circuit 102 and the terminal A rs2 of the second ring oscillator circuit The terminal A cr22 of 106 is respectively connected with the voltage input terminal V cr2 ; the terminal f out1 of the first ring oscillator circuit 102 is connected with the terminal A10 of the first counter 103, and the terminal f out2 of the second ring oscillator circuit 106 is connected with the second The terminal A 20 of the counter 105 is connected.
第1计数器103的端子A11与数字比较器104的端子IN0连接,第2计数器105的端子A21与数字比较器104的端子IN1连接,数字比较器104的端子Rout输出响应电压。The terminal A11 of the
在电压输入端子Vpl、Vvdd、Vchlg、Vrd、Vcr0、Vcr1、Vrs、Vcr2与端子GND之间施加对应的电压信号Upl、Uvdd、Uchlg、Urd、Ucr0、Ucr1、Urs、Ucr2,在电压输入端子Vc1、Vc2、Vc3、Vc4、Vc5与端子GND之间施加对应的电压信号Uc1、Uc2、Uc3、Uc4、Uc5。 Apply corresponding voltage signals U pl , U vdd , U chlg , U rd , U between voltage input terminals V pl , V vdd , V chlg , V rd , V cr0 , V cr1, V rs , V cr2 and terminal GND cr0 , U cr1 , U rs , U cr2 , apply corresponding voltage signals U c1 , U c2 , U c3 , U c4 between voltage input terminals V c1 , V c2 , V c3 , V c4 , V c5 and terminal GND , U c5 .
数字比较器104的端子Rout输出响应电压。The terminal R out of the
如图9所示,所述随机延迟电路101由5个延迟单元202和NMOS晶体管204组成;第1延迟单元202的端子OUT与第2延迟单元202的端子IN连接,第2延迟单元202的端子OUT与第3延迟单元202的端子IN连接,第3延迟单元202的端子OUT与第4延迟单元202的端子IN连接,第4延迟单元202的端子OUT与第5延迟单元202的端子IN连接,第5延迟单元202的端子OUT与NMOS晶体管204的漏极连接。As shown in Figure 9, the
如图9所示,第1延迟单元202的端子IN分别与两个延迟电路忆阻器201的端子AR0连接,两个延迟电路忆阻器201的端子AR1与第1延迟电路选通器203的端子1_CHAN和端子0_CHAN对应连接;所述第2延迟单元202、第3延迟单元202、第4延迟单元202、第5延迟单元202与第1延迟单元202的结构相同。As shown in Figure 9, the terminal IN of the
如图9所示,第1延迟单元202的端子IN与随机延迟电路101的端子Vpulse连接,第N延迟单元202的端子OUT与随机延迟电路101的端子Vdelay连接;第1延迟单元202的端子SEL、第2延迟单元202的端子SEL、第3延迟单元202的端子SEL、第4延迟单元202的端子SEL、第5延迟单元202的端子SEL与对应的随机延迟电路101的端子Vc12、Vc22、Vc32、Vc42、Vc52连接。As shown in Figure 9, the terminal IN of the
如图10所示,所述第1环形振荡器电路102由5个反相器301和5个忆阻器模块304组成;第1反相器301的端子OUT与第2反相器301的端子IN连接,第2反相器301的端子OUT与第3反相器301的端子IN连接,第3反相器301的端子OUT与第4反相器301的端子IN连接,第4反相器301的端子OUT与第5反相器301的端子IN连接;第1反相器301的端子IN与第5反相器301的端子OUT连接,第5反相器301的端子OUT与第1环形振荡器电路102的端子fout1连接。As shown in Figure 10, the first
如图10所示,第1反相器301的NMOS晶体管303的源极、第2反相器301的NMOS晶体管303的源极、第3反相器301的NMOS晶体管303的源极、第4反相器301的NMOS晶体管303的源极、第5反相器301的NMOS晶体管303的源极与对应的第1忆阻器模块304的端子Iout1、第2忆阻器模块304的端子Iout2、第3忆阻器模块304的端子Iout3连接、第4忆阻器模块304的端子Iout4连接、第5忆阻器模块304的端子Iout5连接;第1反相器301的PMOS晶体管302的源极、第2反相器301的PMOS晶体管302的源极、第3反相器301的PMOS晶体管302的源极、第4反相器301的PMOS晶体管302的源极、第5反相器301的PMOS晶体管302的源极分别与第1环形振荡器电路102的端子Avdd1连接。As shown in FIG. 10, the source of the
如图10所示,第1忆阻器模块304的端子Vchlg1、第2忆阻器模块304的端子Vchlg2、第3忆阻器模块304的端子Vchlg3、第4忆阻器模块304的端子Vchlg4、第5忆阻器模块304的端子Vchlg5分别与第1环形振荡器电路102的端子Achlg1连接,第1忆阻器模块304的端子Vrd1、第2忆阻器模块304的端子Vrd2、第3忆阻器模块304的端子Vrd3、第4忆阻器模块304的端子Vrd4、第5忆阻器模块304的端子Vrd5分别与第1环形振荡器电路102的端子Ard1连接,第1忆阻器模块304的端子Vcr01、第2忆阻器模块304的端子Vcr02、第3忆阻器模块304的端子Vcr03、第4忆阻器模块304的端子Vcr04、第5忆阻器模块304的端子Vcr05分别与第1环形振荡器电路102的端子Acr01连接,第1忆阻器模块304的端子Vdly1、第2忆阻器模块304的端子Vdly2、第3忆阻器模块304的端子Vdly3、第4忆阻器模块304的端子Vdly4分别、第5忆阻器模块304的端子Vdly5分别与第1环形振荡器电路102的端子Adly1连接,第1忆阻器模块304的端子Vcr11、第2忆阻器模块304的端子Vcr12、第3忆阻器模块304的端子Vcr13、第4忆阻器模块304的端子Vcr14、第5忆阻器模块304的端子Vcr15分别与第1环形振荡器电路102的端子Acr11连接;第1忆阻器模块304的端子Vc11、第2忆阻器模块304的端子Vc21、第3忆阻器模块304的端子Vc31、第4忆阻器模块304的端子Vc41、第5忆阻器模块304的端子Vc51与对应的第1环形振荡器电路102的端子Ac11、Ac21、Ac31、Ac41、Ac51连接;第1忆阻器模块304的端子Vrs1、第2忆阻器模块304的端子Vrs2、第3忆阻器模块304的端子Vrs3、第4忆阻器模块304的端子Vrs4、第5忆阻器模块304的端子Vrs5分别与第1环形振荡器电路102的端子Ars1连接,第1忆阻器模块304的端子Vcr21、第2忆阻器模块304的端子Vcr22、第3忆阻器模块304的端子Vcr23、第4忆阻器模块304的端子Vcr24、第5忆阻器模块304的端子Vcr25分别与第1环形振荡器电路102的端子Acr21连接。As shown in FIG. 10 , the terminal V chlg1 of the first
所述第2环形振荡器电路106与第1环形振荡器电路102结构相同。The second
本实施例所述第1忆阻器模块304的结构与实施例1所述第1忆阻器模块304的结构相同。The structure of the first
所述第2忆阻器模块304、第3忆阻器模块304、第4忆阻器模块304、第5忆阻器模块304均与第1忆阻器模块304的结构相同。The structure of the second
所述的延迟电路忆阻器201和模块忆阻器404相同,均为具有阈值电压的忆阻器;延迟电路忆阻器201和模块忆阻器404的初始状态均处于高阻态。The
所述基于忆阻器的环形振荡器PUF电路的使用方法:The method of using the memristor-based ring oscillator PUF circuit:
步骤一、所有忆阻器复位
在电压输入端子Vcr1与端子GND之间施加低电平的电压信号Ucr1=0V;在电压输入端子Vrs与端子GND之间施加高电平的电压信号Urs=2V;其余电压输入端子与端子GND之间不施加任何电压信号。Apply a low-level voltage signal U cr1 = 0V between the voltage input terminal V cr1 and the terminal GND; apply a high-level voltage signal U rs = 2V between the voltage input terminal V rs and the terminal GND; other voltage input terminals Do not apply any voltage signal to terminal GND.
步骤一中,第1环形振荡器电路102和第2环形振荡器电路106中的所有模块忆阻器404复位为高阻态:In step one, all
第1环形振荡器电路102中:第1忆阻器模块304、第2忆阻器模块304、第3忆阻器模块304、第4忆阻器模块304、第5忆阻器模块304中各自的模块忆阻器404的阻值依次为11572Ω、10813Ω、10223Ω、8738Ω、8848Ω;In the first ring oscillator circuit 102: each of the first
第2环形振荡器电路106中:第1忆阻器模块304、第2忆阻器模块304、第3忆阻器模块304、第4忆阻器模块304、第5忆阻器模块304中各自的模块忆阻器404的阻值依次为8309Ω、11655Ω、10827Ω、10231Ω、9254Ω。In the second ring oscillator circuit 106: each of the first
步骤二、施加激励Step 2. Apply incentives
在电压输入端子Vpl、Vchlg、Vcr0、Vcr1与端子GND之间施加对应的高电平的电压信号Upl=2V、Uchlg=2V、Ucr0=1.8V、Ucr2=1.8V;在电压输入端子Vc1、Vc2、Vc3、Vc4、Vc5与端子GND之间施加对应的高电平或低电平的激励电压信号Uc1=1.8V、Uc2=1.8V、Uc3=1.8V、Uc4=1.8V、Uc5=0V;在电压输入端子Vcr2与端子GND之间施加低电平的电压信号Ucr2=0V;其余电压输入端子与端子GND之间不施加任何电压信号。Apply corresponding high-level voltage signals U pl =2V, U chlg =2V, U cr0 =1.8V, U cr2 =1.8V between the voltage input terminals V pl , V chlg , V cr0 , V cr1 and the terminal GND ; Apply corresponding high -level or low-level excitation voltage signals U c1 = 1.8V , U c2 = 1.8V , U c3 =1.8V, U c4 =1.8V, U c5 =0V; a low-level voltage signal U cr2 =0V is applied between the voltage input terminal V cr2 and the terminal GND; Apply any voltage signal.
步骤二中,第1环形振荡器电路102和第2环形振荡器电路106中的所有模块忆阻器404的阻值随机减小,减小后的阻值为:In step 2, the resistance values of all the
第1环形振荡器电路102中:第1忆阻器模块304、第2忆阻器模块304、第3忆阻器模块304、第4忆阻器模块304、第5忆阻器模块304中各自的模块忆阻器404的阻值依次为10920Ω、10250Ω、9725Ω、8385Ω、8848Ω;In the first ring oscillator circuit 102: each of the first
第2环形振荡器电路106中:第1忆阻器模块304、第2忆阻器模块304、第3忆阻器模块304、第4忆阻器模块304、第5忆阻器模块304中各自的模块忆阻器404的阻值依次为7994Ω、10993Ω、10263Ω、9733Ω、9254Ω。In the second ring oscillator circuit 106: each of the first
步骤三、响应输出
在电压输入端子Vvdd、Vrd、Vcr1、Vcr2与端子GND之间施加对应的高电平的电压信号Uvdd=5V、Urd=1.5V、Ucr1=1.8V、Ucr2=1.8V;在电压输入端子Vcr0与端子GND之间施加低电平的电压信号Ucr0=0V;其余电压输入端子与端子GND之间不施加任何电压信号。Apply corresponding high-level voltage signals U vdd =5V, U rd =1.5V, U cr1 =1.8V, U cr2 =1.8 between the voltage input terminals V vdd , V rd , V cr1 , V cr2 and the terminal GND V; a low-level voltage signal U cr0 =0V is applied between the voltage input terminal V cr0 and the terminal GND; no voltage signal is applied between the other voltage input terminals and the terminal GND.
数字比较器104的端子Rout输出响应电压。The terminal R out of the
在步骤三中,第1环形振荡器电路102所产生方波的振荡频率f1=3.912KHZ,第2环形振荡器电路106所产生方波的振荡频率f2=3.921KHZ;In step three, the oscillation frequency of the square wave generated by the first
数字比较器104的端子Rout输出响应电压为0V。The terminal R out of the
本具体实施方式以模块忆阻器404处于高阻态时阻值分布的随机性作为基于忆阻器的环形振荡器PUF电路的主要熵源,在步骤一中,给忆阻器模块304施加相关电压信号,使基于忆阻器的环形振荡器PUF电路中的所有模块忆阻器404均复位为高阻态。在步骤二中,基于忆阻器的环形振荡器PUF电路根据输入的激励电压信号选中第1环形振荡器电路102和第2环形振荡器电路106中的部分模块忆阻器404,对选中的模块忆阻器404施加高电平的电压信号Uchlg,在随机延迟电路101的作用下使高电平的电压信号Uchlg施加在模块忆阻器404上的持续时间随机,被选中的模块忆阻器404在高阻状态下进行一次随机的阻值减小。在步骤三中,第1环形振荡器电路102和第2环形振荡器电路106开始振荡,通过第1计数器103和第2计数器105分别对第1环形振荡器电路102和第2环形振荡器电路106所产生方波的脉冲进行计数,最后通过数字比较器104比较计数值得出响应。In this specific embodiment, the randomness of the resistance value distribution when the
本具体实施方式具有如下积极效果:This embodiment has the following positive effects:
本具体实施方式在步骤二时,基于忆阻器的环形振荡器PUF电路根据施加的激励电压信号选中忆阻器模块304中的模块忆阻器404,并对选中的模块忆阻器404进行一次随机的阻值减小,激励电压信号不同,所选中的模块忆阻器404也不同,选中模块忆阻器404的阻值减小量也不同,导致激励电压信号不同时,基于忆阻器的环形振荡器PUF电路中模块忆阻器404的阻值也不同,即基于忆阻器的环形振荡器PUF电路的参数不同,随着激励电压信号的变化,基于忆阻器的环形振荡器PUF电路的参数也随之变化,这使机器学习算法难以准确的建立基于忆阻器的环形振荡器PUF电路的数学模型,因而具有显著的抗机器学习能力。In this specific embodiment, in step 2, the memristor-based ring oscillator PUF circuit selects the
本具体实施方式除了忆阻器模块304中的模块忆阻器404处于高阻态时阻值分布的随机性作为基于忆阻器的环形振荡器PUF电路的熵源,随机延迟电路101中的延迟电路忆阻器201处于高阻态时阻值分布的随机性也作为基于忆阻器的环形振荡器PUF电路的熵源,因而具有双重熵源,核心性能指标良好。In this specific embodiment, the randomness of the resistance value distribution when the
本具体实施方式只需要两个环形振荡器电路就可以产生多位的CRP对,增加CRP对的位数只需要增加第1环形振荡器电路102和第2环形振荡器电路106中反相器301和反相器301所对应忆阻器模块304的个数,因此扩展性强和硬件消耗小。This specific embodiment only needs two ring oscillator circuits to generate multi-bit CRP pairs, and increasing the number of CRP pairs only needs to increase the
因此,本具体实施方式具有抗机器学习能力强、硬件消耗小和核心性能指标良好的特点。Therefore, this embodiment has the characteristics of strong machine learning resistance, low hardware consumption and good core performance indicators.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211057814.XA CN115459923B (en) | 2022-08-30 | 2022-08-30 | Memristor-based ring oscillator PUF circuit and use method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211057814.XA CN115459923B (en) | 2022-08-30 | 2022-08-30 | Memristor-based ring oscillator PUF circuit and use method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115459923A true CN115459923A (en) | 2022-12-09 |
CN115459923B CN115459923B (en) | 2024-04-26 |
Family
ID=84301685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211057814.XA Active CN115459923B (en) | 2022-08-30 | 2022-08-30 | Memristor-based ring oscillator PUF circuit and use method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115459923B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116684105A (en) * | 2023-07-04 | 2023-09-01 | 湖北大学 | Memristor-based dual-mode PUF structure and working method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9712275D0 (en) * | 1996-06-29 | 1997-08-13 | Hyundai Electronics Ind | Oscillator device |
CN103023434A (en) * | 2013-01-09 | 2013-04-03 | 武汉科技大学 | Memristor based frequency-adjustable sine wave oscillating circuit |
CN113707201A (en) * | 2021-10-27 | 2021-11-26 | 南京航空航天大学 | Efficient reconfigurable ring oscillator PUF circuit based on RRAM |
CN114117557A (en) * | 2021-12-01 | 2022-03-01 | 湖北工业大学 | Hybrid PUF circuit and method based on ring oscillator |
CN114357539A (en) * | 2022-01-04 | 2022-04-15 | 电子科技大学 | Frequency-controllable PUF circuit based on ring oscillator |
-
2022
- 2022-08-30 CN CN202211057814.XA patent/CN115459923B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9712275D0 (en) * | 1996-06-29 | 1997-08-13 | Hyundai Electronics Ind | Oscillator device |
CN103023434A (en) * | 2013-01-09 | 2013-04-03 | 武汉科技大学 | Memristor based frequency-adjustable sine wave oscillating circuit |
CN113707201A (en) * | 2021-10-27 | 2021-11-26 | 南京航空航天大学 | Efficient reconfigurable ring oscillator PUF circuit based on RRAM |
CN114117557A (en) * | 2021-12-01 | 2022-03-01 | 湖北工业大学 | Hybrid PUF circuit and method based on ring oscillator |
CN114357539A (en) * | 2022-01-04 | 2022-04-15 | 电子科技大学 | Frequency-controllable PUF circuit based on ring oscillator |
Non-Patent Citations (5)
Title |
---|
"A candidate solutions generator based on mixed strategy for non-rigid object extraction", 《PROCEEDINGS 2014 IEEE INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC)》, 15 December 2014 (2014-12-15) * |
尹力;甘朝晖;段宗胜;: "基于忆阻器的正弦波振荡电路设计", 微电子学与计算机, no. 11, 5 November 2013 (2013-11-05) * |
张晓峰;白国强;陈弘毅;: "应用于网络安全协处理器的真随机数产生器", 计算机工程, no. 10, 20 May 2009 (2009-05-20) * |
甘朝晖: "一种带有非线性漂移函数的分数阶忆阻器模型", 《系统仿真学报》, 8 August 2018 (2018-08-08) * |
韦民;孙子文;: "提高安全度量的可配置电流环形振荡器PUF", 半导体技术, no. 11, 3 November 2018 (2018-11-03) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116684105A (en) * | 2023-07-04 | 2023-09-01 | 湖北大学 | Memristor-based dual-mode PUF structure and working method thereof |
CN116684105B (en) * | 2023-07-04 | 2024-01-16 | 湖北大学 | Memristor-based dual-mode PUF structure and working method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN115459923B (en) | 2024-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109495272B (en) | Strong PUF circuit based on memristor | |
Pervaiz et al. | Hardware emulation of stochastic p-bits for invertible logic | |
US10574469B1 (en) | Physically unclonable function and method for generating a digital code | |
CN113707201B (en) | An Efficient Reconfigurable Ring Oscillator PUF Circuit Based on RRAM | |
US11056161B2 (en) | Data processing system and method for generating a digital code with a physically unclonable function | |
CN110579700A (en) | Test methods for physically unclonable function generators | |
CN106941350B (en) | A memristor-based XOR gate circuit and design and fabrication method | |
TWI688950B (en) | Random-access memory and associated circuit, method and device | |
Zhao et al. | A 108 F 2/Bit fully reconfigurable RRAM PUF based on truly random dynamic entropy of jitter noise | |
Cui et al. | Lightweight configurable ring oscillator PUF based on RRAM/CMOS hybrid circuits | |
Tang et al. | Circuit designs of high-performance and low-power RRAM-based multiplexers based on 4T (ransistor) 1R (RAM) programming structure | |
CN111027102A (en) | A high-security configurable RO-PUF circuit structure | |
CN115459923A (en) | A memristor-based ring oscillator PUF circuit and its application method | |
CN106814991B (en) | Unbiased true random number generation method and generator based on RRAM | |
CN108521327B (en) | Power-off storage type SIMON encryption circuit | |
CN112332813B (en) | CMOS hybrid type edge memristor D trigger circuit with asynchronous setting and resetting | |
CN115333744B (en) | High-reliability RO (reverse osmosis) PUF (physical unclonable function) circuit and excitation generation method thereof | |
CN113515783B (en) | Multi-mode reconfigurable physical unclonable function circuit and method thereof | |
CN115766029A (en) | A multifunctional PUF circuit based on memristor and its application method | |
Arumi et al. | True random number generator based on RRAM-bias current starved ring oscillator | |
CN109711537A (en) | A prediction circuit based on memristive neural network | |
Anchana et al. | Design and analysis of physical unclonable function | |
KR101920569B1 (en) | Apparatus and method for generating digital value using process variation | |
CN113535123A (en) | Physically unclonable function with precharge by bit line | |
Wang et al. | A Balanced CMOS Compatible Ternary Memristor-NMOS Logic Family and Its Application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |