CN115459825A - 用于下行链路和上行链路信道状态信息获取的方法和设备 - Google Patents

用于下行链路和上行链路信道状态信息获取的方法和设备 Download PDF

Info

Publication number
CN115459825A
CN115459825A CN202211084947.6A CN202211084947A CN115459825A CN 115459825 A CN115459825 A CN 115459825A CN 202211084947 A CN202211084947 A CN 202211084947A CN 115459825 A CN115459825 A CN 115459825A
Authority
CN
China
Prior art keywords
csi
srs
settings
transmission
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211084947.6A
Other languages
English (en)
Inventor
A.帕帕萨克拉里欧
E.翁格萨努西
司洪波
M.S.拉曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN115459825A publication Critical patent/CN115459825A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • H04B7/0421Feedback systems utilizing implicit feedback, e.g. steered pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/53Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers
    • H04H20/59Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for emergency or urgency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及提供用于支持诸如长期演进(LTE)之类的第四代(4G)通信系统之外的更高数据速率的前第五代(5G)或5G通信系统。提供了用于CSI报告机制的方法和装置。用户设备(UE)的装置包括至少一个收发器和可操作地耦合到所述至少一个收发器的至少一个处理器。所述至少一个处理器被配置为基于CSI设置来确定信道状态信息(CSI),所述CSI设置包括至少一个CSI报告设置、至少一个资源设置和测量设置。所述至少一个收发器被配置为将确定的CSI发送到基站(BS)。

Description

用于下行链路和上行链路信道状态信息获取的方法和设备
本申请是申请日为2017年09月01日、申请号为201780053745.6、发明名称为“用于下行链路和上行链路信道状态信息获取的方法和设备”的专利申请的分案申请。
技术领域
本公开一般涉及用于启用(enable)上行链路MIMO的方法。当用户设备配备有多个发送天线和发送-接收单元时,可以使用这些方法。
背景技术
为了满足自第4代(4G)通信系统部署以来增加的对无线数据业务的需求,人们已经努力开发改进第5代(5G)或前5G通信系统。因此,5G或前5G通信系统也称为“超4G网络”或“后LTE系统”。
5G通信系统被认为在较高频率(mmWave)频带(例如,28GHz或60GHz频带)中实现,以便实现更高的数据速率。为了降低无线电波的传播损耗并增加传输距离,在5G通信系统中讨论了波束成形、大规模多输入多输出(MIMO)、全维MIMO(FD-MIMO)、阵列天线、模拟波束成形、大规模天线技术。
此外,在5G通信系统中,正在进行基于先进的小型蜂窝、云无线电接入网络(RAN)、超密集网络、设备到设备(D2D)通信、无线回程、移动网络、协作通信、协作多点(CoMP)、接收端干扰消除等系统网络改进的开发。
在5G系统中,已经开发出了作为高级编码调制(ACM)的混合FSK和QAM调制(FQAM)和滑动窗口叠加编码(SWSC),以及作为高级访问技术的滤波器组多载波(FBMC)、非正交多址(NOMA)和稀疏码多址(SCMA)。
无线通信已经是现代历史上最成功的创新之一。由于智能手机和诸如平板电脑、“记事本”计算机、上网本、电子书阅读器和机器类型的其他移动数据设备在消费者和企业的日益普及,无线数据流量的需求正在迅速增加。为了满足移动数据流量的高增长并支持新的应用和部署,无线接口效率和覆盖范围的改进至关重要。
移动设备或用户设备可以测量下行链路信道的质量并将该质量报告给基站,使得可以确定在与移动设备通信期间是否应该调整各种参数。无线通信系统中的现有信道质量报告过程不足以适应与大型二维阵列发送天线,或者通常容纳大量天线元件的天线阵列几何结构相关联的信道状态信息的报告。
发明内容
本公开的各种实施例了提供用于CSI报告的方法和装置。
在一个实施例中,提供了一种用户设备(UE)。UE包括被配置为接收用于信道状态信息(CSI)计算和报告的配置信息的收发器。配置信息包括包括至少一个CSI报告设置、至少一个参考信号(RS)设置和测量设置的设置。UE还包括可操作地连接到收发器的处理器。处理器被配置为根据设置解码配置信息并计算CSI。收发器还被配置为在上行链路(UL)信道上发送所计算的CSI。
在另一实施例中,提供了一种基站(BS)。BS包括被配置为生成用于CSI计算和报告的配置信息的处理器。配置信息包括至少一个CSI报告设置、至少一个RS设置和测量设置。BS还包括可操作地连接到处理器的收发器。收发器被配置为经由DL信道向UE发送配置信息,并从UE接收依照配置信息所计算的CSI报告。
在另一实施例中,提供了一种用于操作UE的方法。该方法包括由UE接收用于CSI计算和报告的配置信息。配置信息包括包括至少一个CSI报告设置、至少一个RS设置和测量设置的设置。该方法还包括由UE解码配置信息,由UE根据设置计算CSI,并由UE在上行链路(UL)信道上发送所计算的CSI。
根据各种实施例,用户设备(UE)的装置包括至少一个收发器和可操作地耦合到该至少一个收发器的至少一个处理器。该至少一个处理器被配置为基于包括至少一个CSI报告设置、至少一个资源设置和测量设置的CSI设置来确定信道状态信息(CSI)。至少一个收发器被配置为将所确定的CSI发送到基站(BS)。
根据各种实施例,一种用于操作UE的方法包括基于包括至少一个CSI报告设置、至少一个资源设置和测量设置的CSI设置来确定CSI,并将所确定的CSI发送到BS。
根据各种实施例,BS的装置包括至少一个收发器和可操作地耦合到该至少一个收发器的至少一个处理器。该至少一个处理器被配置为基于包括至少一个CSI报告设置、至少一个资源设置和测量设置的CSI设置来配置UE以报告CSI。该至少一个收发器被配置为从UE接收所确定的CSI。
根据各种实施例,一种用于操作BS的方法包括配置UE以基于包括至少一个CSI报告设置、至少一个资源设置和测量设置的CSI设置来报告CSI,并从UE接收所确定的CSI。
本公开涉及提供用于支持诸如长期演进(LTE)之类的第四代(4G)通信系统之外的更高数据速率的前第五代(5G)或5G通信系统。
根据以下附图、描述和权利要求,本领域技术人员可以容易地明白其他技术特征。
在进行下面的详细描述之前,阐述贯穿本专利文件中使用的某些词和短语的定义可能是有利的。术语“耦合”及其衍生是指两个或更多个元素之间的任何直接或间接通信,无论这些元素是否彼此物理接触。术语“发送”、“接收”和“通信”及其衍生包括直接和间接通信。术语“包括”和“包含”及其衍生意指包含但不限于此。术语“或”是包含性的,意思是和/或。短语“与...相关联”及其衍生意味着包括、包括在内、与之互连、包含、包含在内、连接到或至、耦合到或至、与之通信、协作、交错、并置、接近、受约束、拥有、拥有所有权、与之有关系等。术语“控制器”表示控制至少一个操作的任何设备、系统或其部分。这种控制器可以用硬件或硬件和软件和/或固件的组合来实现。与任何特定控制器相关联的功能可以是集中的或分布式的,无论是本地还是远程。当与项目列表一起使用时,短语“至少一个”意味着可以使用所列项目中的一个或多个的不同组合,并且可能仅需要列表中的一个项目。例如,“A、B和C中的至少一个”包括以下任何组合:A、B、C、A和B、A和C、B和C、以及A和B和C。
此外,下面描述的各种功能可以由其每一个由计算机可读程序代码形成并且包含(embodied in)在计算机可读介质中的一个或多个计算机程序实现或支持。术语“应用”和“程序”指的是适于在合适的计算机可读程序中实现的一个或多个计算机程序、软件组件、指令集、过程、功能、对象、类、实例、相关数据或改编用于在适当计算机可读程序代码中实现的其一部分。短语“计算机可读程序代码”包括任何类型的计算机代码,包括源代码、目标代码和可执行代码。短语“计算机可读介质”包括能够被计算机访问的任何类型的介质,例如只读存储器(ROM)、随机存取存储器(RAM)、硬盘驱动器、光盘(CD)、数字视频光盘(DVD)或任何其他类型的内存。“非暂时性”计算机可读介质不包括传输瞬时电信号或其他信号的有线、无线、光学或其他通信链路。非暂时性计算机可读介质包括可以永久存储数据的介质和可以存储和稍后重写数据的介质,例如可重写光盘或可擦除存储器设备。
贯穿本专利文件提供了对其他某些词和短语的定义。本领域普通技术人员应该理解,在许多情况下(如果不是大多数情况),这样的定义应用于这样定义的单词和短语的之前和将来的使用。
附图说明
为了更完整地理解本公开及其优点,现在参考结合附图的以下描述,其中相同的附图标记表示相同的部分:
图1示出了根据本公开的各种实施例的示例性无线网络;
图2A和图2B示出了根据本公开的各种实施例的示例无线发送和接收路径;
图3A示出了根据本公开的各种实施例的示例用户设备;
图3B示出了根据本公开的各种实施例的示例基站(BS);
图4示出了其中一个CSI-RS端口被映射到大量模拟受控天线元件上的示例波束成形架构;
图5A示出了根据本公开的实施例的具有四个CSI报告设置和四个参考信号设置的DL的示例实施例;
图5B示出了根据本公开的实施例的具有四个CSI报告设置、三个参考信号设置和一个干扰测量设置的DL的示例实施例;
图5C示出了根据本公开的实施例的具有两个DL信令设置、两个参考信号设置和一个干扰测量设置的UL的示例实施例;
图6示出了根据本公开的实施例的示例CSI报告设置;
图7示出了根据本公开的实施例的具有两个DL信令设置和三个参考信号设置的UL的示例实施例;
图8示出了根据本公开的实施例的示例DL信令设置;
图9A示出了根据本公开的实施例的连续时域RS复用方案;
图9B示出了根据本公开的实施例的非连续时域RS复用方案;
图9C示出了根据本公开的实施例的频域RS复用方案;
图10示出了根据本公开的实施例的用于CSI报告配置的三个组之间的示例关系;
图11示出了根据本公开的实施例的具有两个DL信令设置和两个参考信号设置的DL的示例实施例;
图12示出了根据本公开的实施例的可配置CSI报告的过程;
图13示出了根据本公开的实施例的其中UE接收用于信道状态信息(CSI)计算和报告的配置信息的示例方法的流程图;以及
图14示出了根据本公开的实施例的其中BS生成用于UE的信道状态信息(CSI)计算和报告的配置信息(标记为UE-k)的示例方法的流程图。
具体实施方式
以下讨论的图1至图14以及用于描述本专利文件中的本公开的原理的各种实施例仅是示例性的,不应以任何方式解释为限制本公开的范围。本领域技术人员将理解,本公开的原理可以在任何适当布置的无线通信系统中实现。
缩略词列表
·2D:二维
·MIMO:多输入多输出
·SU-MIMO:单用户MIMO
·MU-MIMO:多用户MIMO
·3GPP:第三代合作伙伴计划
·LTE:长期演进
·UE:用户设备
·eNB:演进节点B或“eNB”
·BS:基站
·DL:下行链路
·UL:上行链路
·CRS:小区特定的参考信号
·DMRS:解调参考信号
·SRS:探测参考信号
·UE-RS:UE特定的参考信号
·CSI-RS:信道状态信息参考信号
·SCID:加扰标识
·MCS:调制和编码方案
·RE:资源元素
·CQI:信道质量信息
·PMI:预编码矩阵指示符
·RI:秩指示符
·MU-CQI:多用户CQI
·CSI:信道状态信息
·CSI-IM:CSI干扰测量
·CoMP:协调多点
·DCI:下行链路控制信息
·UCI:上行链路控制信息
·PDSCH:物理下行链路共享信道
·PDCCH:物理下行链路控制信道
·PUSCH:物理上行链路共享信道
·PUCCH:物理上行链路控制信道
·PRB:物理资源块
·RRC:射频资源控制
·AoA:到达角度
·AoD:出发角度
以下文献和标准描述通过引用结合到本公开中,如同在此完全阐述:3GPP技术规范(TS)36.211版本12.4.0“,E-UTRA,物理信道和调制”(“REF”1”);3GPP TS 36.212版本12.3.0,“E-UTRA,多路复用和信道编码”(“REF2”);3GPP TS 36.213版本12.4.0,“E-UTRA,物理层程序”(“REF 3”);3GPP TS 36.321版本12.4.0,“E-UTRA,媒体访问控制(MAC)协议规范”(“REF 4”);和3GPP TS 36.331版本12.4.0“,E-UTRA,射频资源控制(RRC)协议规范”(“REF 5”)。
图1示出了根据本公开的各种实施例的示例性无线网络100。图1中所示的无线网络100的实施例仅用于说明。可以使用无线网络100的其他实施例而不脱离本公开的范围。
无线网络100包括基站(BS)101、BS 102和BS 103。BS 101与BS 102和BS 103通信。BS 101还与诸如因特网、专有IP网络或其他数据网络的至少一个因特网协议(IP)网络130通信。也可以使用诸如“eNB”(增强节点B)或“gNB”(通用节点B)的替代术语代替“BS”。根据网络类型,可以使用其他众所周知的术语来代替“gNB”或“BS”,例如“基站”或“接入点”。为方便起见,术语“gNB”和“BS”在本专利文件中使用是指提供对远程终端的无线接入的网络基础设施组件。此外,根据网络类型,可以使用其他众所周知的术语来代替“用户设备”或“UE”,例如“移动站”、“用户站”、“远程终端”、“无线终端”或“用户设备”。为了方便起见,在本专利文件中使用术语“用户设备”和“UE”来指代无线接入gNB的远程无线设备,而不论UE是移动设备(例如,移动电话或智能手机)或通常被认为是固定设备(例如台式计算机或自动售货机)。
gNB 102为gNB 102的覆盖区域120内的第一多个用户设备(UE)提供对网络130的无线宽带接入。第一多个UE包括UE 111,其可以位于小企业(SB)中;UE 112,其可以位于企业(E)中;UE 113,其可以位于WiFi热点(HS)中;UE 114,其可以位于第一住宅(R)中;UE115,其可以位于第二住宅(R)中;UE 116,其可以是如手机、无线笔记本电脑、无线PDA等的移动设备(M)。gNB 103为gNB 103的覆盖区域125内的第二多个UE提供对网络130的无线宽带接入。第二多个UE包括UE 115和UE 116。在一些实施例中,一个或多个UE包括UE 115和UE116。gNB 101-103可以使用5G、LTE、LTE-A、WiMAX或其他高级无线通信技术彼此通信并与UE111-116通信。
虚线示出了覆盖区域120和125的近似范围,仅出于说明和解释的目的,其显示为近似圆形。应该清楚地理解,与gNB相关联的覆盖区域,例如覆盖区域120和125,可以具有其他形状,包括不规则形状,这取决于gNB的配置和与自然和人类制造的障碍物相关的射频环境的变化。
如下面更详细描述的,gNB 101、gNB 102和gNB 103中的一个或多个将测量参考信号发送到UE 111-116,并且如本公开的实施例中所描述的,配置UE 111-116用于CSI报告。在各种实施例中,UE 111-116中的一个或多个接收CSI获取配置信息并相应地发送CSI报告。
尽管图1示出了无线网络100的一个示例,但是可以对图1进行各种改变。例如,无线网络100可以以任何合适的布置包括任何数量的gNB和任何数量的UE。此外,gNB 101可以直接与任何数量的UE通信,并且向那些UE提供对网络130的无线宽带接入。类似地,每个gNB102-103可以直接与网络130通信并且向UE提供对网络130的直接无线宽带接入。此外,gNB101、102和/或103可以提供对其他或附加外部网络的访问,例如外部电话网络或其他类型的数据网络。
图2A和图2B示出了根据本公开的示例性无线发送和接收路径。在以下描述中,发送路径200可以被描述为在gNB(诸如gNB 102)中实现,而接收路径250可以被描述为在UE(诸如UE 116)中实现。然而,应该理解,接收路径250可以在gNB中实现,并且发送路径200可以在UE中实现。在一些实施例中,接收路径250被配置为CSI获取配置信息并相应地发送CSI报告,如本公开的实施例中所描述的。
发送路径200包括信道编码和调制块205、串行到并行(S到P)块210、大小为N的快速傅里叶逆变换(IFFT)块215、并行到串行(P到S)块220、“添加循环前缀”块225和上变频器(UC)230。接收路径250包括下变频器(DC)255、“去除循环前缀”块260、串行到并行(S到P)块265、大小为N的快速傅里叶变换(FFT)块270、并行到串行(P到S)块275和信道解码和解调块280。
在发送路径200中,信道编码和调制块205接收一组信息比特,应用编码(例如卷积、Turbo或低密度奇偶校验(LDPC)编码),并调制输入比特(例如,利用正交相移键控(QPSK)或正交幅度调制(QAM))来生成频域调制符号序列。S到P块210将串行调制符号(例如,解复用)转换为并行数据,以便生成N个并行符号流,其中N是在gNB 102和UE 116中使用的IFFT/FFT大小。大小为N的IFFT块215对N个并行符号流执行IFFT操作以生成时域输出信号。P到S块220转换(例如多路复用)来自大小为N的IFFT块215的并行时域输出符号,以便生成串行时域信号“。添加循环前缀”块225将循环前缀插入时域信号。UC 230将“添加循环前缀”块225的输出调制(例如上变频)为RF频率,以经由无线信道进行发送。在变换到RF频率之前,还可以在基带处对信号进行滤波。
从gNB 102发送的RF信号在通过无线信道之后到达UE 116,并且在UE 116处执行与gNB 102处的那些相反的操作。DC 255将接收到的信号下变换为基带频率,并且“移除循环前缀”块260移除循环前缀以生成串行时域基带信号。串行到并行块265将时域基带信号转换为并行时域信号。大小为N的FFT块270执行FFT算法以生成N个并行频域信号。并行到串行块275将并行频域信号转换为调制数据符号序列。信道解码和解调块280对调制符号进行解调和解码,以恢复原始输入数据流。
如下面更详细描述的,发送路径200或接收路径250可以执行用于CSI报告的信令。gNB 101-103中的每一个可以实现类似于在下行链路中向UE111-116发送的发送路径200,并且可以实现类似于在上行链路中从UE 111-116接收的接收路径250。类似地,UE 111-116中的每一个可以实现用于在上行链路中向gNB 101-103发送的发送路径200,并且可以实现用于在下行链路中从gNB 101-103接收的接收路径250。
可以仅使用硬件或使用硬件和软件/固件的组合来实现图2A和图2B中的每一个组件。作为特定示例,图2A和图2B中的至少一些组件可以用软件实现,而其他组件可以通过可配置硬件或者软件和可配置硬件的混合来实现。例如,FFT块270和IFFT块215可以实现为可配置的软件算法,其中可以根据实现来修改大小N的值。
此外,尽管描述为使用FFT和IFFT,但这仅是示例性的,不应被解释为限制本公开的范围。可以使用其他类型的变换,例如离散傅立叶变换(DFT)和离散傅里叶逆变换(IDFT)函数。应当理解,变量N的值可以是用于DFT和IDFT函数的任何整数(例如1、2、3、4等),而变量N的值可以是用于FFT和IFFT函数的2的幂的任何整数(例如1、2、4、8、16等)。
尽管图2A和图2B示出了无线发送和接收路径的示例,但是可以对图2A和图2B进行各种改变。例如,图2A和图2B中的各种组件可以组合、进一步细分或省略,并且可以根据特定需要添加附加组件。而且,图2A和图2B旨在示出可以在无线网络中使用的发送和接收路径类型的示例。可以使用其他合适的架构可来支持无线网络中的无线通信。
图3A示出了根据本公开的示例UE 116。图3A中示出的UE 116的实施例仅用于说明,并且图1的UE 111-115可以具有相同或相似的配置。然而,UE具有各种各样的配置,并且图3A不限制本公开的范围为UE的任何特定实现。
UE 116包括天线305、射频(RF)收发器310、发送(TX)处理电路315、麦克风320和接收(RX)处理电路325。UE 116还包括扬声器330、处理器340、输入/输出(I/O)接口345、输入350、显示器355和存储器360。存储器360包括操作系统(OS)程序361和一个或多个应用362。
RF收发器310从天线305接收由图1的无线网络100的gNB发送的输入RF信号。RF收发器310对输入的RF信号进行下变频以生成中频(IF)或基带信号。将IF或基带信号发送到通过对基带或IF信号进行滤波、解码和/或数字化来生成经处理的基带信号的RX处理电路325。RX处理电路325将处理后的基带信号发送到扬声器330(例如用于语音数据)或发送到处理器340以进行进一步处理(例如用于网络浏览数据)。
TX处理电路315从麦克风320接收模拟或数字语音数据或从处理器340接收其他输出基带数据(诸如网络数据、电子邮件或交互式视频游戏数据)。TX处理电路315对输出的基带数据进行编码、多路复用和/或数字化,以生成处理过的基带或IF信号。RF收发器310从TX处理电路315接收输出处理过的基带或IF信号,并将基带或IF信号上变频为经由天线305发送的RF信号。
处理器340可以包括一个或多个处理器或其他处理设备,并运行存储在存储器360中的OS程序361,以便控制UE 116的整体操作。例如,处理器340可以由RF收发器310、RX处理电路325和TX处理电路315根据公知的原理控制前向信道信号的接收和反向信道信号的发送。在一些实施例中,处理器340包括至少一个微处理器或微控制器。
处理器340还能够运行驻留在存储器360中的其他过程和程序,诸如本公开的实施例中描述的系统的CQI测量和报告的操作。处理器340可以根据运行过程的需要将数据移入或移出存储器360。在一些实施例中,处理器340被配置为基于OS程序361或响应于从gNB或运营商接收的信号来运行应用362。处理器340还耦合到为UE 116提供连接到诸如膝上型计算机和手持式计算机之类的其他设备的能力的I/O接口345。I/O接口345是这些附件和处理器340之间的通信路径。
处理器340还耦合到输入350(例如,小键盘、触摸屏,按键等)和显示器355。UE 116的运营商可以使用输入350将数据输入到UE 116中。显示器355可以是液晶显示器或能够呈现文本和/或至少有限图形(例如来自网站)的其他显示器。
存储器360耦合到处理器340。存储器360的一部分可以包括随机存取存储器(RAM),存储器360的另一部分可以包括闪存或其他只读存储器(ROM)。
如下面更详细描述的,UE 116可以执行信令和用于CSI报告的计算。尽管图3A示出了UE 116的一个示例,但是可以对图3A进行各种改变。例如,根据特定需要,图3A中的各种组件可以组合、进一步细分或省略,并且可以添加附加组件。作为特定示例,处理器340可以被划分为多个处理器,诸如一个或多个中央处理单元(CPU)和一个或多个图形处理单元(GPU)。而且,虽然图3A示出了UE 116被配置为移动电话或智能电话,但是UE可以被配置为操作为其他类型的移动或固定设备。
根据各种实施例,用户设备(UE)包括被配置为接收用于信道状态信息(CSI)计算和报告的配置信息的收发器,其中配置信息包括包括至少一个CSI报告设置、至少一个参考信号(RS)设置和测量设置的设置;以及可操作地连接到收发器的处理器,该处理器被配置为解码配置信息并根据设置计算CSI。收发器还被配置为在上行链路(UL)信道上发送计算出的CSI。
在一些实施例中,经由更高层信令接收配置信息。
图3B示出了根据本公开的示例性gNB 102。图3B中所示的gNB 102的实施例仅用于说明,并且图1的其他gNB可具有相同或相似的配置。然而,gNB具有各种各样的配置,并且图3B不将本公开的范围限制于gNB的任何特定实现。gNB 101和gNB 103可以包括与gNB 102相同或相似的结构。
如图3B所示,gNB 102包括多个天线370a-370n、多个RF收发器372a-372n、发送(TX)处理电路374和接收(RX)处理电路376。在某些实施例中,一个或多个多个天线370a-370n包括2D天线阵列。gNB102还包括控制器/处理器378、存储器380和回程或网络接口382。
RF收发器372a-372n从天线370a-370n接收输入的RF信号,例如由UE或其他gNB发送的信号。RF收发器372a-372n对输入的RF信号进行下变频以生成IF或基带信号。将IF或基带信号发送到通过对基带或IF信号进行滤波、解码和/或数字化来生成经处理的基带信号的RX处理电路376。RX处理电路376将处理后的基带信号发送到控制器/处理器378以进行进一步处理。
TX处理电路374从控制器/处理器378接收模拟或数字数据(诸如语音数据、网络数据、电子邮件或交互式视频游戏数据)。TX处理电路374对输出的基带数据进行编码、多路复用和/或数字化以生成经处理的基带或IF信号。RF收发器372a-372n从TX处理电路374接收输出的经处理的基带或IF信号,并将基带或IF信号上变频为经由天线370a-370n发送的RF信号。
控制器/处理器378可以包括控制gNB 102的整体操作的一个或多个处理器或其他处理设备。例如,控制器/处理器378可以由RF收发器372a-372n、RX处理电路376和TX处理电路374根据公知原理控制前向信道信号的接收和反向信道信号的发送。控制器/处理器378也可以支持附加功能,例如更高级的无线通信功能。在一些实施例中,控制器/处理器378包括至少一个微处理器或微控制器。
控制器/处理器378还能够执行驻留在存储器380中的程序和其他进程,例如OS。如本公开的实施例中所述,控制器/处理器378还能够支持具有2D天线阵列的系统的信道质量测量和报告。在一些实施例中,控制器/处理器378支持诸如web RTC之类的实体之间的通信。控制器/处理器378可以根据运行过程的需要将数据移入或移出存储器380。
控制器/处理器378还耦合到回程或网络接口382。回程或网络接口382允许gNB102通过回程连接或通过网络与其他设备或系统通信。回程或网络接口382可以支持通过任何合适的有线或无线连接的通信。例如,当gNB 102被实现为蜂窝通信系统(诸如支持5G或新射频接入技术或NR、LTE或LTE-A的一个)的一部分时,回程或网络接口382可以允许gNB102通过有线或无线回程连接与其他gNB通信。当gNB 102被实现为接入点时,回程或网络接口382可以允许gNB 102通过有线或无线局域网或通过有线或无线连接与更大的网络(诸如因特网)通信。回程或网络接口382包括支持通过有线或无线连接的通信的任何合适的结构,例如以太网或RF收发器。
存储器380耦合到控制器/处理器378。存储器380的一部分可以包括RAM,存储器380的另一部分可以包括闪存或其他ROM。在某些实施例中,诸如BIS算法的多个指令存储在存储器中。多个指令被配置为使得控制器/处理器378执行BIS处理并减去由BIS算法确定的至少一个干扰信号之后解码所接收的信号。
如下面更详细描述的,gNB 102的发送和接收路径(使用RF收发器372a-372n、TX处理电路374和/或RX处理电路376实现)执行用于CSI获取的配置和信令。
尽管图3B示出了gNB 102的一个示例,但是可以对图3B进行各种改变。例如,gNB102可以包括任何数量的图3A中所示的每个组件。作为特定示例,接入点可以包括多个回程或网络接口382,并且控制器/处理器378可以支持路由功能以在不同网络地址之间路由数据。作为另一特定示例,虽然示出为包括TX处理电路374的单个实例和RX处理电路376的单个实例,但是gNB 102可以包括每个的多个实例(诸如每个RF收发器一个)。
根据各种实施例,基站(BS)包括被配置为生成用于信道状态信息(CSI)计算和报告的配置信息的处理器,以及可操作地连接到处理器的收发器。配置信息包括至少一个CSI报告设置、至少一个参考信号(RS)设置和测量设置。收发器被配置为经由下行链路(DL)信道向UE发送配置信息,并且从UE接收根据配置信息计算的CSI报告。
在一些实施例中,经由更高层信令发送/接收配置信息。
Rel.13LTE支持多达16个CSI-RS天线端口,这使得gNB能够配备大量天线元件(例如64或128)。在这种情况下,多个天线元件被映射到一个CSI-RS端口上。此外,Rel.14LTE中将支持多达32个CSI-RS端口。对于诸如5G的下一代蜂窝系统,预期CSI-RS端口的最大数量或多或少保持相同。
对于mmWave频段,尽管对于给定的形状因子(form factor),天线元件的数量可以更大,但是如图4的实施例400所示,CSI-RS端口的数量(其可以对应于数字预编码端口的数量)由于硬件限制而趋于受限(诸如以mmWave频率安装大量ADC/DAC的可行性)。在这种情况下,一个CSI-RS端口被映射到可以由一组模拟移相器401控制的大量天线元件上。然后,一个CSI-RS端口可以对应于通过模拟波束形成405产生窄模拟波束的一个子阵列。该模拟波束可以被配置为通过改变跨符号或子帧或时隙(其中子帧或时隙包括符号集合)的移相器组来扫描更宽范围的角度420。子阵列的数量(等于RF链的数量)与CSI-RS端口的数量NCSI-PORT相同。数字波束成形单元410跨NCSI-PORT个模拟波束执行线性组合以进一步增加预编码增益。虽然模拟波束是宽带的(因此不是频率选择性的),但是数字预编码可以跨频率子带或资源块变化。
为了实现数字预编码,CSI-RS的有效设计是关键因素。为此,在Rel.13LTE中支持对应于三种类型的CSI-RS测量行为的三种类型的CSI报告机制:1)对应于非预编码的CSI-RS的“CLASS A”CSI报告;2)利用K=1CSI-RS资源报告的“CLASS B”,其对应于UE特定的波束成形的CSI-RS;3)利用K>1CSI-RS资源报告的“CLASS B”,其对应于小区特定波束形成的CSI-RS。对于非预编码(NP)CSI-RS,利用CSI-RS端口和TXRU之间的小区特定的一对一映射。这里,不同的CSI-RS端口具有相同的宽波束宽度和方向以及因此通常相同的小区覆盖范围。对于波束形成的CSI-RS,小区特定的或者UE特定的波束成形操作,被应用于非零功率(NZP)CSI-RS资源(其包括多个端口)。这里,(至少在给定时间/频率下)CSI-RS端口具有窄波束宽度并因此不具有小区范围覆盖,并且(至少从gNB角度来看)至少部分的CSI-RS端口资源组合具有不同波束方向。
在服务gNB处通过UL信号测量DL长期信道统计的情况下,可以容易地使用UE特定的BF CSI-RS。当UL-DL双工距离足够小时,这通常是可行的。然而,当该条件不成立时,为gNB使用一些UE反馈以获得DL长期信道统计(或其任何表示)的估计。为了便于这样的过程,以周期性T1(ms,毫秒)发送第一BF CSI-RS以及以周期性T2(ms)发送第二NP CSI-RS,其中T1≤T2。该方法被称为混合CSI-RS。混合CSI-RS的实现很大程度上取决于CSI过程和NZPCSI-RS资源的定义。
在LTE中,针对周期性(基于PUCCH)和非周期性(基于PUSCH)两者的CSI报告都存在多种CSI报告模式。每个CSI报告模式依赖于(耦合)许多其他参数(例如,码本选择、传输模式、eMIMO类型、RS类型、CRS或CSI-RS端口的数量)。可以感知到至少两个缺点。首先,存在复杂的“嵌套循环”(IF...ELSE...)和耦合/连接网。这使测试工作复杂化。其次,前向兼容性受到限制,特别是在引入新功能时。
虽然上述缺点应用于DL CSI测量,但是对于UL CSI测量也可以这样说。在LTE中,UL CSI测量框架以原始形式存在,并且不像其DL对应物那样演进。在用于下一代系统的TDD或基于互易性(reciprociby-based)的系统的出现以及用于UL的OFDMA或基于OFDMA的多址可能的显著性时,适用于DL和UL二者的相同(或至少类似的)CSI测量和报告框架是有利的。
因此,考虑到5G NR系统的上述新挑战,需要灵活且模块化的适用于DL和UL的CSI测量和报告框架。
本公开包括以下用于实现DL和UL的CSI获取的组件。第一组件(组件1)包括用于支持DL CSI获取的框架及其相关联的实施例。第二组件包括用于支持UL CSI获取的框架和实施例。第三组件包括用于支持DL CSI获取的另一框架及其相关实施例。
组成部分1-DL CSI框架
对于第一组件(即,DL CSI获取框架),部分地设计DL CSI框架以促进在gNB/TRP处的DL CSI获取。这涉及来自UE的DL CSI报告、gNB/TRP处的UL信号的DL CSI测量(用于基于DL-UL互易性的操作)或两者。
在一个示例实施例中,对于单个UE,DL CSI框架包括至少一个CSI报告设置、至少一个RS设置(其包括用于CSI测量的至少一个RS)、以及一个CSI测量设置。CSI报告设置为UE配置需要计算和报告的CSI报告参数。RS设置为UE配置一个或多个RS资源以用于CSI测量和计算。例如,经配置的RS之一可以是CSI-RS,其还包括CSI-IM的特殊情况(因此为零功率CSI-RS)。CSI测量设置提供CSI报告和RS设置之间的链接/耦合。
注意,以上指定(CSI报告设置、RS设置和CSI测量设置)是示例性的并且仅用于说明目的。其他名称也可用于代表功能。例如,RS设置可以被称为资源设置或CSI资源设置,表明用于测量的信号(例如参考信号)的资源配置。换句话说,在下文中,RS设置可以指资源设置。可以用于参考信号(reference signal)的信号的示例包括CSI-RS、DMRS(解调参考信号)或SRS(探测参考信号)。
例如,当UE配置有N个CSI报告设置和M个RS设置时,CSI测量设置将N个CSI报告设置中的每一个与M个RS设置中的至少一个相链接。这在图5A中示出,其中N=4(由0、1、2和3索引的CSI报告设置,其分别与实施例510、511、512和513相关联)并且M=4(由0、1、2和3索引的RS设置,其分别与实施例515、516、517和518相关联)。
CSI测量设置可以描述如下。四个CSI报告设置和四个RS设置与CSI测量设置520相链接。在该示例中,CSI报告设置0和1与RS设置0相链接。CSI报告设置2与RS设置1相链接。另一方面,CSI报告设置3与RS设置2和3相链接。最后一个示例,其中一个CSI报告设置与两个RS设置相链接,适用于混合CSI操作(其中一个RS设置是小区或TRP特定的或gNB-特定的,另一是UE特定的和波束成形的)和CoMP(其中一个RS设置与一个干扰假设相关联,另一RS设置与另一干扰假设相关联)。通常,在CSI测量设置中可以包括L≥1个链接,其链接N个CSI报告设置和M个RS设置。
除了上述链接之外,CSI报告与其对应的RS之间的定时关系可以包括在CSI测量设置中。例如,当CSI报告设置0与RS设置0相关联时,UE行为定义如下。当UE在子帧或时隙n中接收与RS设置0相关联的RS时,UE将在子帧或时隙n+D0-0中报告与CSI报告设置0相关联的CSI,其中参数D0-0是可配置的。在图5A所示的示例中,存在至少五个这样的参数(D0-0、D1-0、D2-1、D3-2和D3-3)。可选地,每个链接可以与一组可能值相关联,其中可以从该组值动态地选择应用于特定测量和报告实例的值。
另外,在CSI测量设置中可以包括与每个链接相关联的测量限制(不仅是位置,还有在时域、频域或两者中测量CSI的程度)。
另外,在CSI测量设置中可以包括多于一个天线端口中的准共置(quasicolocation,QCL)。
可以选择CSI测量设置的上述示例内容中的至少一个(或几个的组合)以形成CSI测量设置。
在上述实施例的变形中,代替利用包括N个CSI报告设置和M个RS设置之间的所有(L≥1)个链接的一个CSI测量设置,可以使用L≥1个单独的CSI测量设置(每个链接一个CSI测量设置)。在这种情况下,一个CSI测量设置可以包括以下中的至少一个:链接、定时关系、测量限制和/或QCL。利用L≥1个CSI测量设置的详细描述遵循用于一个CSI测量设置的设置。
可以经由更高层(RRC)信令或MAC控制元素(MAC CE)或L1控制信令(经由DL控制信道的DL控制信令)为UE配置上述设置。存在几种可能性。第一,可以经由更高层(RRC)信令或MAC控制元素(MAC CE)来配置所有上述设置(CSI报告设置、RS设置和CSI测量设置)。第二,CSI报告设置和RS设置可以经由更高层(RRC)信令来配置,而CSI测量设置可以经由MAC控制元素(MAC CE)来配置。第三,CSI报告设置和RS设置可以经由高层(RRC)信令来配置,而CSI测量设置可以通过L1控制信令(经由DL控制信道的DL控制信令)来配置。第四,CSI报告设置和CSI测量设置可以经由更高层(RRC)信令来配置,而RS设置可以经由L1控制信令(通过DL控制信道的DL控制信令)来配置。
可选地,对于上述三种设置中的至少一种,可以经由更高层(RRC)信令或MAC CE来配置一些设置参数,同时可以经由L1 DL控制信令来配置一些其他设置参数(使用UL相关的或DL相关的DCI)。下面将给出一些例子。
DL传输方案/方法是单独配置的。DL传输方案/方法如何与CSI相关设置一起使用留给gNB实现。可选地,该DL传输方案可以用作CQI计算的条件。
如下所述,CSI报告、DL CSI-RS和UL SRS传输的时域行为包括周期性(P)、半持久性(SP)和非周期性(AP)。几种可能的实施方案如下给出。
在一个示例实施例中,可以为非周期性和半持久性CSI报告动态地选择CSI报告设置。当UE配置有其中配置了包括非周期性CSI报告的n个CSI报告设置中的每一个的n>1个CSI报告设置,用于触发非周期性CSI报告的DCI可以包括CSI报告设置索引(其指示与n个CSI报告设置中相关联的一个),作为单独的DCI字段或CSI请求字段的一部分。同样地,当UE配置有n'>1个其中配置了包括半持久CSI报告的n'个CSI报告设置中的每一个的CSI报告设置时,用于激活半持久CSI报告的DCI或MAC CE可以包括CSI报告设置索引(其指示n'个CSI报告设置中的相关联的一个),作为单独的字段或激活消息的一部分。该实施例还适用于当不能动态选择每个CSI报告设置和所有RS设置之间的所有配置链接时。也就是说,当动态选择CSI报告设置时,链接到所选的CSI报告设置的所有RS设置被用于CSI测量。
在另一示例实施例中,可以动态地选择RS或资源设置以用于非周期性和半持久性CSI报告。当UE配置有m>1个其中配置了m个RS设置非周期性CSI-RS中的每一个的RS或资源设置时,用于触发非周期性CSI报告的DCI可以包括RS设置索引(其指示m个RS设置中的相关联的一个),作为单独的DCI字段或CSI请求字段的一部分。同样地,当UE配置有m'>1个其中配置m'RS设置半持久CSI-RS中的每一个的RS设置时,用于触发非周期CSI报告的DCI,或用于激活半持久CSI报告的DCI或MAC CE,可以包括RS设置索引(其指示m'个CSI报告设置中的相关联的一个),作为单独的字段或激活消息的一部分或(对于非周期性CSI报告)CSI请求字段的一部分。当不能动态选择每个RS设置和所有CSI报告设置之间的所有配置链接时,该实施例也适用。也就是说,当动态选择RS设置时,链接到所选择的RS设置的所有CSI报告设置都是活动的。
以上实施例适用于诸如SRS的其他类型的RS。它也适用于非零功率(NZP)或零功率(ZP)CSI-RS或SRS。
在另一示例实施例中,可以动态地选择CSI报告设置和RS/资源设置以用于非周期性和半持久性CSI报告。在这种情况下,可被动态发信号通知的是CSI测量设置内的所选链接(其中包括总共L个链接)。当UE配置有用于非周期性CSI报告的l>1个链接时,用于触发非周期性CSI报告的DCI可以包括链接索引(其指示l个链接中的相关联的一个),作为单独的DCI字段或CSI请求字段的一部分。同样,当UE配置有用于半持久CSI报告的l'>1个链接时,用于激活半持久CSI报告的DCI或MAC CE可以包括链接索引(其指示l'个链接中的相关联的一个)),作为单独的DCI字段或激活消息的一部分。当使用基于链接的动态信令时,UE可以根据所选择/触发的链接,针对相同的CSI报告设置来测量来自不同RS设置的资源/RS。
在用于第一组件(用于DL CSI)的上述实施例中,用于干扰测量(IM或CSI-IM)的RS包括在RS设置中(例如,在RS功率设置、RS类型和/或RS功能中)。在可选实施例中,代替在RS设置中包括用于IM的RS,可以使用单独的IM(干扰测量)设置。在这种情况下,UE可以配置有一个CSI测量设置,其包括N个CSI报告设置、M个RS设置和P IM设置之间的所有(L≥1)个链接。这在图5B中示出,其中L=5个链接被包括在CSI测量设置550中,以及N=4个CSI报告设置(540、541、542和543)、M=3个RS设置(545、546和547)、和P=1个IM设置(548)。IM设置的内容可以包括RS设置的内容中的至少一个,如在以上关于第一组件的描述中所公开的。
在上述可选实施例的变形中,代替利用包括N个CSI报告设置、M个RS设置和P个IM设置之间的所有(L≥1)个链接的一个CSI测量设置,可以利用L≥1个单独的CSI测量设置(每个链接一个CSI测量设置)。在这种情况下,一个CSI测量设置可以包括以下中的至少一个:链接、定时关系、测量限制和/或QCL。利用L≥1的CSI测量设置的详细描述遵循用于一个CSI测量设置的设置。使用图5B中的示例,使用L=5个单独的CSI测量设置。
该变型也适用于第二组件(稍后描述),其中代替在RS设置中包括用于IM的RS,可以使用单独的IM设置。例如,当UE配置有N个信令设置、M个RS设置和P个IM设置时,CSI测量设置将N个信令设置中的每一个与M个RS设置和P个IM设置中的至少一个相链接。这在图5C中示出,其中N=2(由0和1索引的DL信令设置,其分别与实施例570和571相关联),M=2(由0和1指示的RS设置,其分别与实施例575和576相关联,)和P=1(由0指示的IM设置,其与实施例577相关联)。
组件1.1-用于DL CSI报告的设置
以下实施例属于(pertain to)关于DL CSI报告的设置的子组件(在本公开中表示为子组件1.1)。
在图6中示出了DL CSI报告设置600的示例。这里,CSI报告设置首先包括诸如(但不限于)“模式”的一般设置信息601(CSI报告是否是周期性的、非周期性的/按需、或半持久/多时隙),子帧或时隙配置,其包括子帧或时隙偏移和周期性(仅适用于周期性和/或半持久性/多时隙),以及报告带宽(与DL CSI报告相关联的DL频域资源的数量-可能包括位置)。“模式”配置表示在时域中执行DL CSI报告的方式。“模式”从{周期性、非周期性/按需、半持久性/多时隙}中取值。“模式”也可能仅从例如{周期性、非周期性/按需}或{周期性、半持久性/多时隙}或{非周期性/按需、半持久性/多时隙}中取值。
在示例实施例中,包括针对四个CSI参数的设置600:BI(波束指示符/索引)、RI(秩指示符,rank indicator)、PMI(预编码矩阵指示符)和CQI(信道质量指示符)。在LTE中,BI等同于CRI(CSI-RS资源指示符),因为根据一个CSI-RS资源形成一个波束。在下文中,BI可以指代CRI。当在一个CSI报告设置内报告所有这四个CSI参数时:选择BI的值,以相同设置内的当前BI为条件计算RI,以当前BI和RI为条件计算PMI,并且以当前的BI、RI和PMI为条件计算CQI。当这四个CSI参数中的任何一个既未报告又未被固定为某个值(因此不需要报告)时,上述调节规则仍然适用。当这四个CSI参数中的任何一个既未被报告也未被固定到某个值时,该未报告的CSI参数不会作为后续CSI参数的计算的条件。例如,如果BI既未被报告也未被固定到某个值(在设置602中设置为NULL),选择了RI的值,则以当前RI为条件计算PMI,并且根据当前RI和PMI计算CQI。
尽管该实施例包括四个CSI参数,但是也可以包括其他CSI参数(或者可以仅使用这四个参数的子集,或者结合其他参数使用这四个参数的子集)。在前面和后面的讨论中使用四个CSI参数(因此四个CSI参数设置)是示例性的并且用于说明目的。
除了通用设置信息601之外,还可以为四个CSI参数中的每一个定义子设置。例如,在设置602中,BI设置可以包括可能的一组值和频率粒度。例如,当值集为{0,1,2,3}时,可以报告2位BI。当值集为{2}时,不必执行BI报告。但是BI的值被设置为2(即,UE配置有波束#2)。当该组值为空(NULL)时,不报告BI并且在此CSI报告设置中未使用BI。如果将频率粒度设置为例如20RB,则针对20-RB子带中的每一个计算并报告BI。在603中,类似于602,RI设置还可以包括一组可能的值和频率粒度。例如,当该组值为{1,2}时,可以报告1位RI。当值集为{2}时,不必执行RI报告。但是RI的值被设置为2(即UE将假设用于RI计算的RI=2)。当该组值为NULL时,不报告RI并且在该CSI报告设置中未使用RI。
在设置604中,PMI设置可以包括可能的一组值,“类型”、码本选择/配置和频率粒度。这组值和频率粒度的定义类似于BI或RI。PMI“类型”可以包括一组可能的类型,例如“预编码器”(其指示预编码向量的选择或从码本中获取的矩阵),“预编码器组”(其指示预编码向量的组/子集或从码本获取的矩阵),或“显式”(其指示显式反馈,例如基于信道量化器或码本的信道量化,本征矢量量化)。码本选择/配置可以包括与用于PMI报告的码本的选择有关的信息。
在设置605中,CQI设置可以包括CQI计算设置和频率粒度。频率粒度可以类似于BI、RI或PMI的定义。CQI计算设置,其可能的值集包括NULL(CQI未被报告并且在该CSI报告设置中未使用),可以指示CQI计算过程。在CQI计算过程选项的一个示例中,可以通过假设沿着由PMI的值指示/推荐的一个预编码器的数据传输来计算CQI。在CQI计算过程选项的另一示例中,可以通过假设沿着由PMI的值指示/推荐的多个预编码器的数据传输来计算CQI,其中执行预编码器循环。也就是说,预编码器跨频域、时域或两者上都被改变。在CQI计算过程选项的又一示例中,可以计算CQI以代表相关联的RS的功率(基于经由DL CSI测量设置链接到该DL CSI报告设置的RS设置)。在这种情况下,CQI可以类似于RSRP起作用。另外,CQI的比特数(有效载荷大小)可以配置为CQI设置的一部分,或者与CQI计算设置相关联。
以上选择的名称是示例性的并且用于说明目的。
在任何上述示例中,指示不存在的值NULL可以由提供相同功能的另一值指定替换。
组件1.2-DL CSI测量的设置
以下实施例属于关于DL CSI测量的设置的子组件(在本公开中表示为子组件1.2)。
在以下实施例中给出了用于DL CSI测量的RS设置的示例。
RS设置可以包括“RS类型”,其是用于DL CSI测量的RS的类型。“RS类型”的一些示例包括DL CSI-RS、UL CSI-RS(或SRS-其用于基于互易性的操作的DL CSI测量)、DL DMRS、UL DMRS和功能上等效于波束RS(BRS)的RS。在子实施例中,支持的“RS类型”可以包括前述类型中的至少一种。在另一子实施例中,支持的“RS类型”包括DL CSI-RS和UL-CSI-RS(或SRS)。在该子实施例中,两个RS设置可以与一个或两个CSI报告设置相关联,使得DL CSI-RS和UL CSI-RS(或SRS)都可以用于CSI计算。
RS设置还可以包括“RS带宽”,其指示RS传输所占用的DL(用于DL CSI-RS)或UL(用于UL CSI-RS或SRS)频域资源的量-可能包括的位置。这可以对应于DL CSI报告设置的“报告带宽”设置。
RS设置也可以配置值包括“RS资源参数”,其可以包括若干参数,例如RS波束/资源K的数量(即,在一个RS资源配置/设置内,可以配置一个或多个RS波束/资源-在功能上类似于具有B类eMIMO类型和K≥1NMPCSI-RS资源的LTE)、K个相关RS资源标识或索引、每个RS波束/资源的RS端口的数量{N1,N2,...,NK}、“RS模式”、“RS功率”和“RS功能”。
关于“RS资源参数”的使用,UE可以经由高层(RRC)信令配置有K个NZP CSI-RS资源,而可以选择或激活K个CSI-RS(K≥N)资源的大小为N的子集(用于UE侧的测量或监视)。大小为N的子集的选择可以经由MAC控制元素(MAC CE)信令或L1 DL控制信令(UL相关或DL相关DCI)来完成。在这种情况下,如果在通过高层(RRC)信令配置的RS设置中包括“RS资源参数”,则RS资源K的数量和相关联的资源索引/身份包括在“RS资源参数”中,但不执行大小为N的子集的选择。另一方面,N的值可以经由更高层(RRC)信令或经由MAC CE信令(连同大小N子集的选择)来配置。
可以将前一段中描述的“RS资源参数”的利用和RS资源的子集选择用于DL CSI-RS、UL CSI-RS(SRS)和/或其他类型的RS。另外,可以使用用于DL CSI-RS和UL CSI-RS(SRS)的公共资源池/集合。
“RS模式”指示时间(在一个OFDM符号内)和频域(跨越RE,即,从多个RE模式中选择一个)的RS模式配置。这种多个可能的模式还可以包括具有不同RE密度的模式。对于给定数量的RS波束/资源K,可以针对所有K≥1个RS波束/资源每个单独地或共同定义该模式。
N端口RS(诸如DL CSI-RS或SRS)的RS模式还可以对应于多个RS资源的聚合,其中每个资源对应于较少数量的端口。例如,N端口CSI-RS可以由K个CSI-RS资源组成,其中K个CSI-RS资源的端口数分别为{N1,N2,…,NK},并且N1+N2+…+NK=N。该聚合可以被包括在或用信号通知作为更高层(RRC)配置、MAC CE、L1 DL控制信令或三者的组合的一部分。例如,UE可以配置有多个可能的RS聚合模式,并且经由MAC CE或L1 DL控制信令动态地选择或激活这些聚合模式中的一个。可选地,UE可以配置有多个可能的RS聚合模式,并且经由MAC CE动态地选择或激活这些聚合模式的较小子集,并且经由L1 DL控制信令选择激活子集中的这些聚合模式之一。
“RS功率”指示相对于与数据传输相关联的功率设置的RS功率水平。例如,这可以由每RE或每EPRE的能量(例如,类似于LTE的PA、PB和PC)代表。该RS功率设置还可以包括ZERO,其表示零功率RS(类似于LTE中的用于CSI-IM的ZP CSI-RS)。正如“RS模式”一样,对于给定数量的RS波束/资源K,可以针对所有K≥1个RS波束/资源每个单独或共同地定义“RS功率”。
如果仅ZP CSI-RS可以用于CSI-IM,则可以仅从功率设置将用于CSI-IM(干扰测量)的RS与用于信道测量的RS区区分。因此,两者之间不需要进一步区分。然而,如果其他干扰测量机制(例如使用NZP CSI-RS或DL DMRS的CSI-IM)是可能的,则单独的RS功率可能不足以将用于信道测量的RS与用于干扰测量的RS区单独。在这种情况下,可以使用IM或CSI-IM的附加指示。该指示可以包括在例如RS类型(上面)或RS功能(下面)中。
“RS功能”指示RS是用作“UE特定的RS”还是“覆盖RS”(非UE特定或gNB特定或波束特定的RS)。通常,UE特定的RS可以被动态地预编码/波束成形,特定用于UE,而非UE特定的RS可以是小区特定的或gNB特定的或波束特定的(用于覆盖,其可以包括K≥1个RS波束/资源)。另外,当RS波束/资源的数量K>1时,“RS功能”还可以指示是否在时域中跨越K个RS波束执行波束扫描(例如,跨越K个不同的和连续的OFDM符号,在一个子帧/时隙/TTI内或跨多个子帧/时隙/TTI)。可以针对DL CSI-RS或UL CSI-RS(SRS)执行该波束扫描。
可以列举这种不同的RS函数,例如,“RS功能”=1表示UE特定的RS功能,“RS功能”=2表示非UE特定的或TRP/gNB特定的RS功能(具有K≥1个RS波束/资源),而“RS功能”=3表示使用K>1个连续的OFDM符号来发送K>1个RS波束/资源。对于该最后的功能,RS传输的每个实例(在一个OFDM符号中)可以与一个RS波束/资源相关联。对于DL CSI-RS,UE将假设经由DL在K>1个连续OFDM符号上接收的RS对应于K>1个DL RS波束/资源。对于UL CSI-RS,UE将假设经由UL在K>1个连续OFDM符号上发送的RS对应于K>1个UL RS波束/资源。因此,波束扫描适用于DL和UL CSI-RS两者。
对于某些情况,可以进一步简化。例如,当“RS Type”被设置为UL CSI-RS时,可以通过将“UE特定的”和“非UE特定的”合并为一个值来简化用于UL CSI测量的“RS功能”的设置(例如,“默认”适用于非扫描操作)。这是因为UL CSI-RS(SRS)是UE特定的。另外,当“RS类型”被设置为DL或UL DMRS(如果适用)时,由于DMRS不存在于UE的数据传输不存在的子帧/时隙/TTI中,因此不需要“RS功能”。
类似于DL CSI报告设置,RS设置还可以包括“RS模式”(CSI报告是周期性的、非周期性/按需式或者半持久性/多时隙的)。“模式”配置表示在时域中发送相关联的RS的方式。“模式”从{周期性,非周期性/按需,半持久性/多时隙}中取值。“模式”也可能仅从例如{周期性,非周期性/按需}或{周期性,半持久性/多时隙}或{非周期性/按需,半持久性/多时隙}中取值。
当“RS模式”是周期性或半持久性(“多时隙”)的时,RS设置还可以包括“RS子帧或时隙配置”,其指示与RS传输相关联的周期性和子帧/时隙偏移。这样的“RS子帧或时隙配置”可以针对所有K个RS波束/资源的每个单独配置或者共同配置。
以上选择的名称是示例性的并且用于说明目的。本公开中的RS设置包括上述设置或子设置中的至少一个。
关于“RS功能”的使用,当RS资源或波束K的数量大于1时,可以如下描述一些子实施例。
在一个子实施例中,经由更高层(RRC)信令配置“RS功能”,其作为RS设置的一部分被包括或不包括。“RS功能”指示RS是非UE特定的RS(覆盖RS)还是UE特定的RS。除了该第一信令之外,执行指示与一个RS资源/波束标识/指示符或多个RS资源标识/指示符相关联的RS资源(经由上行链路的SRS或经由下行链路的DL CSI-RS)的传输的第二信令。该第二信令通过MAC CE或L1 DL控制信令(UL相关或DL相关DCI)来执行。例如,当该第二信令指示仅传输一个RS资源/波束时,可以经由L1 DL控制信令(例如,在DCI字段中携带)来用信号通知资源/波束索引。可选地,可以经由L1 DL控制信令(例如,在DCI字段中携带)来用信号通知基于码本定义的预编码矩阵指示符(PMI)。该最后选项可以与UL CSI-RS(SRS)相关,其中该PMI指示UE应用于SRS传输的预编码器。另一方面,当该第二信令指示多个RS资源/波束的传输时,其中与多个资源/波束相关联的RS跨时间和/或频率单元传输的波束扫描操作被执行。例如,扫描N个波束可以表明N个连续的SRS在时间上的传输。定义预定的扫描/循环模式或者经由L1 DL控制信令(例如,在DCI字段中携带)发信号通知(多个选项中)所选择的扫描/循环模式。
在另一子实施例中,经由MAC CE配置“RS功能”,其包括或不包括作为RS设置的一部分。“RS功能”指示RS是非UE特定的RS(覆盖RS)还是UE特定的RS。除了该第一信令之外,执行指示与一个RS资源/波束标识/指示符或多个RS资源标识/指示符相关联的RS资源(经由上行链路的SRS或经由下行链路的DL CSI-RS)的传输的第二信令。该第二信令经由L1DL控制信令(UL相关的或DL相关的DCI)来执行。例如,当该第二信令指示仅传输一个RS资源/波束时,可以经由L1 DL控制信令(例如,在DCI字段中携带)来用信号通知资源/波束索引。可选地,可以经由L1 DL控制信令(例如,在DCI字段中携带)来用信号通知基于码本定义的预编码矩阵指示符(PMI)。该最后选项可以与UL CSI-RS(SRS)相关,其中该PMI指示UE应用于SRS传输的预编码器。另一方面,当该第二信令指示多个RS资源/波束的传输时,其中与多个资源/波束相关联的RS跨时间和/或频率单元传输的波束扫描操作被执行。例如,扫描N个波束可以表明N个连续的SRS在时间上的传输。定义预定的扫描/循环模式或者经由L1 DL控制信令(例如,在DCI字段中携带)发信号通知(多个选项中)所选择的扫描/循环模式。
以上两个子实施例中的每一个可以用于DL CSI-RS和UL CSI-RS(SRS)。
当任何上述子实施例用于SRS并且第二信令利用L1 DL控制信令(经由UL相关或DL相关DCI)时,可以基于上述可选方案使用以下示例方案。
在一个示例(示例1)中,当DCI(UL相关的或DL相关的)包括SRS资源索引的指示时-与SRS传输请求DCI字段分开地或者是其一部分-除指示选择K个SRS资源中的1个(或N个中的1个)的假设外,相关联的DCI字段还包括在N≤K个SRS资源上执行波束扫描(跨越时间和/或频率单元的若干SRS资源的SRS的连续传输)的至少一个假设。如上所述,可以经由更高层(RRC)信令或MAC CE来配置K个SRS资源。同样地,N的值可以经由更高层(RRC)信令或MAC CE来配置,或者作为SRS资源索引指示的一部分被发信号通知。SRS资源的数量表示为N,其可以等于K(经由高层信令配置)或小于K。当N<K时,可以选择K个资源的子集用于SRS触发(在非周期性SRS的情况)或SRS激活(在半持久性或多时隙SRS的情况)的目的。表1中给出了用于非周期性SRS的SRS传输请求(SRS触发)DCI字段的这种定义的示例。
表1:示例SRS触发方案
Figure BDA0003834596710000251
Figure BDA0003834596710000261
在另一示例(示例2)中,UL相关或DL相关的DCI包括PMI,其指示UE用于预编码SRS的预编码器。在这种情况下,PMI(在本公开中称为PMISRS)用于指示从码本中选择的预编码器。对于与UL相关的DCI,PMISRS可以是与用于PUSCH上的授权UL传输的PMI不同的第二(附加)PMI,或者与在PUSCH上用于授权的UL数据/UCI传输的PMI相同的PMI(在组件2中称为TPMI)。对于后一种情况,PMI字段的功能(用于SRS或用于PUSCH数据/UCI传输)可以经由更高层(RRC)信令配置(例如,具有指示PMI功能的RRC参数或诸如“非预编码”或“预编码”的SRS类型的更高层指示),MAC CE,或在相同DCI中指示。如果在相同的DCI中指示,则该指示符可以是单独的1比特字段(例如,称为“PMI功能”字段)或联合编码到PMI字段中。可选地,当单个PMI用于SRS并且用于PUSCH上的授权UL数据/UCI传输时,由PMI指示的相同预编码器可以用于(应用于)SRS和PUSCH上的授权UL数据/UCI传输两者。
如果为UE配置UL频率选择性预编码(因此可以在DCI中包括多个PMI),则仅一个PMI用于SRS。用于SRS的该单个PMI可以是多个PMI之一或单另的(附加的)PMI。
在另一示例(示例3)中,可以在DCI(DL或UL相关)中使用SRS资源指示和PMISRS两者以请求非周期性SRS的传输。SRS资源指示选择N个资源中的1个,而PMISRS指示用于所选SRS资源的预编码器。此外,当SRS资源指示指示UE跨越N个SRS资源以扫描方式发送SRS的请求时,PMI可以指示用于N个SRS资源的N个预编码器。N个预编码器可以表示为N个PMI的集合或预编码器组的指示符。当使用双级码本(W=W1*W2,其中i1和i2用于指示双级预编码器)时,第一PMI i1可以被解释为用信号通知预编码器组,其中可以预定义预编码器的分组。因此,PMISRS字段的解释可以取决于SRS资源指示字段的值。也就是说,当SRS资源指示用信号通知N个SRS资源中的1个的选择时,PMISRS用信号通知所选择的预编码器用于非周期性SRS传输。当SRS资源指示用信号通知扫描SRS传输的请求(跨N个资源)时,PMISRS用信号通知所选择的N预编码器组以进行非周期性SRS传输。
正如在前面的示例(示例2)中那样,PMISRS可以是与用于PUSCH上的授权UL传输的PMI不同的第二(附加)PMI,或者与用于PUSCH上授权的UL数据/UCI传输的PMI(在组件2中称为TPMI)相同的PMI。对于后一种情况,PMI字段的功能(用于SRS或用于PUSCH数据/UCI传输)可以经由更高层(RRC)信令配置(例如,具有指示PMI功能的RRC参数或诸如“非预编码”或“预编码”的SRS类型的更高层指示),MAC CE,或在相同DCI中指示。如果在相同的DCI中指示,则该指示符可以是单独的1比特字段(例如,称为“PMI功能”字段)或联合编码到PMI字段中。可选地,当单个PMI用于SRS以及用于PUSCH上的授权UL数据/UCI传输时,由PMI指示的相同预编码器可以用于(应用于)SRS和PUSCH上的授权UL数据/UCI传输两者。
如果为UE配置UL频率选择性预编码(因此可以在DCI中包括多个PMI),则仅一个PMI用于SRS。用于SRS的该单个PMI可以是多个PMI之一或单独的(附加的)PMI。
以下示例实施例属于第一组件(DL CSI框架)的用例。
在用于基于DMRS的DL动态或自适应波束成形/预编码(具有隐式PMI反馈)的一个示例用例(表示为用例1.A)中,可以使用N=1的DL CSI报告设置和M=1的RS设置。对于DLCSI报告设置,BI设置的值被设置为NULL(无BI报告),PMI设置的值被设置为“预编码器”(其中PMI表示从码本中获取的推荐的预编码器),以及CQI计算设置被配置为以报告的RI和PMI为条件来计算CQI。
对于RS设置,“RS类型”可以被设置为“DL CSI-RS”,其中RS波束/资源K的数量被设置为1。“RS功能”可以是“UE特定的RS”或“非UE特定的RS”(特定于小区或gNB)。DL CSI测量设置将CSI报告设置与RS设置相链接。可以根据gNB实现灵活地选择其他设置的配置。
在用于基于DMRS的DL波束循环(具有隐式PMI反馈)的一个示例用例(表示为用例1.B)中,可以使用N=1的DL CSI报告设置和M=1个RS设置。
对于DL CSI报告设置,BI设置的值被设置为NULL(无BI报告),PMI设置的值被设置为“预编码器组”(其中PMI表示从码本中获取的推荐的预编码器组),并且假设UE接收沿着在时域和/或频域中循环的一组预编码器的DL数据传输,CQI计算设置被配置为以报告的RI和PMI为条件计算CQI。
对于RS设置,“RS类型”可以被设置为“DL CSI-RS”,其中RS波束/资源K的数量被设置为1。“RS功能”可以是“UE特定的RS”或“非UE特定的RS”特定于小区或gNB)。
DL CSI测量设置将CSI报告设置与RS设置相链接。可以根据gNB实现灵活地选择其他设置的配置。
在用于具有K>1个RS波束的DL波束管理的一个示例用例(表示为用例1.C)中,可以使用N=1DL CSI报告设置和M=K RS设置。
对于DL CSI报告设置,BI设置的值被设置为NULL(无BI报告),RI设置的值被设置为NULL(无RI报告),PMI设置的值被设置为NULL(没有PMI报告),并且CQI计算设置被配置为类似于LTE RSRP的RS信号功率。
对于RS设置,“RS类型”可以被设置为“DL CSI-RS”,其中RS波束/资源的数量为K。“RS功能”可以是“非UE特定的RS”(小区或gNB特定的)或者可选地,“波束扫描”(其中利用K个连续的OFDM符号发送K个DL RS波束/资源)。
DL CSI测量设置将N=1个CSI报告设置与M=K>1RS设置相链接。可以根据gNB实现灵活地选择其他设置的配置。
在用于具有K>1个RS波束的虚拟扇区化的一个示例用例(表示为用例1.D)中,类似于具有K>1的LTE B类,可以使用N=1DL CSI报告设置和M=K RS设置。
对于DL CSI报告设置,BI设置的值被设置为{0,1,...,K-1}。
对于RS设置,“RS类型”可以被设置为“DL CSI-RS”,其中RS波束/资源的数量为K。“RS功能”可以是“非UE特定的RS”(小区或gNB特定的)。
DL CSI测量设置将N=1CSI报告设置与M=K>1RS设置相链接。可以根据gNB实现灵活地选择其他设置的配置。
在用于具有“部分端口”DL CSI-RS,以及UE特定波束形成的CSI-RS的显式(量化信道)反馈的一个示例用例(表示为用例1.E)中,可以使用N=K+1DL CSI报告设置和M=K+1RS设置。
对于第一K个DL CSI报告设置,BI设置的值被设置为NULL(无BI报告),PMI设置的值被设置为“显式”(其中PMI表示从量化码本获取的推荐的量化信道的参数化),以及CQI计算设置被设置为NULL(无CQI报告)。对于最后的DL CSI报告设置,BI设置的值被设置为NULL(无BI报告),PMI设置的值被设置为“预编码器”(其中PMI指示从另一码本获取的推荐预编码器),以及CQI计算设置被配置为以报告的RI和PMI为条件来计算CQI。
对于第一K个RS设置,“RS类型”可以设置为“DL CSI-RS”,RS波束/资源的数量为K(其中K表示分区数,N1+N2+…+NK是用于DL传输的DL天线端口的总数)。“RS功能”可以是“非UE特定的RS”(小区或gNB特定的)。对于最后的RS设置,可以使用一个RS波束/资源将“RS类型”设置为“DL CSI-RS”。“RS功能”可以是“UE特定的RS”。可以以这样的方式配置最后的RS设置,使得相关联的RS比与第一K个RS设置相关联的RS更频繁地发送。
DL CSI测量设置以一对一的方式将第一K个CSI报告设置与第一K个RS设置相链接。它还将最后的CSI报告设置与最后的RS设置相链接。可以根据gNB实现灵活地选择其他设置的配置。
在用于假设DL-UL互易性(TDD)的基于DMRS的DL动态波束成形的一个示例用例(表示为用例1.F)中,可以使用N=1个DL CSI报告设置和M=2个RS设置。
对于DL CSI报告设置,BI设置的值被设置为NULL(无BI报告),PMI设置的值被设置为NULL(无PMI报告),CQI计算设置被配置为以报告的RI为条件计算CQI。
对于第一RS设置,“RS类型”可以被设置为“DL CSI-RS”,其中RS波束/资源K的数量被设置为1。“RS功能”可以是“UE特定的RS”或“非UE特定的RS”(小区或gNB特定的)。对于第二RS设置,“RS类型”可以被设置为“UL CSI-RS(SRS)”,其中RS波束/资源K的数量被设置为1。“RS功能”可以是“UE特定的RS”或“非UE特定的RS”(小区或gNB特定的)。
DL CSI测量设置将单个CSI报告设置与两个RS设置相链接。在这种情况下,gNB可以使用第二RS设置(与UL CSI-RS/RS相关联)来计算用于DL数据传输的DL预编码器。
可以根据gNB实现灵活地选择用于其他设置的配置。
可选地,可以使用N=1个DL CSI报告设置和M=1个RS设置。在这种情况下,(DLCSI-RS或SRS的)第二RS设置的使用与DL CSI报告设置单独配置。因此,DL CSI测量设置将单个CSI报告设置与DL CSI-RS的单个RS设置相链接。
组件2-UL CSI框架
对于第二组件(即,UL CSI获取框架),部分地设计UL CSI框架以促进在gNB/TRP处的UL CSI获取。这涉及gNB/TRP处的UL信号的UL CSI测量,UE处的DL信号的UL CSI测量(用于基于DL-UL互易性的操作),或两者。一些示例实施例如下给出。
在一个示例实施例中,对于单个UE,UL CSI框架包括至少一个“信令设置”,至少一个“RS设置”(其包括用于UL CSI测量的至少一个RS),以及一个“UL CSI测量设置“。“信令设置”为UE配置必要的信令,DL信令(经由例如DL数据或控制信道)或UL(经由例如UL数据或控制信道)。RS设置为UE配置一个或多个RS资源以用于UL CSI测量和计算。例如,配置的RS中的一个可以是DL或UL CSI-RS,其还包括CSI-IM(因此为零功率CSI-RS)作为特殊情况。CSI测量设置提供CSI报告和RS设置之间的链接/耦合。
应注意,以上指定(信令设置、RS设置和CSI测量设置)是示例性的并且仅用于说明目的。其他指定也可用于表示功能。
在上述实施例的变形中,“信令设置”还可以分为两个设置:“DL信令设置”和“UL信令设置”。
用于UL CSI测量的“RS设置”可以与用于DL CSI测量的“RS设置”相同。可选地,可以为UL CSI测量定义单独的RS设置,其使用RS设置的特征或参数的子集用于DL CSI测量。
例如,当UE配置有N个信令设置和M个RS设置时,CSI测量设置将N个信令设置中的每一个与M个RS设置中的至少一个链接。这在图7中示出,其中N=2(由0和1索引的DL信令设置,其分别与实施例710和711相关联)并且M=3(由0、1和2索引的RS设置,其分别与实施例720,721和722相关联)。
在该示例中,UL CSI测量设置可以描述如下。2个信令设置和3个RS设置与CSI测量设置730相链接。在该示例中,信令设置0与RS设置0链接,以及信令设置1与RS设置1和2相链接。第一链接(1对1)适用于典型的UL场景,而第二链接(1对2)适用于TDD场景,在该场景中可以利用DL-UL互易性来在UE处实现更高分辨率的预编码/波束成形。
除了上述链接之外,信令与其对应RS之间的定时关系可以包括在CSI测量设置中。例如,当信令设置1(UL信令)与RS设置2(DL CSI-RS)链接时,UE行为可以如下定义。当UE在子帧或时隙n中接收与RS设置2相关联的RS时,UE将在子帧或时隙n+D1-2中报告与信令设置1相关联的CSI,其中参数D1-2是可配置的。在图7所描绘的示例中,信令设置1可以与上述组件1.1中的DL CSI报告设置共享相同的设计。
此外,尤其与UL信令设置相关(因此与DL CSI报告设置相同),与每个链接相关联的测量限制(不仅是位置,而且还在时域、频域或两者中测量CSI的程度)可以包括在CSI测量设置中。
此外,在信令设置中可以包括多于一个天线端口之间的准共置(quasi-colocation,QCL)。
可以选择信令设置的以上示例内容中的至少一个(或几个的组合)以形成用于DL或UL的UL CSI测量的信令设置。
在上述实施例的变形中,代替利用包括N个信令设置和M个RS设置之间的所有(L≥1)链接的一个UL CSI测量设置,可以利用L≥1个单独的UL CSI测量设置(每一个链接一个CSI测量的设置)。在这种情况下,一个CSI测量设置可以包括以下中的至少一个:链接、定时关系、测量限制和/或QCL。利用L≥1个CSI测量设置的详细描述遵循用于一个CSI测量设置的设置。
可以经由更高层(RRC)信令或MAC控制元素(MAC CE)或L1控制信令(经由DL控制信道的DL控制信令)为UE配置上述设置。存在几种可能性。首先,可以经由更高层(RRC)信令或MAC控制元素(MAC CE)来配置所有上述设置(信令设置、RS设置和UL CSI测量设置)。其次,信令设置和RS设置可以经由更高层(RRC)信令配置,而UL CSI测量设置可以经由MAC控制元素(MAC CE)配置。第三,信令设置和RS设置可以经由更高层(RRC)信令配置,而UL CSI测量设置可以经由L1控制信令(经由DL控制信道的DL控制信令)配置。第四,信令设置和CSI测量设置可以经由更高层(RRC)信令配置,而RS设置可以经由L1控制信令(经由DL控制信道的DL控制信令)配置。
UL传输方案/方法是单独配置的。UL传输方案/方法如何与UL CSI相关设置一起使用是gNB实现。
以下实施例属于关于DL或UL信令的设置的子组件(在本公开中表示为子组件2.1)。
在一个示例实施例中,“信令设置”包括参数“信令类型”(作为示例选择的术语),其可以被配置为“UL信令”或“DL信令”(作为示例选择的值)。UL信令包括使用DL CSI报告(其经由UL信道执行)用于gNB处的UL CSI获取。因此,信令设置配置可以遵循组件1.1中的配置(精确地或松散地)。DL信令包括经由DL信道(类似于经由DL控制信道承载的LTE UL相关DCI或经由DL数据信道承载的控制信息)的UL传输参数(诸如发送预编码矩阵指示符,发送秩指示符或其他相关UL CSI参数)的信令。
在另一实施例中,“信令设置”可以进一步分为两个设置:“DL信令设置”和“UL信令设置”。它们的解释或设计类似于上述实施例。但是,在这种情况下,参数“信令类型”是不必要的。
在又一个实施例中,仅支持DL信令设置。
虽然UL信令设置可以严格遵循组件1.1,但是DL信令设置800可以采用如图8所示的更简单的形式,其中在801中配置发送波束指示符(TBI)设置,在802中配置发送秩指示符(TRI)设置,并且在803中配置发送PMI(TPMI)设置。如何解释这三个设置中的每一个与组件1.1中的DL CSI报告设置类似-除了TBI、TRI和TPMI是UL传输参数而不是UE推荐的CSI参数。这些设置影响例如UL相关DCI的大小和对附加DL控制信令的需要(例如,用于以信号发送子带TBI、TRI和/或TPMI以支持UL频率选择性预编码)。
尽管DL信令设置800包括三个DL信令参数,但是也可以包括其他信令参数(或者可以仅使用这三个参数的子集,或者这些参数的子集结合其他参数)。在前面和后面的讨论中使用三个信令参数(因此三个DL信令参数设置)是示例性的并且用于说明目的。
至于TBI设置,这可以在UE被配置为发送K>1个UL CSI-RS或SRS波束/资源时利用(发信号通知)。在这种情况下,gNB测量那些K个“探测(sounding)”波束并且向UE发信号通知UE将在其上发送其UL数据的RS波束/资源(由gNB选择)。通过将TBI值设置为NULL可以关闭TBI信令。类似于组件1,可以执行从K个配置的SRS资源中进一步下选(down-selection)N。虽然可以经由更高层(RRC)信令配置K个资源,但是可以经由MAC CE或L1 DL控制信令(经由DCI)来配置K个资源中的N个。
如组件1中所述,SRS资源指示字段可以包括在UL相关的DCI中。该字段可以与TBI分开地,或者是与TBI相同的字段,但可以根据另外的假设进行不同的解释。该附加假设可以是TBI的一部分、单独的一位DCI字段、或SRS传输请求字段的一部分。
关于TRI设置,TRI的值确定由UE发送的UL数据层的数量。当没有为UE配置UL SU-MIMO操作时,可以通过将TRI值设置为NULL(或者,可选地,设置为{1})来关闭TRI信令。
关于TPMI设置,“类型”参数可以用于使用“预编码器”、“预编码器组”(用于预编码器循环)或“显式”来配置UE-类似于组件1.1中的DL CSI报告设置。然而,对于UL MIMO,可能不需要“显式”。因此,“类型”参数可以设置为“预编码器”或“预编码器组”。
如组件1中所述,PMISRS字段可以包括在UL相关的DCI中。该字段可以与TPMI分开地,或者是与TPMI相同的字段,但可以根据另外的假设进行不同的解释。该附加假设可以是TPMI的一部分、单独的一位DCI字段、或SRS传输请求字段的一部分。
以上选择的名称是示例性的并且用于说明目的。
在任何上述示例中,指示不存在的值NULL可以由提供相同功能的另一值指定替换。
以下示例实施例涉及第二组件(UL CSI框架)的使用情况。
在用于基于DMRS的UL SU-MIMO的一个示例用例(表示为用例2.A)中,可以使用N=1信令设置(设置为“DL信令”)和M=1RS设置。
对于DL信令设置,如果配置了常规的动态波束成形,则TBI设置的值被设置为NULL(无BI报告)并且TPMI设置的值被设置为“预编码器”(其中TPMI指示从码本获取的指定的预编码器)。如果配置了预编码器循环,则将TPMI设置的值被设置为“预编码器组”(其中TPMI指示从码本中获取的指定的预编码器组)。TPMI频率粒度可以指示是否配置了频率非选择性或频率选择性预编码/波束成形。
对于RS设置,“RS类型”可以被设置为“UL CSI-RS/SRS”,其中RS波束/资源K的数量被设置为1。“RS功能”可以是“默认”。
UL CSI测量设置将DL信令设置与RS设置相链接。可以根据gNB实现灵活地选择其他设置的配置。
在用于具有DL-UL互易性(TDD)的基于DMRS的UL SU-MIMO的一个示例用例(表示为用例2.B)中,可以使用N=1信令设置(设置为“DL信令”)以及M=2RS设置。
对于DL信令设置,如果配置了常规的动态波束成形,则TBI设置的值被设置为NULL(无BI报告)并且TPMI设置的值被设置为“预编码器”(其中TPMI指示从码本获取的指定的预编码器)。如果配置了预编码器循环,则TPMI设置的值被设置为“预编码器组”(其中TPMI指示从码本中获取的指定的预编码器组)。TPMI频率粒度可以指示是否配置了频率非选择性或频率选择性预编码/波束成形。
对于第一RS设置,“RS类型”可以被设置为“UL CSI-RS/SRS”,其中RS波束/资源K的数量被设置为1。“RS功能”可以是“默认”。
对于第二RS设置,“RS类型”可以被设置为“DL CSI-RS”,其中RS波束/资源K的数量被设置为1。“RS功能”可以是“UE-特定的”或“非UE特定的”。或者如果两个值合并为“默认”,则可以将其设置为“默认”。该第二RS设置的目的是辅助UE预编码器/波束成形,例如,因此,UE可以细化在DL TPMI中用信号通知的波束成形/预编码分辨率。
UL CSI测量设置将DL信令设置与RS设置相链接。可以根据gNB实现灵活地选择其他设置的配置。
可选地,还可以设置N=1信令设置(设置为“DL信令”)和M=1RS设置(设置为“ULCSI-RS/SRS”),同时使用设置为“DL CSI-RS”的另一RS设置而不将其链接到DL信令设置。
在用于具有K>1个UL CSI-RS(SRS)波束的UL波束管理的一个示例用例(表示为用例2.C)中-其与非互易性场景相关-可以使用N=1DL信令设置和M=K RS设置(设置为“ULCSI-RS/SRS”)。
对于DL信令设置,TBI设置的值被设置为{0,1,...,K-1}。
对于RS设置,“RS类型”可以设置为“UL CSI-RS/SRS”,其中RS波束/资源的数量为K。“RS功能”可以是“默认”或可选地“波束扫描”(其中利用K个连续的OFDM符号发送K ULCSI-RS/SRS波束/资源)。
UL CSI测量设置将N=1DL信令设置与M=K>1RS设置相链接。可以根据gNB实现灵活地选择其他设置的配置。
对于第三组件(即,另一DL CSI获取框架),如下给出若干示例实施例。
在一些实施例中,在诸如5G或新射频(NR)的高级通信系统中支持灵活的CSI报告框架。在该框架中,UE配置有CSI报告模式或配置,其包括以下模块。
第一模块0包括CSI-RS和CSI-IM配置。CSI报告配置包括用于估计信道状态信息(CSI)的K个下行链路参考信号(CSI-RS),其中K≥1。CSI-RS所在的PRB中的时域和频域CSI-RS模式也可以由TRP配置。对于所有K个CSI-RS,该模式可以是相同的,或者对于它们的子集/全部,它可以是不同的。可配置的时频CSI-RS模式集可以包括或不包括用于LTE中的CSI-RS模式(直到版本14)。
K个CSI-RS的复用也可以由TRP配置。例如,可以配置以下时域(子帧/时隙索引)或/和频域(PRB索引)复用之一。K个CSI-RS可以在时域中在连续或非连续子帧/时隙中复用。示出两个时域复用模式的示例分别在图9A和图9B中示出。K个CSI-RS也可以在频域中复用。图9C显示了示出频域复用的示例,其中每个CSI-RS在至少一个PRB中发送。频域复用的另一示例是,在一些PRB中,可以在同一PRB中发送一个或多个CSI-RS。K个CSI-RS也可以在时域和频域中复用。可以通过TRP为CSI-RS传输配置前两种复用方法的组合。
每个CSI-RS可以由TRP或网络单独且灵活地配置为小区特定的或TRP特定的或UE特定的或非UE特定的。例如,K个CSI-RS可以是所有UE特定的,或者全部是非UE特定的,或者是UE特定的和非UE特定的混合。在另一示例中,K个CSI-RS被配置为从单个TRP发送,或者可选地,它们的子集可以从一个TRP发送,而另一子集可以从不同的TRP发送。
每个CSI-RS还可以配置有与之关联的端口数。端口数量的配置对于所有K个CSI-RS可以是单独的或公共的,或者对于K个CSI-RS的子集是单独的并且对于剩余的CSI-RS是公共的。
除了CSI-RS之外,UE还可以配置有用于干扰测量的CSI-IM资源。CSI-IM关于PRB内的时域和频域位置的配置,关于时域和频域复用方法,关于小区/TRP/UE/非UE特定的特征,关于传输端口的数量可以类似于前面提到的CSI-RS。
CSI-RS或/和CSI-IM传输还可以被配置为在每个T子帧/时隙之后周期性的或者按需非周期性的。例如,可以周期性地发送K个CSI-RS的子集,并且可以非周期性地发送另一子集。
第二模块包括CSI报告或MIMO类型配置(在本公开中称为eMIMO类型配置)。
每个CSI-RS可以与相同或不同的CSI报告或eMIMO类型相关联。eMIMO类型的示例包括如在LTE Rel.13中的A类、B类、K>1和B类,K=1或在Rel.14中的新的eMIMO-Types,如果有的话。
基于每个CSI-RS生成的CSI报告可以被配置为包括CSI内容中的至少一个,诸如预编码矩阵指示符(PMI)、信道质量指示符(CQI)、秩指示符(RI)、CSI资源指示符(CRI)、波束指示符(BI)、波束组指示符(BGI)和线性组合系数指示符(LCCI)。还可以进一步配置CSI的时域和频域粒度。每个CSI报告中的CSI分量的报告可以是固定的(例如WB或SB)或者被配置为WB和SB之一。
K个CSI报告或K个CSI报告的子集可以被配置为独立地或依赖地生成。例如,基于L个CSI-RS生成的CSI报告的L(L≤K)可以被配置为彼此独立地生成,并且其余的K-L个CSI报告,基于剩余的K-L个CSI-RS生成,可以配置为依赖地生成。
在所提出的灵活的CSI报告配置中,CSI类型还可以被配置为隐式、显式、模拟或半动态之一。
如果CSI类型被配置为隐式,则基于类似于LTE的码本来报告CQI/PMI/RI/CRI中的至少一个。例如,使用诸如LTE Rel.8 2-Tx、Rel.10 4-Tx和Rel.12B类码本的单级码本来报告包括单个PMI的CSI。在另一示例中,使用诸如LTE Rel.10 8-Tx、Rel.12 4-Tx、Rel.13A类码本的双级码本W=W1 W2来报告一对PMI(PMI1,PMI2)。在该双级码本中,第一PMI(PMI1)指示宽带波束组,第二PMI(PMI2)从指示波束组中选择波束并确定两个极化的共相值(假设在TRP使用交叉极化的天线端口)。在又一示例中,双级码本是线性组合(LC)码本,其中第一PMI(PMI1)指示宽带波束组,第二PMI(PMI2)指示要组合所指示的波束组中的波束的线性组合系数(并且同相)。。
如果CSI报告被配置为显式的,则CSI对应于信道的全部信息、主要特征向量(具有或不具有对应的特征值)和协方差矩阵中的至少一个。为了减少显式CSI报告的开销和复杂性,可以配置显式CSI的简化形式进行报告。例如,代表诸如特征向量的显式CSI的基矢量的线性组合可以被配置为被报告为缩减维度显式CSI,而不是完整显式CSI。
如果CSI报告被配置为用于半动态波束成形进行报告,则报告的CSI指示关于一组波束的信息。例如,CSI可以被配置为使用用于隐式CSI报告的双级码本的第一级W1码本来报告。在该示例中,仅在CSI中报告指示宽带波束组的PMI1。
第三模块包括CQI计算配置。
在所提出的灵活CSI报告配置中,对于每个CSI报告或eMIMO类型,还可以配置CQI报告,其中所报告的CQI可以是宽带(WB)或子带(SB)。如果CQI被配置为在CSI报告中报告,则还可以配置CQI计算方法。CQI计算的配置可以与传输方案相关或独立于传输方案。例如,配置的CQI计算方法可以对应于动态波束成形、半动态波束成形或基于发送分集的传输方案之一,如在LTE中那样。例如,如果CQI计算方法对应于动态波束形成,则在CQI计算(WB或每个SB)中假设单个预编码器或波束形成器。如果CQI计算方法对应于半动态波束成形,则在CQI计算中考虑多个预编码器或波束形成器,其中可以假设多个预编码器循环,例如跨RB或RE。如果CQI计算方法对应于基于发送分集的传输,则可以假设诸如空频块编码(SFBC)和频率切换发送分集(FSTD)的发送分集方案来计算CSI。又例如,配置的CQI计算方法可以独立于传输方案,并由TRP直接配置。例如,CQI计算方法可以被配置为单个预编码器或多个预编码器,其跨RB或RE循环。
第四模块包括秩指示符(RI)指示符。在所提出的灵活CSI报告配置中,对于每个CSI报告或eMIMO类型,还可以配置RI报告。RI的配置可以与其他CSI报告组件的配置无关,或者可以取决于其他CSI报告组件的配置。例如,如果CSI类型被配置为隐式,则RI被配置为在CSI报告中报告。在另一示例中,如果CSI类型被配置为显式地代表下行链路信道,则不配置RI报告。在又一示例中,如果CSI类型被配置为半动态的,则RI报告被配置或未被配置(例如,在后面的情况下RI=1)。
在灵活CSI报告配置方案中,第五模块包括K个CSI报告或eMIMO类型中的每一个可由TRP配置为周期性、半持久性或非周期性之一。与LTE类似,周期性CSI报告的示例是基于PUCCH的报告,并且非周期性CSI报告的示例是基于PUSCH的报告。
如果CSI报告类型被配置为周期性的,则时域粒度中的占空比(或周期)也可以由TRP配置。另外,如果CSI报告包括被配置为在多个周期性CSI报告实例中单独报告的多个CSI组件,则对于每个CSI组件,还配置周期性和偏移,其中诸如CQI/PMI的一个CSI组件的周期性和偏移,可以相对于诸如RI的另一CSI分量来定义。
如果CSI报告类型被配置为非周期性的,则报告CSI的时域(子帧或时隙)和频域(PRB)位置也由TRP配置。
第六模块包括面板配置。在灵活的CSI报告配置方案中,TRP处的天线面板的数量可以由TRP配置并且指示给UE以导出/报告CSI报告。面板数量的配置可以对应于单个面板或多个面板。例如,对于毫米波5G或NR通信系统,多个(例如4个)天线面板可以以2D(例如,2乘2)结构布置,并且该布置可以指示给UE以帮助生成CSI报告。在多面板的一个示例中,UE还被配置为单独导出或/和报告每个面板的CSI。在另一示例中,UE被配置为联合地为每个小组导出或/和报告CSI。
第七模块包括CSI报告BW配置。在灵活CSI报告配置方案中,CSI报告对应的(连续或分布式)PRB的带宽或集合可以由TRP配置并指示给UE。CSI报告带宽的配置可以是整个带宽,也可以是带宽的一部分。例如,TRP可以指示特定UE在带宽的期望部分上报告CSI,并且可以指示另一UE在带宽的另一部分上报告CSI。该带宽信息由TRP配置,并帮助UE生成相应的CSI报告。
第八模块包括RF波束成形配置。在灵活的CSI报告配置方案中,如果TRP具有混合波束成形架构(例如,5G或NR毫米波通信系统),则TRP RF波束成形的CSI报告过程可以被配置为独立于数字波束成形的CSI报告过程,或与数字波束成形的CSI报告过程联合。
如果用于TRP RF波束成形的CSI报告过程被配置为独立于用于数字波束成形的CSI报告过程,则执行两个单独的CSI报告过程。与数字波束成形相关联的CSI报告过程类似于LTE,并且与RF波束成形相关联的CSI报告过程是独立过程。
如果用于TRP RF波束成形的CSI报告过程被配置为与用于数字波束成形的CSI报告过程联合,则仅执行单个CSI报告过程,其中,例如,首先在联合过程中执行RF波束选择,后跟着数字波束。
在灵活CSI报告配置方案中,如果UE还具有混合波束成形架构,则还可以配置用于UE RF波束成形的CSI报告过程。UE RF波束成形配置可以是独立的或与数字波束成形联合,类似于TRP RF波束成形。UE RF波束成形配置可以独立的或与TRP RF波束成形配置联合。
第九模块包括属于网络协调的配置,即,用于单个或多个TRP的结构(setup)。在灵活的CSI报告配置方案中,CSI报告的配置可以来自单个或多个TRP。如果配置来自多个TRP,则每个配置组件中的CSI配置方法\CSI推导方法和CSI报告方法还可以配置为彼此独立,或者与子集或所有其他配置组件联合。
在一个实施例中,UE配置有CSI报告模式或配置,其包括上述CSI配置模块0-8中的全部或一些。
在另一实施例中,上述CSI配置模块0-8中的一些可以对所有可能的CSI配置是公共的。例如,波束组选择可以对于所有CSI报告模式是公共的。
在另一实施例中,上述CSI配置模块0-8可以被划分为用于CSI报告过程的三个组:CSI-RS配置、CSI测量和生成配置,以及CSI报告或eMIMO类型配置。三个组或三个组的子集的依赖性可配置为耦合的或解耦的。示出组的关系的图1000在图10中示出。
在另一实施例中,CSI测量和生成配置包括在N个CSI报告配置和M个CSI-RS配置之间链接的映射,其中N和M可以不相同并且不需要一对一。例如,图11示出了针对N=3(n=0,1,2)和M=2(m=0,1)的CSI-RS和CSI报告映射的示例,其中链接被配置为:在设置0和1中配置的CSI报告是基于在CSI-RS设置0(图中的0→0和1→0)中配置的CSI-RS测量来计算,而在设置2中配置的CSI报告是基于CSI-RS设置1(图1100中的2→1)中配置的的CSI-RS测量计算的。这些链接可以包含在CSI测量配置中。CSI测量和生成配置还可以包括每个映射链接的测量限制或QCL(如果适用)。例如,限制可以包括CSI报告和CSI-RS之间的定时关系,其可选地是传输方案配置的一部分(例如,在LTE中)。
以下讨论集中于CSI报告或eMIMO类型配置。
在另一实施例中,CSI报告配置可包括模式(周期性、非周期性或半持久性),周期性和偏移中的子帧或时隙配置,以及CSI参数配置(例如,BI、RI、PMI和CQI)。示出该配置的示例在图6的设置600中示出。在该示例中,如果BI报告未被配置为NULL,则根据报告的(或假设的)BI为条件来计算RI。同样,PMI是根据报告的(或假设的)BI和/或RI计算的。并且以报告的(或假设的)BI、RI和/或PMI为条件来计算CQI。
在另一实施例中,包括在模块中的CSI报告参数的配置与传输方案解耦。如何结合CSI相关设置使用传输方案/方法是TRP实现。无论传输方案如何,CSI报告参数可以彼此独立地或依赖地配置。例如,UE可以配置CSI报告参数,包括:
Figure BDA0003834596710000401
在该示例中,UE可以配置有显式反馈并且报告全信道信息。又例如,UE可以配置CSI报告参数,包括:
Figure BDA0003834596710000402
在该示例中,UE可以配置有显式反馈并且报告特征向量。又例如,UE可以配置CSI报告参数,包括:
Figure BDA0003834596710000411
在该示例中,UE可以配置有隐式反馈。又例如,UE可以配置CSI报告参数,包括:
Figure BDA0003834596710000412
在该示例中,UE可以配置有半动态/半开环反馈。又例如,UE可以配置有两组CSI报告参数,如下:
Figure BDA0003834596710000413
Figure BDA0003834596710000421
Figure BDA0003834596710000422
在该示例中,UE可以使用第一配置配置有A类eMIMO类型报告,并且使用第二配置配置有B类eMIMO类型报告。两种配置之间的依赖关系也是可配置的。例如,这两种配置可以配置为彼此透明。又例如,第二配置可以被配置为取决于第一配置。
在另一实施例中,一些可配置的CSI报告模式可以仅支持上述模块0-8的组合的子集,这意味着模块的配置可以依赖于其他模块的配置。这种依赖性可以避免CSI报告配置中的功能重复。例如,如果UE配置有显式CSI类型(模块1),则其可以不配置有周期性CSI报告类型,而是仅配置有非周期性CSI报告类型(模块4)。又例如,周期性或半持久性CSI报告类型(模块4)可以仅配置有宽带报告(模块6),并且非周期性CSI报告类型(模块4)可以只配置有子带报告(模块6)。
在另一实施例中,如果CSI报告配置不配置模块0-8的一个(模块X)并且导出需要模块X的CSI,则可以假设模块X的默认配置导出CSI报告。例如,如果TRP未配置RI报告(模块3),则UE可以认为RI默认配置为1并生成CSI报告。
在另一实施例中,UE可能仅能够支持来自所有CSI报告配置的集合的子集,并且TRP知道UE的CSI报告能力。TRP只能在UE的能力范围内配置CSI报告配置。例如,UE可能不能进行显式(高分辨率)CSI报告(模块1),因此,TRP不应将该UE配置为包括显式CSI类型的任何CSI报告配置。
在另一实施例中,UE可以能够支持多个CSI报告配置,并且TRP知道这一点。然后,TRP可以向UE指示所支持的CSI报告配置之一,并且UE将基于配置的CSI报告配置生成CSI报告。例如,UE可以支持显式和隐式CSI类型两者,并且TRP利用SU传输调度UE并且使用隐式CSI类型来配置它。因此,UE将生成与隐式CSI类型相对应的CSI报告,即使其具有生成对应于显式CSI类型的CSI报告的能力。
在另一实施例中,在收集包括CSI报告配置的多个模块的CSI报告之后,可以选择传输方案或方法,其中传输方案和方法的示例可以包括空间复用(例如,波束成形和预编码器循环),以及发送分集(例如,SFBC)。
图12中显示了示出可配置CSI报告的过程1200的流程图。在TRP知道UE在CSI报告上的能力之后,它配置CSI报告过程,包括CSI-RS/CSI-IM配置、CSI测量和计算配置、CSI报告或eMIMO类型配置,并向UE指示配置。UE基于配置测量并生成CSI报告,并将配置的CSI报告给TRP。TRP基于CSI报告来调度下一次传输。
在另一实施例中,可以由单个或多个TRP用信号通知灵活CSI报告配置,以快速获取CSI。例如,CSI报告配置可以由单个TRP配置,其中CSI报告配置信息在DCI中通过PDCCH发送到目标UE。在另一示例中,CSI报告配置可以由多个TRP配置,其中CSI报告配置信息在每个TRP的DCI中通过PDCCH发送到目标UE。
在另一实施例中,灵活CSI报告配置也可以由更高层以半静态方式发信号通知。例如,CSI报告配置可以由射频资源控制(RRC)配置。
图13示出了根据本公开的实施例的示例方法1300的流程图,其中UE接收用于信道状态信息(CSI)计算和报告的配置信息。例如,方法1300可以由UE 116执行。
方法1300开始于UE接收用于信道状态信息(CSI)计算和报告的配置信息,其中该配置包括N≥1个CSI报告设置,M≥1个参考信号(RS)设置和测量设置(步骤1301)。测量设置包括CSI报告设置和RS设置之间的链接,其中基于测量与RS设置相关联的参考信号(RS)来计算与CSI报告设置相关联的CSI报告。因此,链接确定CSI测量和计算对与RS设置相关联的RS的依赖性。RS设置被配置为信道测量或干扰测量。CSI报告设置被配置为以周期性、非周期性或半持久性的方式报告CSI报告。同样地,RS设置与CSI-RS相关联,CSI-RS被配置为以周期性、非周期性或半持久性方式测量。CSI报告设置包括用于至少信道质量指示符(CQI)、预编码矩阵指示符(PMI)、秩指示符(RI)或CSI-RS资源指示符(CRI)的CSI参数设置。经由更高层信令接收配置信息。UE解码CSI配置信息(步骤1302)。利用解码的信息计算CSI报告(步骤1303)。然后在上行链路(UL)信道上发送计算的CSI报告(步骤1304)。
图14示出了根据本公开的实施例的示例方法1400的流程图,其中BS生成用于UE的信道状态信息(CSI)计算和报告的配置信息(标记为UE-k)。例如,方法1400可以由BS 102执行。
方法1400开始于BS为UE-k生成用于信道状态信息(CSI)计算和报告的配置信息,其中该配置包括N≥1CSI报告设置,M≥1参考信号(RS)设置和测量设置(步骤1401)。
测量设置包括CSI报告设置和RS设置之间的链接,其中基于测量与RS设置相关联的参考信号(RS)来计算与CSI报告设置相关联的CSI报告。因此,链接确定CSI测量和计算对与RS设置相关联的RS的依赖性。RS设置被配置为信道测量或干扰测量。CSI报告设置将CSI报告配置为以周期性、非周期性或半持久性的方式报告。同样地,RS设置与CSI-RS相关联,CSI-RS被配置为以周期性、非周期性或半持久性方式测量。CSI报告设置包括用于至少信道质量指示符(CQI)、预编码矩阵指示符(PMI)、秩指示符(RI)或CSI-RS资源指示符(CRI)的CSI参数设置。经由更高层信令接收配置信息。然后,BS向UE-k发送CSI配置信息(步骤1402),并经由上行链路(UL)信道从UE-k接收CSI报告(步骤1403)。
尽管图13和图14分别示出了用于接收配置信息和配置UE的方法的示例,但是可以对图13和图14进行各种改变。例如,虽然示出为一系列步骤,但是每个图中的各个步骤可以重叠、并行发生、以不同的顺序发生、多次发生、或者不在一个或多个实施例中执行。
尽管已经使用示例实施例描述了本公开,但是本领域技术人员可以建议或者向对本领域技术人员建议进行各种改变和修改。本公开旨在包含落入所附权利要求范围内的这些改变和修改。

Claims (20)

1.一种在无线通信系统由用户设备UE执行的方法,所述方法包括:
经由无线电资源控制RRC信令,从基站BS接收关于至少一个探测参考信号SRS资源集的信息,其中,至少一个SRS资源集与至少一个SRS资源集标识符ID相关联;
从BS接收包括至少一个SRS资源集ID的媒体访问控制MAC控制元素CE;以及
基于MAC CE确定SRS资源集。
2.如权利要求1所述的方法,其中,所述方法还包括:
在SRS信号的传输被配置为半持久性SRS传输的情况下,基于MAC CE确定是否发送SRS信号;以及
基于确定结果在SRS资源上向BS发送SRS信号。
3.如权利要求2所述的方法,其中,MAC CE指示是否激活半持久性SRS传输。
4.如权利要求1所述的方法,其中,所述方法还包括:
在SRS信号的传输被配置为非周期性SRS传输的情况下,从BS接收用于触发非周期性SRS传输的下行链路控制信息DCI。
5.如权利要求4所述的方法,其中,所述方法还包括:
在SRS信号的传输被配置为非周期性SRS传输的情况下,基于DCI确定是否发送SRS信号;以及
基于确定结果在SRS资源上向BS发送SRS信号。
6.如权利要求1所述的方法,其中,所述方法还包括:
从BS接收关于用于发送SRS信号的发送波束的信息。
7.一种在无线通信系统由基站BS执行的方法,所述方法包括:
经由无线电资源控制RRC信令,向用户设备UE发送关于至少一个探测参考信号SRS资源集的信息,其中,至少一个SRS资源集与至少一个SRS资源集标识符ID相关联;
向UE发送包括至少一个SRS资源集ID的媒体访问控制MAC控制元素CE;以及
从UE接收基于由UE使用MAC CE确定的SRS资源集的SRS信号。
8.如权利要求7所述的方法,其中,在SRS信号的传输被配置为半持久性SRS传输的情况下,MAC CE指示是否激活半持久性SRS传输。
9.如权利要求7所述的方法,其中,所述方法还包括:
在SRS信号的传输被配置为非周期性SRS传输的情况下,向UE发送用于触发非周期性SRS传输的下行链路控制信息DCI。
10.如权利要求7所述的方法,其中,所述方法还包括:
向UE发送关于用于发送SRS信号的发送波束的信息。
11.一种无线通信系统中的用户设备UE,所述UE包括:
收发器;以及
至少一个处理器,与所述收发器耦合并且被配置为:
经由无线电资源控制RRC信令,从基站BS接收关于至少一个探测参考信号SRS资源集的信息,其中,至少一个SRS资源集与至少一个SRS资源集标识符ID相关联;
从BS接收包括至少一个SRS资源集ID的媒体访问控制MAC控制元素CE;以及
基于MAC CE确定SRS资源集。
12.如权利要求11所述的UE,其中,所述至少一个处理器还被配置为:
在SRS信号的传输被配置为半持久性SRS传输的情况下,基于MAC CE确定是否发送SRS信号,以及
基于确定结果在SRS资源上向BS发送SRS信号。
13.如权利要求12所述的UE,其中,MAC CE指示是否激活半持久性SRS传输。
14.如权利要求11所述的UE,其中,所述至少一个处理器还被配置为:
在SRS信号的传输被配置为非周期性SRS传输的情况下,从BS接收用于触发非周期性SRS传输的下行链路控制信息DCI。
15.如权利要求14所述的UE,其中,所述至少一个处理器还被配置为:
在SRS信号的传输被配置为非周期性SRS传输的情况下,基于DCI确定是否发送SRS信号,以及
基于确定结果在SRS资源上向BS发送SRS信号。
16.如权利要求11所述的UE,其中,所述至少一个处理器还被配置为:
接收关于用于发送SRS信号的发送波束的信息。
17.一种无线通信系统中的基站BS,所述BS包括:
收发器;以及
至少一个处理器,与所述收发器耦合并且被配置为:
经由无线电资源控制RRC信令,向用户设备UE发送关于至少一个探测参考信号SRS资源集的信息,其中,至少一个SRS资源集与至少一个SRS资源集标识符ID相关联;
向UE发送包括至少一个SRS资源集ID的媒体访问控制MAC控制元素CE;以及
从UE接收基于由UE使用MAC CE确定的SRS资源集的SRS信号。
18.如权利要求17所述的BS,其中,在SRS信号的传输被配置为半持久性SRS传输的情况下,MAC CE指示是否激活半持久性SRS传输。
19.如权利要求17所述的BS,其中,所述至少一个处理器还被配置为:
在SRS信号的传输被配置为非周期性SRS传输的情况下,发送用于触发非周期性SRS传输的下行链路控制信息DCI。
20.如权利要求17所述的BS,其中,所述至少一个处理器还被配置为:
发送关于用于发送SRS信号的发送波束的信息。
CN202211084947.6A 2016-09-01 2017-09-01 用于下行链路和上行链路信道状态信息获取的方法和设备 Pending CN115459825A (zh)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
US201662382384P 2016-09-01 2016-09-01
US62/382,384 2016-09-01
US201662384482P 2016-09-07 2016-09-07
US62/384,482 2016-09-07
US201662395748P 2016-09-16 2016-09-16
US62/395,748 2016-09-16
US201662413136P 2016-10-26 2016-10-26
US62/413,136 2016-10-26
US201662426925P 2016-11-28 2016-11-28
US62/426,925 2016-11-28
US201762479459P 2017-03-31 2017-03-31
US62/479,459 2017-03-31
US15/690,055 US10484064B2 (en) 2016-09-01 2017-08-29 Method and apparatus for downlink and uplink CSI acquisition
US15/690,055 2017-08-29
CN201780053745.6A CN109644039B (zh) 2016-09-01 2017-09-01 用于下行链路和上行链路信道状态信息获取的方法和设备
PCT/KR2017/009594 WO2018044116A1 (en) 2016-09-01 2017-09-01 Method and apparatus for downlink and uplink channel state information acquisition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201780053745.6A Division CN109644039B (zh) 2016-09-01 2017-09-01 用于下行链路和上行链路信道状态信息获取的方法和设备

Publications (1)

Publication Number Publication Date
CN115459825A true CN115459825A (zh) 2022-12-09

Family

ID=61243765

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201780053745.6A Active CN109644039B (zh) 2016-09-01 2017-09-01 用于下行链路和上行链路信道状态信息获取的方法和设备
CN202211084947.6A Pending CN115459825A (zh) 2016-09-01 2017-09-01 用于下行链路和上行链路信道状态信息获取的方法和设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201780053745.6A Active CN109644039B (zh) 2016-09-01 2017-09-01 用于下行链路和上行链路信道状态信息获取的方法和设备

Country Status (8)

Country Link
US (2) US10484064B2 (zh)
EP (2) EP3504807B1 (zh)
JP (2) JP7206186B2 (zh)
KR (2) KR102484302B1 (zh)
CN (2) CN109644039B (zh)
AU (1) AU2017320303C1 (zh)
ES (1) ES2941795T3 (zh)
WO (1) WO2018044116A1 (zh)

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133772A1 (en) * 2016-02-04 2017-08-10 Telefonaktiebolaget Lm Ericsson (Publ) A method for adapting a beam shape of a beam
US10945147B2 (en) * 2016-09-28 2021-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic CSI reporting type
CN108024267B (zh) * 2016-11-04 2020-04-03 华为技术有限公司 一种参考信号传输的方法及装置
US20190261347A1 (en) * 2016-11-11 2019-08-22 Ntt Docomo, Inc. User terminal and radio communication method
US11172390B2 (en) * 2016-12-20 2021-11-09 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, communication method, and integrated circuit
CN109617575B (zh) * 2016-12-28 2020-06-30 上海朗帛通信技术有限公司 一种被用于多天线传输的ue、基站中的方法和装置
JPWO2018128181A1 (ja) * 2017-01-06 2019-11-07 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN108616300B (zh) * 2017-01-06 2024-03-08 华为技术有限公司 一种信道状态信息测量的配置方法及相关设备
CN110192354B (zh) * 2017-01-09 2022-04-29 瑞典爱立信有限公司 混合srs组合信令
JP2020057823A (ja) * 2017-02-01 2020-04-09 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
CN110495127B (zh) * 2017-02-06 2023-04-07 瑞典爱立信有限公司 用于信道状态信息反馈的动态指示
US11101953B2 (en) * 2017-02-06 2021-08-24 Apple Inc. Uplink transmissions using precoded sounding reference signals for communication systems
BR112019016070A2 (pt) * 2017-02-06 2020-03-31 Telefonaktiebolaget Lm Ericsson (Publ) Métodos de operação de um segundo nó e de operação de um primeiro nó, segundo nó, e, primeiro nó
US10673652B2 (en) 2017-03-02 2020-06-02 Futurewei Technologies, Inc. System and method for providing explicit feedback in the uplink
KR102207082B1 (ko) * 2017-03-21 2021-01-25 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
CN110663214B (zh) 2017-03-24 2022-10-14 瑞典爱立信有限公司 Pusch上的半持续csi反馈
CN108631847B (zh) * 2017-03-24 2021-06-01 华为技术有限公司 传输信道状态信息的方法、终端设备和网络设备
WO2018176401A1 (en) * 2017-03-31 2018-10-04 Nec Corporation Methods and apparatuses for reference signal allocation
US10686572B2 (en) 2017-04-03 2020-06-16 National Instruments Corporation Wireless communication system that performs measurement based selection of phase tracking reference signal (PTRS) ports
MX2019012888A (es) * 2017-05-02 2019-12-11 Guangdong Oppo Mobile Telecommunications Corp Ltd Procedimiento para transmitir se?al, dispositivo de red y dispositivo terminal.
CN110720181A (zh) * 2017-05-05 2020-01-21 美国国家仪器有限公司 基于rsrp和csi度量的组合来执行波束报告的无线通信系统
CN108809386B (zh) * 2017-05-05 2023-06-16 华为技术有限公司 传输预编码矩阵的指示方法和设备
CN109150439B (zh) * 2017-06-16 2021-02-05 电信科学技术研究院 一种数据传输方法、装置、网络侧设备和用户设备
US10820323B2 (en) * 2017-08-04 2020-10-27 Industrial Technology Research Institute Beam indication method for multibeam wireless communication system and electronic device using the same
US10951300B2 (en) 2017-08-11 2021-03-16 National Instruments Corporation Radio frequency beam management and recovery
US11277301B2 (en) * 2017-09-07 2022-03-15 Comcast Cable Communications, Llc Unified downlink control information for beam management
US10601483B2 (en) * 2017-09-29 2020-03-24 Apple Inc. Channel state information (CSI) reporting for bandwidth parts
CN109600210A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 数据传输方法、终端设备以及网络设备
US10707939B2 (en) * 2017-10-03 2020-07-07 Mediatek Inc. Codebook-based uplink transmission in wireless communications
CA3022159A1 (en) 2017-10-26 2019-04-26 Comcast Cable Communications, Llc Activation and deactivation of configured grant
CA3022244A1 (en) 2017-10-27 2019-04-27 Comcast Cable Communications, Llc Group common dci for wireless resources
WO2019084733A1 (zh) * 2017-10-30 2019-05-09 Oppo广东移动通信有限公司 用于传输信号的方法、网络设备和终端设备
EP3787189A1 (en) 2017-11-09 2021-03-03 Comcast Cable Communications LLC Csi transmission with multiple bandwidth parts
US10945172B2 (en) 2017-11-16 2021-03-09 Comcast Cable Communications, Llc Power control for bandwidth part switching
MX2019000579A (es) 2017-11-28 2019-10-30 Lg Electronics Inc Metodo para reportar informacion de estado del canal en el sistema de comunicacion inalambrica y aparato para el mismo.
US10834777B2 (en) * 2018-01-11 2020-11-10 Ofinnon, LLC Discontinuous reception and CSI
ES2962256T3 (es) * 2018-01-12 2024-03-18 Nokia Technologies Oy Informe periódico de múltiples células/CSI de SPS para la red inalámbrica
ES2905200T3 (es) 2018-01-12 2022-04-07 Ericsson Telefon Ab L M Activación y desactivación de la notificación semipersistente de CSI
US10931354B2 (en) * 2018-01-12 2021-02-23 Mediatek Inc. UE capability for CSI reporting
US10582489B2 (en) 2018-01-12 2020-03-03 Telefonaktiebolaget Lm Ericsson (Publ) Signaling in RRC and MAC for PDSCH resource mapping for periodic and semipersistent reference signal assumptions
CA3038595A1 (en) 2018-03-30 2019-09-30 Comcast Cable Communications, Llc Beam failure recovery procedures using bandwidth parts
KR102196727B1 (ko) * 2018-05-10 2020-12-30 엘지전자 주식회사 무선 통신 시스템에서 pucch 자원을 구성하는 방법 및 장치
US10880949B2 (en) 2018-05-15 2020-12-29 Comcast Cable Communications, Llc Multiple active bandwidth parts
KR102322038B1 (ko) * 2018-05-17 2021-11-04 한양대학교 산학협력단 채널상태정보를 전송하는 방법 및 그 장치
CA3043813A1 (en) 2018-05-18 2019-11-18 Comcast Cable Communications, Llc Cross-carrier scheduling with multiple active bandwidth parts
EP3876642A1 (en) 2018-05-21 2021-09-08 Comcast Cable Communications LLC Random access procedures using multiple active bandwidth parts
EP3573420B1 (en) 2018-05-21 2023-07-05 Comcast Cable Communications LLC Failure detection and recovery for multiple active resources
CN110557762B (zh) 2018-05-30 2021-11-19 中国移动通信有限公司研究院 信息上报方法、信息上报的配置方法、终端及网络侧设备
US11856432B2 (en) * 2018-06-08 2023-12-26 Qualcomm Incorporated Acknowledgement design for multi-transmission configuration indicator state transmission
US11159290B2 (en) * 2018-06-28 2021-10-26 Acer Incorporated Device and method for handling a sounding reference signal transmission
CA3051139A1 (en) 2018-08-03 2020-02-03 Comcast Cable Communications, Llc Uplink and downlink synchronization procedures
CN110838856B (zh) * 2018-08-17 2021-11-26 大唐移动通信设备有限公司 一种数据传输方法、终端及网络设备
CN110838857B (zh) 2018-08-17 2022-01-07 大唐移动通信设备有限公司 一种数据传输方法、终端及网络设备
CN112840697B (zh) * 2018-09-27 2024-01-23 上海诺基亚贝尔股份有限公司 关于csi开销减少的装置、方法和计算机程序
US10594380B1 (en) 2018-09-28 2020-03-17 At&T Intellectual Property I, L.P. Channel state information determination using demodulation reference signals in advanced networks
EP3648496A1 (en) * 2018-11-01 2020-05-06 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Beam management methods and apparatuses for positioning measurements in a communications network
CN111464218B (zh) * 2019-01-18 2022-08-12 中国移动通信有限公司研究院 下行波束管理的方法及设备
WO2020164122A1 (en) * 2019-02-15 2020-08-20 Qualcomm Incorporated Partial-bandwidth feedback for beam combination codebook
WO2020164160A1 (zh) * 2019-02-15 2020-08-20 Oppo广东移动通信有限公司 一种码本信息处理方法、终端设备及网络设备
WO2020184851A1 (ko) * 2019-03-13 2020-09-17 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이에 대한 장치
KR102660181B1 (ko) 2019-04-04 2024-04-24 노키아 테크놀로지스 오와이 업링크 제어 정보의 통신
WO2020209597A1 (ko) * 2019-04-08 2020-10-15 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 그 장치
WO2020237561A1 (en) * 2019-05-30 2020-12-03 Qualcomm Incorporated Channel state information feedback in full-duplex
WO2020252690A1 (en) * 2019-06-19 2020-12-24 Qualcomm Incorporated Analog csf for fdd partial reciprocity
CN110300399B (zh) * 2019-06-24 2020-07-21 西北大学 一种基于Wi-Fi网卡的近距离多用户隐蔽通信方法及系统
US11864176B2 (en) * 2019-07-26 2024-01-02 Qualcomm Incorporated Extended slot aggregation scheduling in IAB network
WO2021027920A1 (en) * 2019-08-14 2021-02-18 Qualcomm Incorporated User-equipment (ue) capability signaling
US20210105724A1 (en) * 2019-10-04 2021-04-08 Qualcomm Incorporated User equipment (ue) capability signaling for maximum power support
WO2021062875A1 (en) * 2019-10-04 2021-04-08 Qualcomm Incorporated Applying a codebook subset restriction to a precoding matrix indicator and a channel quality indication for type-ii channel state information
CN110677182B (zh) * 2019-10-15 2021-06-01 哈尔滨工业大学 基于上行链路分层空时结构scma码本的通信方法
US10993264B1 (en) * 2019-10-15 2021-04-27 Qualcomm Incorporated Multiplexing channel state information reports in multiple transmit-receive point (TRP) scenarios
US11139868B2 (en) 2019-11-12 2021-10-05 Nokia Technologies Oy Propagation link selection in telecommunication systems
CN113131978B (zh) * 2019-12-30 2022-04-19 大唐移动通信设备有限公司 一种基于信道互易性的预编码矩阵配置方法及装置
US20230043456A1 (en) * 2020-01-10 2023-02-09 Qualcomm Incorporated Multi-slot transmission time interval based channel state information and uplink shared channel multiplexing
EP4092918A4 (en) * 2020-01-19 2022-12-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND DEVICE FOR COMMUNICATION
US20230056106A1 (en) * 2020-02-03 2023-02-23 Yu Zhang Cpu, resource, and port occupation for multi-trp csi
CN113259051B (zh) * 2020-02-12 2023-05-16 维沃移动通信有限公司 信道状态信息csi报告的反馈方法、终端设备和网络设备
US20230131045A1 (en) 2020-02-14 2023-04-27 Qualcomm Incorporated Indication of information in channel state information (csi) reporting
US11805540B2 (en) * 2020-04-24 2023-10-31 Qualcomm Incorporated Techniques for selection or indication of a channel state information report parameter
US20220007224A1 (en) * 2020-07-02 2022-01-06 Qualcomm Incorporated Channel state information (csi) signaling for multiple report metrics
WO2022018672A1 (en) * 2020-07-21 2022-01-27 Lenovo (Singapore) Pte. Ltd. Channel state information reporting for multiple transmit/receive points
US20220095145A1 (en) * 2020-09-23 2022-03-24 Qualcomm Incorporated Measurement report for mixed downlink reference signal reporting
WO2022078608A1 (en) * 2020-10-15 2022-04-21 Nokia Technologies Oy Apparatuses and methods for channel state information quantities model reporting
US11496194B2 (en) 2020-12-22 2022-11-08 Qualcomm Incorporated Methods and apparatus for group beam reporting for beam squint
WO2022151092A1 (zh) * 2021-01-13 2022-07-21 Oppo广东移动通信有限公司 信道数据传输方法、装置、通信设备及存储介质
KR20230154835A (ko) * 2021-03-09 2023-11-09 퀄컴 인코포레이티드 공동 채널 상태 정보 보고를 위한 활성 기준 신호들의 카운팅
US12004174B2 (en) * 2021-05-28 2024-06-04 Qualcomm Incorporated Support for an increased quantity of sidelink configured grants
WO2024031685A1 (en) * 2022-08-12 2024-02-15 Google Llc Reporting channel impulse responses of multiple beams for spatial analysis by machine learning

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110268028A1 (en) * 2010-04-02 2011-11-03 Interdigital Patent Holdings, Inc. Uplink sounding reference signals configuration and transmission
EP2782409A1 (en) * 2013-03-20 2014-09-24 Panasonic Intellectual Property Corporation of America Deterministic UE behaviour for CSI/SRS Reporting during DRX
CN105406911A (zh) * 2014-09-10 2016-03-16 三星电子株式会社 用于高级无线通信系统的具有基扩展的信道状态信息报告

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062434U (ja) * 1992-06-01 1994-01-14 政雄 片田野 ワードプロセッサー用見台
JP3123342U (ja) * 2006-04-27 2006-07-20 株式会社イマージュ ディスプレイ用カーテン
JP4981929B2 (ja) * 2010-01-08 2012-07-25 シャープ株式会社 無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路
KR20120000482A (ko) * 2010-06-25 2012-01-02 주식회사 팬택 사운딩 기준 신호의 비주기적 송신을 위한 자원 할당 및 주기 정보를 송수신하는 방법 및 장치
US9131457B2 (en) * 2010-08-12 2015-09-08 Samsung Electronics Co., Ltd. Apparatus and method for transmission of uplink sounding reference signals in a wireless network
JP4938123B1 (ja) * 2010-10-04 2012-05-23 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、移動端末装置、無線通信方法及び無線通信システム
JP5896619B2 (ja) 2011-04-05 2016-03-30 シャープ株式会社 端末装置、基地局装置、通信システムおよび通信方法
JP5926613B2 (ja) 2012-05-23 2016-05-25 シャープ株式会社 通信システム、基地局装置、移動局装置、測定方法、および集積回路
JP6324954B2 (ja) 2012-06-18 2018-05-16 サムスン エレクトロニクス カンパニー リミテッド 協調マルチポイント送信のための非周期的及び周期的csiフィードバックモード
WO2014019874A1 (en) * 2012-08-03 2014-02-06 Nokia Siemens Networks Oy Interference measurement resource (imr) signaling and use to support interference coordination between cells
US9755721B2 (en) 2012-11-09 2017-09-05 Lg Electronics Inc. Method for feeding back channel state information in wireless communication system and apparatus therefor
CN110034806B (zh) * 2012-11-12 2021-05-18 华为技术有限公司 上报信道状态信息的方法、用户设备及基站
GB2512634A (en) * 2013-04-04 2014-10-08 Nec Corp Communication system
US9344167B2 (en) * 2013-06-06 2016-05-17 Broadcom Corporation Codebook subsampling for multi-antenna transmit precoder codebook
CN104253674B (zh) * 2013-06-27 2017-12-29 华为技术有限公司 反馈csi的方法、调度ue的方法、ue及基站
US9860880B2 (en) * 2013-07-05 2018-01-02 Sharp Kabushiki Kaisha Terminal device, base station device, integrated circuit and communication method
KR102023671B1 (ko) 2013-11-01 2019-09-20 이노스카이 주식회사 주기적 채널상태정보 보고 방법 및 장치
WO2015074262A1 (zh) * 2013-11-22 2015-05-28 华为技术有限公司 一种信道状态信息的反馈方法及装置
WO2016022000A1 (ko) * 2014-08-07 2016-02-11 엘지전자 주식회사 D2d 통신에서의 단말의 송신 자원 블록 풀의 결정 방법 및 이를 위한 장치
US20160105817A1 (en) 2014-10-10 2016-04-14 Telefonaktiebolaget L M Ericsson (Publ) Method for csi feedback
WO2016064317A1 (en) 2014-10-24 2016-04-28 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for csi-rs transmission
KR102371961B1 (ko) * 2014-11-07 2022-03-08 한국전자통신연구원 레퍼런스 신호를 전송하는 방법 및 장치, 채널 상태 정보를 측정 및 보고하는 방법 및 장치, 그리고 이를 위한 설정 방법
CN105991483B (zh) * 2015-01-28 2020-08-07 索尼公司 无线通信设备和无线通信方法
US20160233938A1 (en) 2015-02-06 2016-08-11 Nokia Solutions And Networks Oy Multiple Restrictions For CSI Reporting
US9992759B2 (en) * 2015-03-09 2018-06-05 Ofinno Technologies, Llc Downlink multicast channel and data channel in a wireless network
CN107925457A (zh) * 2015-04-08 2018-04-17 株式会社Ntt都科摩 用于确定预编码矩阵的基站、用户装置和方法
EP3734896B1 (en) * 2015-06-17 2022-06-08 LG Electronics Inc. Method for channel state report using aperiodic channel state information-reference signal and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110268028A1 (en) * 2010-04-02 2011-11-03 Interdigital Patent Holdings, Inc. Uplink sounding reference signals configuration and transmission
EP2782409A1 (en) * 2013-03-20 2014-09-24 Panasonic Intellectual Property Corporation of America Deterministic UE behaviour for CSI/SRS Reporting during DRX
CN105165085A (zh) * 2013-03-20 2015-12-16 松下电器(美国)知识产权公司 断续接收期间用于信道状态信息/探测参考码元报告的确定性用户设备行为
CN105406911A (zh) * 2014-09-10 2016-03-16 三星电子株式会社 用于高级无线通信系统的具有基扩展的信道状态信息报告

Also Published As

Publication number Publication date
AU2017320303C1 (en) 2022-10-13
JP2019532564A (ja) 2019-11-07
JP7206186B2 (ja) 2023-01-17
JP2023052193A (ja) 2023-04-11
AU2017320303B2 (en) 2021-12-09
EP4203340A1 (en) 2023-06-28
KR102382603B1 (ko) 2022-04-04
US10804993B2 (en) 2020-10-13
EP3504807B1 (en) 2023-02-22
WO2018044116A1 (en) 2018-03-08
AU2017320303A1 (en) 2019-02-14
EP3504807A4 (en) 2019-08-07
EP3504807A1 (en) 2019-07-03
CN109644039A (zh) 2019-04-16
KR20220044624A (ko) 2022-04-08
US20200076490A1 (en) 2020-03-05
KR20190039335A (ko) 2019-04-10
ES2941795T3 (es) 2023-05-25
US10484064B2 (en) 2019-11-19
KR102484302B1 (ko) 2023-01-03
US20180062724A1 (en) 2018-03-01
CN109644039B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
CN109644039B (zh) 用于下行链路和上行链路信道状态信息获取的方法和设备
US11095345B2 (en) Method and apparatus for enabling uplink MIMO
CN112956145B (zh) 信道和干扰测量和报告的方法和装置
KR102577742B1 (ko) 업링크 제어 정보 송신 및 수신을 위한 방법 및 장치
US10771211B2 (en) Method and apparatus for channel state information (CSI) acquisition with DL and UL reference signals
CN107636984B (zh) 用于操作mimo测量参考信号和反馈的方法和装置
US10448408B2 (en) Method and apparatus for coordinating multi-point transmission in advanced wireless systems
CN108292941B (zh) 用于减少的反馈mimo的方法和装置
CN107251451B (zh) 用于减少的反馈fd-mimo的方法和装置
CN107431515B (zh) 用于码本设计和信令的方法和装置
KR20210099656A (ko) 무선 통신 시스템에서 간섭 측정을 위한 방법 및 장치
CN109937549B (zh) 无线通信系统中用于csi报告的方法及装置
CN109075828B (zh) 用于实现上行链路mimo的方法和设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination