CN115451828A - Laser interferometer ranging error suppression system and method - Google Patents

Laser interferometer ranging error suppression system and method Download PDF

Info

Publication number
CN115451828A
CN115451828A CN202211003233.8A CN202211003233A CN115451828A CN 115451828 A CN115451828 A CN 115451828A CN 202211003233 A CN202211003233 A CN 202211003233A CN 115451828 A CN115451828 A CN 115451828A
Authority
CN
China
Prior art keywords
module
measurement
measurement signal
signal
ranging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211003233.8A
Other languages
Chinese (zh)
Inventor
范玉娇
杨月舳
张翔宇
韩昱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing U Precision Tech Co Ltd
Original Assignee
Beijing U Precision Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing U Precision Tech Co Ltd filed Critical Beijing U Precision Tech Co Ltd
Priority to CN202211003233.8A priority Critical patent/CN115451828A/en
Publication of CN115451828A publication Critical patent/CN115451828A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

本发明提供了一种激光干涉仪测距误差抑制系统及方法,其中的系统包括,激光发射模块、干涉测距模块、波长跟踪模块、分光模块以及信号处理模块;其中,所述激光发射模块发射的激光经所述分光模块分光后的反射光进入所述波长跟踪模块形成第一测量信号,经所述分光模块分光后的透射光通过所述干涉测距模块形成第二测量信号,所述信号处理模块通过所述第一测量信号以及所述第二测量信号对所述干涉测距模块进行误差抑制。本发明提供的激光干涉仪测距误差抑制系统及方法能够有效降低激光干涉仪的折射率误差。

Figure 202211003233

The present invention provides a laser interferometer distance measurement error suppression system and method, wherein the system includes a laser emission module, an interference distance measurement module, a wavelength tracking module, a light splitting module and a signal processing module; wherein the laser emission module emits The reflected light of the laser beam split by the spectroscopic module enters the wavelength tracking module to form a first measurement signal, and the transmitted light split by the spectroscopic module forms a second measurement signal through the interference ranging module, and the signal The processing module performs error suppression on the interference ranging module through the first measurement signal and the second measurement signal. The laser interferometer ranging error suppression system and method provided by the invention can effectively reduce the refractive index error of the laser interferometer.

Figure 202211003233

Description

激光干涉仪测距误差抑制系统及方法Laser interferometer ranging error suppression system and method

技术领域technical field

本发明涉及超精密位移测量技术领域,更为具体地,涉及一种激光干涉仪测距误差抑制系统及方法。The invention relates to the technical field of ultra-precision displacement measurement, and more specifically, to a laser interferometer ranging error suppression system and method.

背景技术Background technique

激光干涉仪测距具有精度高、线性度好等优点,可用于几何精度检测、数控机床的动态监测以及光刻机的多自由度位移测量等超精密测量场景,应用场合广泛。Laser interferometer distance measurement has the advantages of high precision and good linearity. It can be used in ultra-precision measurement scenarios such as geometric accuracy detection, dynamic monitoring of CNC machine tools, and multi-degree-of-freedom displacement measurement of lithography machines. It has a wide range of applications.

在实际测量过程中,各应用场景均对激光干涉仪的测量精度有较高的要求,因此需要抑制激光干涉仪的测距误差。激光干涉仪测距误差主要包括余弦误差、阿贝误差与折射率带来的测量误差。其中余弦误差重复性高容易补偿,阿贝误差影响比较小,而折射率误差是一种重复性低、误差大的随机误差。激光在空气中传播,气体的温度、湿度等因素会导致空气折射率改变,进而导致激光的波长受空气折射率的影响产生变化,而在激光干涉仪测距计算中通常使用的是理论波长,最终致使测距结果出现误差,该误差会随着反射镜与干涉仪之间的距离,即激光在空气中的传播距离的增长而增大,在距离较长或环境变化剧烈的情况下,误差会达到百纳米甚至微米级。In the actual measurement process, each application scenario has high requirements on the measurement accuracy of the laser interferometer, so it is necessary to suppress the ranging error of the laser interferometer. The ranging error of the laser interferometer mainly includes the measurement error caused by cosine error, Abbe error and refractive index. Among them, the cosine error has high repeatability and is easy to compensate, the Abbe error has relatively little influence, and the refractive index error is a random error with low repeatability and large error. The laser propagates in the air, and factors such as the temperature and humidity of the gas will cause the refractive index of the air to change, which in turn will cause the wavelength of the laser to change due to the influence of the refractive index of the air. In the distance measurement calculation of the laser interferometer, the theoretical wavelength is usually used. Ultimately, an error occurs in the ranging result, and the error will increase with the distance between the mirror and the interferometer, that is, the propagation distance of the laser in the air. In the case of a long distance or severe environmental changes, the error It will reach hundreds of nanometers or even micrometers.

鉴于这一现状,亟需一种能够有效降低激光干涉仪的折射率误差的方法。In view of this situation, there is an urgent need for a method that can effectively reduce the refractive index error of the laser interferometer.

发明内容Contents of the invention

鉴于上述问题,本发明的目的是提供一种激光干涉仪测距误差抑制系统及方法,该激光干涉仪测距误差抑制系统及方法能够有效降低激光干涉仪的折射率误差。In view of the above problems, the object of the present invention is to provide a laser interferometer ranging error suppression system and method, which can effectively reduce the refractive index error of the laser interferometer.

本发明提供的激光干涉仪测距误差抑制系统,包括激光发射模块、干涉测距模块、波长跟踪模块、分光模块以及信号处理模块;其中,The laser interferometer distance measurement error suppression system provided by the present invention includes a laser emission module, an interference distance measurement module, a wavelength tracking module, a light splitting module and a signal processing module; wherein,

所述激光发射模块发射的激光经所述分光模块分光后的反射光进入所述波长跟踪模块形成第一测量信号,经所述分光模块分光后的透射光通过所述干涉测距模块形成第二测量信号,所述信号处理模块通过所述第一测量信号以及所述第二测量信号对所述干涉测距模块进行误差抑制。The reflected light emitted by the laser emitting module after being split by the spectroscopic module enters the wavelength tracking module to form a first measurement signal, and the transmitted light split by the spectroscopic module passes through the interference ranging module to form a second measurement signal. measurement signals, the signal processing module performs error suppression on the interference ranging module through the first measurement signal and the second measurement signal.

此外,优选的方案是,所述信号处理模块包括相位卡、主控卡以及上位机,其中,In addition, the preferred solution is that the signal processing module includes a phase card, a main control card and a host computer, wherein,

所述相位卡分别对所述第一测量信号和所述第二测量信号进行统计以得到波长跟踪数据和原始距离测量数据,并将所述波长跟踪数据和所述原始距离测量数据传输至所述主控卡;The phase card performs statistics on the first measurement signal and the second measurement signal to obtain wavelength tracking data and original distance measurement data, and transmits the wavelength tracking data and the original distance measurement data to the main control card;

所述主控卡读取所述波长跟踪数据和所述原始距离测量数据并上传至所述上位机;The main control card reads the wavelength tracking data and the original distance measurement data and uploads them to the host computer;

所述上位机通过所述波长跟踪数据对所述原始距离测量数据进行误差抑制。The host computer performs error suppression on the original distance measurement data through the wavelength tracking data.

此外,优选的方案是,所述激光干涉仪测距误差抑制系统还包括与所述干涉测距模块位置对应的反射模块,所述透射光进入所述干涉测距模块的出光经所述反射模块反射后产生所述第二测量信号。In addition, the preferred solution is that the laser interferometer distance measurement error suppression system further includes a reflection module corresponding to the position of the interference distance measurement module, and the transmitted light entering the interference distance measurement module passes through the reflection module The second measurement signal is generated after reflection.

此外,优选的方案是,所述反射模块设置在预设运动台上;并且,In addition, a preferred solution is that the reflection module is set on a preset motion table; and,

所述反射模块与所述干涉测距模块之间的距离基于预设伺服周期通过所述预设运动台进行调整。The distance between the reflective module and the interferometric ranging module is adjusted through the preset motion stage based on a preset servo period.

此外,优选的方案是,所述干涉测距模块包括第一干涉仪和第二干涉仪,所述反光模块包括第一反射镜和第二反射镜,所述分光模块包括第一分光镜和第二分光镜;其中,In addition, the preferred solution is that the interference ranging module includes a first interferometer and a second interferometer, the light reflection module includes a first mirror and a second mirror, and the light splitting module includes a first beam splitter and a second mirror. Two beam splitters; where,

所述第一反射镜和第二反射镜分别设置在所述预设运动台的X轴导轨和所述Y轴导轨上滑动,所述第一干涉仪与所述第一反射镜位置对应,所述第二干涉仪与所述第二反射镜位置对应;The first reflector and the second reflector are respectively arranged to slide on the X-axis guide rail and the Y-axis guide rail of the preset motion table, and the position of the first interferometer corresponds to the position of the first reflector, so The second interferometer corresponds to the position of the second mirror;

并且,所述激光发射模块发射的激光经所述第一分光镜分光后形成第一透射光和第一反射光;其中,所述第一透射光进入所述第一干涉仪后的出光经所述第二反射镜反射后形成所述第二测量信号的Y轴信号;所述第一反射光经所述第二分光镜后形成第二透射光和第二反射光,其中,所述第二透射光进入所述第二干涉仪后的出光经所述第第一反射镜反射后形成所述第二测量信号的X轴信号,所述第二反射光进入所述波长跟踪模块形成所述第一测量信号。In addition, the laser light emitted by the laser emitting module is split by the first beam splitter to form the first transmitted light and the first reflected light; wherein, after the first transmitted light enters the first interferometer, the emitted light passes through the first interferometer. The Y-axis signal of the second measurement signal is formed after being reflected by the second reflector; the first reflected light forms the second transmitted light and the second reflected light after passing through the second beam splitter, wherein the second After the transmitted light enters the second interferometer, the outgoing light is reflected by the first reflector to form the X-axis signal of the second measurement signal, and the second reflected light enters the wavelength tracking module to form the first A measurement signal.

此外,优选的方案是,所述激光发射模块的参考信号接入所述相位卡的参考轴,所述第一测量信号接入所述相位卡的第一测量轴,所述第二测量信号接入所述相位卡的第二测量轴。In addition, the preferred scheme is that the reference signal of the laser emitting module is connected to the reference axis of the phase card, the first measurement signal is connected to the first measurement axis of the phase card, and the second measurement signal is connected to into the second measurement axis of the phase card.

另一方面,本发明还提供一种激光干涉仪测距误差抑制方法,利用前述的激光干涉仪测距误差抑制系统进行干涉测距模块的误差抑制:包括:On the other hand, the present invention also provides a laser interferometer ranging error suppression method, using the aforementioned laser interferometer ranging error suppression system to suppress the error of the interference ranging module: including:

通过所述激光发射模块向所述分光模块发射激光,经所述分光模块分光后的反射光进入所述波长跟踪模块形成第一测量信号,经所述分光模块分光后的透射光通过所述干涉测距模块形成第二测量信号;The laser emitting module emits laser light to the spectroscopic module, the reflected light after splitting by the spectroscopic module enters the wavelength tracking module to form a first measurement signal, and the transmitted light after splitting by the spectroscopic module passes through the interference The ranging module forms a second measurement signal;

通过所述信号处理模块基于所述第一测量信号以及所述第二测量信号对所述干涉测距模块进行误差抑制。The signal processing module performs error suppression on the interference ranging module based on the first measurement signal and the second measurement signal.

此外,优选的方案是,所述第一测量信号和所述第二测量信号设置有n组,其中,n为整数,n≥10;并且,所述通过所述信号处理模块基于所述第一测量信号以及所述第二测量信号对所述干涉测距模块进行误差抑制包括:In addition, the preferred scheme is that there are n sets of the first measurement signal and the second measurement signal, where n is an integer, and n≥10; and the passing through the signal processing module is based on the first The error suppression of the interference ranging module by the measurement signal and the second measurement signal includes:

通过所述信号处理模块分别获取各组的第一测量信号的数据值c和第二测量信号的数据值d;Obtaining the data value c of the first measurement signal and the data value d of the second measurement signal of each group respectively through the signal processing module;

将各组的数据值c与数据值d做线性拟合,以得到n个拟合系数A=[A1,A2,…,An];Linearly fit the data value c and data value d of each group to obtain n fitting coefficients A=[A1,A2,...,An];

将预设的实际距离数据X=[x1,x2,…,xn]与A做线性拟合以得到拟合方程A=f(X);Linearly fitting the preset actual distance data X=[x1,x2,...,xn] to A to obtain the fitting equation A=f(X);

基于所述拟合方程A=f(X),得到所述干涉测距模块的测量距离优化数据值d1=d-f(X)c。Based on the fitting equation A=f(X), the measurement distance optimization data value d1=d−f(X)c of the interferometric ranging module is obtained.

此外,优选的方案是,所述第二测量信号的数据值d为所述干涉测距模块与发射模块的测量距离,所述实际距离数据X为所述干涉测距模块与所述发射模块的实际距离;其中,In addition, the preferred solution is that the data value d of the second measurement signal is the measured distance between the interference ranging module and the transmitting module, and the actual distance data X is the distance between the interference ranging module and the transmitting module. Actual distance; where,

所述反射模块设置在预设运动台上,并且,通过调整所述反射模块在所述预设运动台上的位置得到n组测量距离数据值和n组实际距离数据值X=[x1,x2,…,xn]。The reflection module is set on the preset motion platform, and by adjusting the position of the reflection module on the preset motion platform, n sets of measured distance data values and n sets of actual distance data values X=[x1, x2 ,...,xn].

此外,优选的方案是,所述第一测量信号和所述第二测量信号设置有n组,其中,n为整数,n≥10,所述第二测量信号包括X轴信号和的Y轴信号;并且,所述通过所述信号处理模块基于所述第一测量信号以及所述第二测量信号对所述干涉测距模块进行误差抑制包括:In addition, the preferred scheme is that there are n sets of the first measurement signal and the second measurement signal, wherein n is an integer, n≥10, and the second measurement signal includes the X-axis signal and the Y-axis signal and, the error suppression of the interference ranging module based on the first measurement signal and the second measurement signal by the signal processing module includes:

通过所述信号处理模块分别获取各组的第一测量信号的数据值c、X轴信号的X轴数据值dx和Y轴信号的Y轴数据值dy;The data value c of the first measurement signal of each group, the X-axis data value dx of the X-axis signal, and the Y-axis data value dy of the Y-axis signal are respectively obtained by the signal processing module;

将各组的X轴测量数据值dx和Y轴测量数据值dy分别与数据值c做线性拟合,以得到两路拟合系数Ax=[Ax1,Ax2,…,Axn],Ay=[Ay1,Ay2,…,Ayn];Linearly fit the X-axis measurement data value dx and Y-axis measurement data value dy of each group with the data value c to obtain the two-way fitting coefficient Ax=[Ax1,Ax2,...,Axn], Ay=[Ay1 ,Ay2,...,Ayn];

将预设的实际距离数据X=[x1,x2,…,xn]与Ax做线性拟合以得到拟合方程Ax=f(X),并将预设的实际距离数据Y=[y1,y2,…,yn]与Ay做线性拟合以得到拟合方程Ay=f(Y);Linearly fit the preset actual distance data X=[x1,x2,...,xn] and Ax to obtain the fitting equation Ax=f(X), and make the preset actual distance data Y=[y1,y2 ,..., yn] do linear fitting with Ay to obtain fitting equation Ay=f(Y);

基于拟合方程Ax=f(X)以及拟合方程Ay=f(Y),得到所述干涉测距模块的X轴测量距离优化数据值dx1=dx-f(X)c以及Y轴测量距离优化数据值dy1=dy-f(Y)c。Based on the fitting equation Ax=f(X) and the fitting equation Ay=f(Y), obtain the X-axis measurement distance optimization data value dx1=dx-f(X)c and the Y-axis measurement distance of the interferometric ranging module Optimize data value dy1 = dy-f(Y)c.

和现有技术相比,上述根据本发明的激光干涉仪测距误差抑制系统,有如下有益效果:Compared with the prior art, the above-mentioned laser interferometer ranging error suppression system according to the present invention has the following beneficial effects:

本发明提供的激光干涉仪测距误差抑制系统可抑制激光干涉仪测距因环境因素的变化产生的误差,使激光干涉仪测距结果更加准确,根据激光干涉仪与被测物之间的距离使用不同的补偿系数,可应用于大行程的测距场合,在示意图中使用单轴干涉仪为例,同样适用于角度干涉仪、三轴、五轴干涉仪等,该技术易实施,可应用的场合广泛。The laser interferometer distance measurement error suppression system provided by the present invention can suppress the error caused by the change of environmental factors in the laser interferometer distance measurement, and make the distance measurement result of the laser interferometer more accurate. According to the distance between the laser interferometer and the measured object Using different compensation coefficients can be applied to distance measurement occasions with large strokes. The single-axis interferometer is used as an example in the schematic diagram, which is also applicable to angle interferometers, three-axis, five-axis interferometers, etc. This technology is easy to implement and can be applied The occasions are extensive.

为了实现上述以及相关目的,本发明的一个或多个方面包括后面将详细说明并在权利要求中特别指出的特征。下面的说明以及附图详细说明了本发明的某些示例性方面。然而,这些方面指示的仅仅是可使用本发明的原理的各种方式中的一些方式。此外,本发明旨在包括所有这些方面以及它们的等同物。To the accomplishment of the above and related ends, one or more aspects of the invention comprise the features hereinafter described in detail and particularly pointed out in the claims. The following description and accompanying drawings detail certain exemplary aspects of the invention. These aspects are indicative, however, of but a few of the various ways in which the principles of the invention may be employed. Furthermore, the invention is intended to include all such aspects and their equivalents.

附图说明Description of drawings

通过参考以下结合附图的说明及权利要求书的内容,并且随着对本发明的更全面理解,本发明的其它目的及结果将更加明白及易于理解。在附图中:By referring to the following description combined with the accompanying drawings and the contents of the claims, and with a more comprehensive understanding of the present invention, other objectives and results of the present invention will be more clear and easy to understand. In the attached picture:

图1为根据本发明实施例的激光干涉仪测距误差抑制系统的第一结构示意图;Fig. 1 is a first structural schematic diagram of a laser interferometer ranging error suppression system according to an embodiment of the present invention;

图2为根据本发明实施例的激光干涉仪测距误差抑制系统的第二结构示意图。Fig. 2 is a second structural schematic diagram of a laser interferometer ranging error suppression system according to an embodiment of the present invention.

附图标记:上位机1、VME机箱2、背板3、VME主控卡4、相位卡5、第一光纤6、激光发射模块7、分光模块8、波长跟踪模块9、反射模块10、第二光纤11、第三光纤12、干涉测距模块13、X轴导轨15、第一反光镜16、第二反光镜17、定位台18、Y轴导轨19、第一干涉仪20、第一分光镜21、双频激光器22、波长跟踪仪23、第二分光镜24、第二干涉仪25。Reference signs: upper computer 1, VME chassis 2, backplane 3, VME main control card 4, phase card 5, first optical fiber 6, laser emitting module 7, optical splitting module 8, wavelength tracking module 9, reflection module 10, the first Second optical fiber 11, third optical fiber 12, interference ranging module 13, X-axis guide rail 15, first mirror 16, second mirror 17, positioning table 18, Y-axis guide rail 19, first interferometer 20, first beam splitter mirror 21, dual-frequency laser 22, wavelength tracker 23, second beam splitter 24, and second interferometer 25.

在所有附图中相同的标号指示相似或相应的特征或功能。The same reference numerals indicate similar or corresponding features or functions throughout the drawings.

具体实施方式detailed description

在下面的描述中,出于说明的目的,为了提供对一个或多个实施例的全面理解,阐述了许多具体细节。然而,很明显,也可以在没有这些具体细节的情况下实现这些实施例。在其它例子中,为了便于描述一个或多个实施例,公知的结构和设备以方框图的形式示出。In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more embodiments. It may be evident, however, that these embodiments may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing one or more embodiments.

在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制;术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性;此外,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer" etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, or in a specific orientation. construction and operation, and therefore cannot be construed as limiting the present invention; the terms "first", "second", and "third" are used for descriptive purposes only, and cannot be construed as indicating or implying relative importance; in addition, unless otherwise Clearly stipulated and limited, the terms "installation", "connection" and "connection" should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or a Electrical connection; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.

下面详细介绍本发明提供的激光干涉仪测距误差抑制系统的结构,图1为根据本发明实施例的激光干涉仪测距误差抑制系统的第一结构示意图。The structure of the laser interferometer distance measurement error suppression system provided by the present invention will be described in detail below. FIG. 1 is a schematic diagram of the first structure of the laser interferometer distance measurement error suppression system according to an embodiment of the present invention.

结合图由图1可知,本发明提供的激光干涉仪测距误差抑制系统主要包括用于发射测量激光的激光发射模块7、用于测距的干涉测距模块13、用于测量激光的波长跟踪模块9、用于对激光进行分光的分光模块8以及用于对测出的信息进行处理的信号处理模块;其中,激光发射模块7发射的激光经分光模块8分光后的反射光进入波长跟踪模块9形成第一测量信号(为波长测量信号),经分光模块8分光后的透射光通过干涉测距模块13形成第二测量信号(为距离测量信号),信号处理模块通过第一测量信号以及第二测量信号对干涉测距模块13进行误差抑制。It can be seen from FIG. 1 that the laser interferometer ranging error suppression system provided by the present invention mainly includes a laser emitting module 7 for emitting measuring laser, an interferometric ranging module 13 for ranging, and a wavelength tracking module for measuring laser. Module 9, a spectroscopic module 8 for splitting the laser light, and a signal processing module for processing the measured information; wherein, the reflected light of the laser emitted by the laser emitting module 7 after being split by the spectroscopic module 8 enters the wavelength tracking module 9 to form a first measurement signal (a wavelength measurement signal), and the transmitted light after being split by the spectroscopic module 8 passes through an interference distance measurement module 13 to form a second measurement signal (a distance measurement signal), and the signal processing module passes the first measurement signal and the second measurement signal. The second measurement signal performs error suppression on the interference ranging module 13 .

具体地,为实现干涉测距模块13的测距功能,激光干涉仪测距误差抑制系统还包括与干涉测距模块13位置对应的反射模块10,透射光进入干涉测距模块13的出光经反射模块10反射后产生第二测量信号(即干涉测距模块13与反射模块10之间的距离测量信号)。Specifically, in order to realize the ranging function of the interferometric ranging module 13, the laser interferometer ranging error suppression system also includes a reflection module 10 corresponding to the position of the interferometric ranging module 13, and the transmitted light entering the interferometric ranging module 13 is reflected. The module 10 generates a second measurement signal after reflection (that is, a distance measurement signal between the interference distance measurement module 13 and the reflection module 10 ).

更为具体地,为实现信号处理模块对第一测量信号和第二测量信号的数值采集,信号处理模块包括相位卡5、主控卡以及上位机1,其中,相位卡5分别对第一测量信号和第二测量信号的数值进行统计以得到波长跟踪数据(即数据值c)和原始距离测量数据(即数据值d),并将波长跟踪数据和原始距离测量数据传输至主控卡(优选VME主控卡4);主控卡读取波长跟踪数据和原始距离测量数据并上传至上位机1;上位机1通过波长跟踪数据对原始距离测量数据进行误差抑制。More specifically, in order to realize the value acquisition of the first measurement signal and the second measurement signal by the signal processing module, the signal processing module includes a phase card 5, a main control card and a host computer 1, wherein the phase card 5 respectively performs the first measurement The numerical value of signal and the second measuring signal is carried out statistics to obtain wavelength tracking data (being data value c) and original distance measuring data (being data value d), and wavelength tracking data and original distance measuring data are transmitted to main control card (preferably VME main control card 4); the main control card reads the wavelength tracking data and the original distance measurement data and uploads them to the upper computer 1; the upper computer 1 performs error suppression on the original distance measurement data through the wavelength tracking data.

在实际器件连接过程中,激光发射模块7中的双频激光器22的参考信号通过第一光纤6接入相位卡5的参考轴,双频激光器22的出光经过分光模块8的反射光进入波长跟踪模块9,经过分光模块8的透射光进入干涉测距模块13,干涉测距模块13的出光经反射模块10反射后,产生第二测量信号,第二测量信号通过第三光纤12传输至相位卡5的第二测量轴。同时,波长跟踪模块9产生的第一测量信号通过第二光纤11传输至相位卡5的第一测量轴。相位卡5与VME主控卡4均连接在VME机箱2的背板3上,可互相通信,相位卡5对两个测量信号进行计数并传输至VME主控卡4,VME主控卡4在预设的每个伺服周期读取并记录相位卡5的测量数据并上传至上位机1,最后由上位机1对数据做存储与分析。In the actual device connection process, the reference signal of the dual-frequency laser 22 in the laser emitting module 7 is connected to the reference axis of the phase card 5 through the first optical fiber 6, and the output light of the dual-frequency laser 22 enters the wavelength tracking through the reflected light of the optical splitting module 8 Module 9, the transmitted light passing through the spectroscopic module 8 enters the interference distance measurement module 13, and the light emitted by the interference distance measurement module 13 is reflected by the reflection module 10 to generate a second measurement signal, and the second measurement signal is transmitted to the phase card through the third optical fiber 12 5 for the second measuring axis. At the same time, the first measurement signal generated by the wavelength tracking module 9 is transmitted to the first measurement axis of the phase card 5 through the second optical fiber 11 . Both the phase card 5 and the VME main control card 4 are connected to the backplane 3 of the VME chassis 2 and can communicate with each other. The phase card 5 counts the two measurement signals and transmits them to the VME main control card 4. The VME main control card 4 is in the Each preset servo cycle reads and records the measurement data of the phase card 5 and uploads it to the host computer 1, and finally the host computer 1 stores and analyzes the data.

需要说明的是,为确保测量精度,通常情况下需要设定n(n为整数,n≥10)组第一测量信号和第二测量信号。为实现n组第一测量信号和第二测量信号的设定,可以将反射模块10设置在预设运动台上;并且,反射模块10与干涉测距模块13之间的距离基于预设的伺服周期通过预设运动台进行调整,通过多次调整反射模块10与干涉测距模块13之间的距离,即可形成n组第一测量信号和第二测量信号。It should be noted that, in order to ensure measurement accuracy, usually n (n is an integer, n≧10) sets of first measurement signals and second measurement signals need to be set. In order to realize the setting of n groups of first measurement signals and second measurement signals, the reflective module 10 can be set on a preset moving platform; and the distance between the reflective module 10 and the interferometric ranging module 13 is based on the preset servo The period is adjusted by a preset moving platform, and n sets of first measurement signals and second measurement signals can be formed by adjusting the distance between the reflection module 10 and the interference distance measurement module 13 several times.

需要说明的是,在实际的误差抑制过程中,波长跟踪模块9与干涉测距模块13需布置于位置接近的同一环境中,在预设运动台上将反射模块10固定后,VME主控卡4采集、记录波长跟踪模块9的测量波长数据(对应第一测量信号)、干涉测距模块13的测量距离数据(对应第二测量信号)以及干涉测距模块13与反射模块10之间的实际距离数据,然后将这些数据并上传至上位机1;需要说明的是,为确保数据的稳定性,各数据均需要采集8小时以上。采集完成后将反射模块10在预设运动台上移动一段距离,重复上述采集步骤,直到逐步移动到预设运动台的行程的极限位置,从而获得n组数据(包括n个测量数据c、n个测量数据d以及n个实际距离数据x)将各组的数据值c与数据值d做线性拟合,以得到n个拟合系数A=[A1,A2,…,An];然后将预设的实际距离数据X=[x1,x2,…,xn]与A做线性拟合以得到拟合方程A=f(X);最后基于拟合方程A=f(X),即可得到干涉测距模块13的测量距离优化数据值d1=d-f(X)c。It should be noted that in the actual error suppression process, the wavelength tracking module 9 and the interference ranging module 13 need to be arranged in the same environment with close positions. After the reflection module 10 is fixed on the preset moving platform, the VME main control card 4 Collect and record the measured wavelength data (corresponding to the first measurement signal) of the wavelength tracking module 9, the measured distance data (corresponding to the second measurement signal) of the interference distance measurement module 13, and the actual distance between the interference distance measurement module 13 and the reflection module 10. distance data, and then upload these data to the host computer 1; it should be noted that, in order to ensure the stability of the data, each data needs to be collected for more than 8 hours. After the acquisition is completed, move the reflective module 10 on the preset motion platform for a certain distance, repeat the above acquisition steps until gradually moving to the limit position of the stroke of the preset motion platform, thereby obtaining n sets of data (including n measurement data c, n measurement data d and n actual distance data x) linearly fitting the data value c and data value d of each group to obtain n fitting coefficients A=[A1, A2,..., An]; and then predicting Set the actual distance data X=[x1,x2,...,xn] to do linear fitting with A to obtain the fitting equation A=f(X); finally based on the fitting equation A=f(X), the interference can be obtained The measurement distance optimized data value d1=d−f(X)c of the distance measurement module 13 .

在本发明的另一个优选的实施方式中,图2为根据本发明实施例的激光干涉仪测距误差抑制系统的第二结构示意图。由图2可知,为进一步提升波长误差的抑制效果。还可以在X轴和Y轴两个方向上分别对干涉测距模块13的波长误差进行抑制。In another preferred embodiment of the present invention, FIG. 2 is a second structural schematic diagram of a laser interferometer ranging error suppression system according to an embodiment of the present invention. It can be seen from FIG. 2 that in order to further improve the suppression effect of the wavelength error. The wavelength error of the interferometric ranging module 13 can also be suppressed in the two directions of the X-axis and the Y-axis respectively.

具体地干涉测距模块13包括第一干涉仪20和第二干涉仪25,反光模块包括第一反射镜16和第二反射镜17,分光模块8包括第一分光镜21和第二分光镜24;其中,Specifically, the interference ranging module 13 includes a first interferometer 20 and a second interferometer 25, the light reflection module includes a first mirror 16 and a second mirror 17, and the light splitting module 8 includes a first beam splitter 21 and a second beam splitter 24 ;in,

第一反射镜和第二反射镜分别设置在预设运动台的X轴导轨15和Y轴导轨19上滑动,第一干涉仪20与第一反射镜位置对应,第二干涉仪25与第二反射镜位置对应;并且,激光发射模块7发射的激光经第一分光镜21分光后形成第一透射光和第一反射光;其中,第一透射光进入第一干涉仪20后的出光经第二反射镜反射后形成第二测量信号的Y轴信号;第一反射光经第二分光镜24后形成第二透射光和第二反射光,其中,第二透射光进入第二干涉仪25后的出光经第一反射镜反射后形成第二测量信号的X轴信号,第二反射光进入波长跟踪模块9形成第一测量信号。其中,激光发射模块7的参考信号接入相位卡5的参考轴,第一测量信号接入相位卡5的第一测量轴,第二测量信号接入相位卡5的第二测量轴。The first reflector and the second reflector are respectively arranged to slide on the X-axis guide rail 15 and the Y-axis guide rail 19 of the preset motion table, the first interferometer 20 corresponds to the position of the first reflector, and the second interferometer 25 corresponds to the second The positions of the mirrors are corresponding; and, the laser light emitted by the laser emitting module 7 is split by the first beam splitter 21 to form the first transmitted light and the first reflected light; wherein, the first transmitted light enters the first interferometer 20 and the outgoing light passes through the first interferometer 20 The Y-axis signal of the second measurement signal is formed after the reflection of the two mirrors; the first reflected light forms the second transmitted light and the second reflected light after passing through the second beam splitter 24, wherein the second transmitted light enters the second interferometer 25 The emitted light is reflected by the first mirror to form the X-axis signal of the second measurement signal, and the second reflected light enters the wavelength tracking module 9 to form the first measurement signal. Wherein, the reference signal of the laser emitting module 7 is connected to the reference axis of the phase card 5 , the first measurement signal is connected to the first measurement axis of the phase card 5 , and the second measurement signal is connected to the second measurement axis of the phase card 5 .

在实际使用过程中,可以超精密的预设运动台上进行操作,该预设运动台是上下叠层设计,包括X轴导轨15和Y轴导轨19,Y轴导轨19可以X轴导轨15上沿X轴方向滑动,在Y轴导轨19上设置有定位台18,定位台18可在Y轴导轨19上沿着Y轴方向滑动,其中,第一反光镜16设置在Y轴导轨19的一端(当然也在X轴导轨15上),并随着Y轴导轨19在X轴导轨15上沿X轴方向滑动。双频激光器22的出光经第一分光镜21分光后的透射光进入第一干涉仪20,在第二反射镜随定位台18在Y轴导轨19上运动时,第一干涉仪20即可测量Y轴方向的位移(即第一干涉仪20与第二反射镜之间的距离,也即Y轴测量信号)。第一分光镜21的反射光进入第二分光镜24,第二分光镜24的透射光进入第二干涉仪25,在第一反射镜随着Y轴导轨19在X轴方向运动时,第二干涉仪25即可测量X轴方向的位移(即第二干涉仪25与第一反射镜之间的距离,也即X轴测量信号)。此外,第二分光镜24的反射光进入波长跟踪模块9的波长跟踪仪23内,从而得到第一测量信号。最后将两路位移测量信号(即Y轴测量信号和X轴测量信号)与波长跟踪模块9的第一测量信号经光纤传输进入相位卡5,经VME主控卡4记录并上传至上位机1并完成最后的误差抑制计算。In actual use, it can be operated on an ultra-precise preset motion table, which is designed to be stacked up and down, including X-axis guide rail 15 and Y-axis guide rail 19, and Y-axis guide rail 19 can be placed on X-axis guide rail 15 Sliding along the X-axis direction, a positioning platform 18 is provided on the Y-axis guide rail 19, and the positioning platform 18 can slide along the Y-axis direction on the Y-axis guide rail 19, wherein the first reflector 16 is arranged on one end of the Y-axis guide rail 19 (also on the X-axis guide rail 15 of course), and slide along the X-axis direction on the X-axis guide rail 15 along with the Y-axis guide rail 19 . The transmitted light from the dual-frequency laser 22 is split by the first beam splitter 21 and enters the first interferometer 20. When the second mirror moves on the Y-axis guide rail 19 with the positioning table 18, the first interferometer 20 can measure The displacement in the Y-axis direction (that is, the distance between the first interferometer 20 and the second mirror, that is, the Y-axis measurement signal). The reflected light of the first beamsplitter 21 enters the second beamsplitter 24, and the transmitted light of the second beamsplitter 24 enters the second interferometer 25. When the first reflector moves in the X-axis direction along with the Y-axis guide rail 19, the second The interferometer 25 can measure the displacement in the X-axis direction (that is, the distance between the second interferometer 25 and the first mirror, that is, the X-axis measurement signal). In addition, the reflected light of the second beam splitter 24 enters the wavelength tracker 23 of the wavelength tracking module 9 to obtain the first measurement signal. Finally, the two displacement measurement signals (i.e. the Y-axis measurement signal and the X-axis measurement signal) and the first measurement signal of the wavelength tracking module 9 enter the phase card 5 through optical fiber transmission, record and upload to the host computer 1 through the VME main control card 4 And complete the final error suppression calculation.

需要说明的是,对于分光模块来讲,由于其包括第一分光镜21和第二分光镜24,并且,由于经第二分光镜24分光后的光线作为分光模块的输出,因此为便于理解光路在分光模块中的传输,此处将经第一分光镜21反射后再经第二分光镜24透射后的光线记为整个分光模块的透射光,将第一分光镜21反射后再经第二分光镜24反射后的光线记为整个分光模块的反射光。It should be noted that, for the spectroscopic module, since it includes the first spectroscope 21 and the second spectroscope 24, and since the light split by the second spectroscope 24 is used as the output of the spectroscopic module, in order to facilitate the understanding of the optical path In the transmission in the spectroscopic module, the light after being reflected by the first spectroscope 21 and then transmitted by the second spectroscope 24 is recorded as the transmitted light of the whole spectroscopic module, and after being reflected by the first spectroscope 21, it passes through the second spectroscope. The light reflected by the spectroscopic mirror 24 is recorded as the reflected light of the entire spectroscopic module.

为进一步说明本发明提供的光干涉仪测距误差抑制系统的工作原理,本发明还提供一种激光干涉仪测距误差抑制方法,利用前述的激光干涉仪测距误差抑制系统进行干涉测距模块13的误差抑制:包括:In order to further illustrate the working principle of the optical interferometer ranging error suppression system provided by the present invention, the present invention also provides a laser interferometer ranging error suppression method, using the aforementioned laser interferometer ranging error suppression system to perform interference ranging module 13 error suppression: including:

通过激光发射模块7向分光模块8发射激光,经分光模块8分光后的反射光进入波长跟踪模块9形成第一测量信号,经分光模块8分光后的透射光通过干涉测距模块13形成第二测量信号;Laser emission module 7 emits laser light to spectroscopic module 8, and the reflected light after splitting by spectroscopic module 8 enters wavelength tracking module 9 to form the first measurement signal, and the transmitted light after splitting by spectroscopic module 8 passes through interference ranging module 13 to form the second measurement signal. measurement signal;

通过信号处理模块基于第一测量信号以及第二测量信号对干涉测距模块13进行误差抑制。Error suppression is performed on the interference ranging module 13 by the signal processing module based on the first measurement signal and the second measurement signal.

具体地,为提升误差抑制效果,第一测量信号和第二测量信号设置有n组,其中,n为整数,n≥10;并且,通过信号处理模块基于第一测量信号以及第二测量信号对干涉测距模块13进行误差抑制包括:Specifically, in order to improve the error suppression effect, there are n groups of the first measurement signal and the second measurement signal, wherein, n is an integer, and n≥10; and, based on the first measurement signal and the second measurement signal, the pair of The interference ranging module 13 performs error suppression and includes:

通过信号处理模块分别获取各组的第一测量信号的数据值c和第二测量信号的数据值d;Obtain the data value c of the first measurement signal and the data value d of the second measurement signal of each group respectively through the signal processing module;

将各组的数据值c与数据值d做线性拟合,以得到n个拟合系数A=[A1,A2,…,An];Linearly fit the data value c and data value d of each group to obtain n fitting coefficients A=[A1,A2,...,An];

将预设的实际距离数据X=[x1,x2,…,xn]与A做线性拟合以得到拟合方程A=f(X);Linearly fitting the preset actual distance data X=[x1,x2,...,xn] to A to obtain the fitting equation A=f(X);

基于拟合方程A=f(X),得到干涉测距模块13的测量距离优化数据值d1=d-f(X)c。Based on the fitting equation A=f(X), the measurement distance optimization data value d1=d−f(X)c of the interferometric ranging module 13 is obtained.

需要说明的是,第二测量信号的数据值d为干涉测距模块13与发射模块10的测量距离,实际距离数据X为干涉测距模块13与发射模块10的实际距离;其中,反射模块10设置在预设运动台上,并且,通过调整反射模块10在预设运动台上的位置得到n组测量距离数据值和n组实际距离数据值X=[x1,x2,…,xn]。It should be noted that the data value d of the second measurement signal is the measured distance between the interference distance measurement module 13 and the transmission module 10, and the actual distance data X is the actual distance between the interference distance measurement module 13 and the transmission module 10; wherein, the reflection module 10 Set on the preset moving platform, and obtain n sets of measured distance data values and n sets of actual distance data values X=[x1, x2, . . . , xn] by adjusting the position of the reflection module 10 on the preset moving platform.

进一步地,第二测量信号包括X轴信号和Y轴信号;并且,在X轴和Y轴两个方向上分别对干涉测距模块13的波长误差进行抑制的过程中,通过信号处理模块基于第一测量信号以及第二测量信号对干涉测距模块13进行误差抑制的过程包括:Further, the second measurement signal includes an X-axis signal and a Y-axis signal; and, in the process of suppressing the wavelength error of the interference ranging module 13 in the two directions of the X-axis and the Y-axis respectively, the signal processing module is based on the first The process of suppressing the error of the interference ranging module 13 by the first measurement signal and the second measurement signal includes:

将预设运动台上的x/y两方向总行程n等分,从而形成定位台18的n个预定位点,获得各预定位点的实际位置X=[x1,x2,…,xn],Y=[y1,y2,…,yn](需要说明的是,由于预设运动台上有刻度,因此n个预定位点的实际位置可直接读出);然后依次在各点将运动台固定,采集三路信号8小时以上Divide the total stroke in the x/y direction on the preset motion table into n equal parts, thereby forming n predetermined position points of the positioning platform 18, and obtaining the actual position X=[x1, x2, . . . , xn] of each predetermined position point, Y=[y1, y2,..., yn] (it should be noted that since there are scales on the preset motion table, the actual positions of the n preset points can be read directly); then fix the motion table at each point in turn , collecting three signals for more than 8 hours

依次在各预定位点将定位台18固定,采集各预定位点的三路信号(包括X轴数据值dx、轴数据值dy以及数据值c)8小时以上;具体采集过程为:通过信号处理模块分别获取各组的第一测量信号的数据值c、X轴信号的X轴数据值dx以及Y轴信号的Y轴数据值dy;Fix the positioning platform 18 at each predetermined position in turn, and collect three signals (including X-axis data value dx, axis data value dy and data value c) of each predetermined position for more than 8 hours; the specific collection process is: through signal processing The module obtains the data value c of the first measurement signal of each group, the X-axis data value dx of the X-axis signal, and the Y-axis data value dy of the Y-axis signal;

将各组的X轴数据值dx和Y轴数据值dy分别与数据值c做线性拟合,以得到两路拟合系数Ax=[Ax1,Ax2,…,Axn],Ay=[Ay1,Ay2,…,Ayn];Linearly fit the X-axis data value dx and Y-axis data value dy of each group with the data value c to obtain two-way fitting coefficients Ax=[Ax1,Ax2,...,Axn], Ay=[Ay1,Ay2 ,...,Ayn];

将预设的实际距离数据X=[x1,x2,…,xn]与Ax做线性拟合以得到拟合方程Ax=f(X),并将预设的实际距离数据Y=[y1,y2,…,yn]与Ay做线性拟合以得到拟合方程Ay=f(Y);Linearly fit the preset actual distance data X=[x1,x2,...,xn] and Ax to obtain the fitting equation Ax=f(X), and make the preset actual distance data Y=[y1,y2 ,..., yn] do linear fitting with Ay to obtain fitting equation Ay=f(Y);

基于拟合方程Ax=f(X)以及拟合方程Ay=f(Y),得到干涉测距模块13的X轴测量距离优化数据值dx1=dx-f(X)c以及Y轴测量距离优化数据值dy1=dy-f(Y)c。Based on the fitting equation Ax=f(X) and the fitting equation Ay=f(Y), the X-axis measurement distance optimization data value dx1=dx-f(X)c and the Y-axis measurement distance optimization of the interferometric ranging module 13 are obtained Data value dy1=dy-f(Y)c.

需要说明的是,本发明中使用的波长跟踪仪23是标准商用的波长跟踪仪23,是由一个单轴干涉仪、一个标准腔与底板组成,可以对空气折射率变化、激光器本身温度漂移等引起的波长变化做测量。此外,本发明使用的反射镜可根据应用场景使用长条反射镜、斜角反射镜等作为替代方案;采集激光数据的VME系统可用VPX系统作为替代方案;相位卡5可以用光电探测器与电压采集卡作为替代方案。It should be noted that the wavelength tracker 23 used in the present invention is a standard commercial wavelength tracker 23, which is composed of a single-axis interferometer, a standard cavity and a base plate, and can detect changes in the refractive index of air, temperature drift of the laser itself, etc. The resulting wavelength change is measured. In addition, the reflectors used in the present invention can use strip reflectors, angled reflectors, etc. as alternatives according to the application scenario; the VME system for collecting laser data can use the VPX system as an alternative; the phase card 5 can use photodetectors and voltage capture card as an alternative.

如上参照图1和图2以示例的方式描述根据本发明的激光干涉仪测距误差抑制系统及方法。但是,本领域技术人员应当理解,对于上述本发明所提出的激光干涉仪测距误差抑制系统及方法,还可以在不脱离本发明内容的基础上做出各种改进。因此,本发明的保护范围应当由所附的权利要求书的内容确定。The laser interferometer ranging error suppression system and method according to the present invention are described above with reference to FIGS. 1 and 2 by way of example. However, those skilled in the art should understand that for the laser interferometer ranging error suppression system and method proposed in the present invention, various improvements can be made without departing from the content of the present invention. Therefore, the protection scope of the present invention should be determined by the contents of the appended claims.

Claims (10)

1.一种激光干涉仪测距误差抑制系统,其特征在于,包括激光发射模块、干涉测距模块、波长跟踪模块、分光模块以及信号处理模块;其中,1. A laser interferometer ranging error suppression system is characterized in that, comprising a laser emission module, an interference ranging module, a wavelength tracking module, a light splitting module and a signal processing module; wherein, 所述激光发射模块发射的激光经所述分光模块分光后的反射光进入所述波长跟踪模块形成第一测量信号,经所述分光模块分光后的透射光通过所述干涉测距模块形成第二测量信号,所述信号处理模块通过所述第一测量信号以及所述第二测量信号对所述干涉测距模块进行误差抑制。The reflected light emitted by the laser emitting module after being split by the spectroscopic module enters the wavelength tracking module to form a first measurement signal, and the transmitted light split by the spectroscopic module passes through the interference ranging module to form a second measurement signal. measurement signals, the signal processing module performs error suppression on the interference ranging module through the first measurement signal and the second measurement signal. 2.如权利要求1所述的激光干涉仪测距误差抑制系统,其特征在于,2. the laser interferometer ranging error suppression system as claimed in claim 1, is characterized in that, 所述信号处理模块包括相位卡、主控卡以及上位机,其中,The signal processing module includes a phase card, a main control card and a host computer, wherein, 所述相位卡分别对所述第一测量信号和所述第二测量信号进行统计以得到波长跟踪数据和原始距离测量数据,并将所述波长跟踪数据和所述原始距离测量数据传输至所述主控卡;The phase card performs statistics on the first measurement signal and the second measurement signal to obtain wavelength tracking data and original distance measurement data, and transmits the wavelength tracking data and the original distance measurement data to the main control card; 所述主控卡读取所述波长跟踪数据和所述原始距离测量数据并上传至所述上位机;The main control card reads the wavelength tracking data and the original distance measurement data and uploads them to the host computer; 所述上位机通过所述波长跟踪数据对所述原始距离测量数据进行误差抑制。The host computer performs error suppression on the original distance measurement data through the wavelength tracking data. 3.如权利要求2所述的激光干涉仪测距误差抑制系统,其特征在于,3. laser interferometer ranging error suppression system as claimed in claim 2, is characterized in that, 所述激光干涉仪测距误差抑制系统还包括与所述干涉测距模块位置对应的反射模块,所述透射光进入所述干涉测距模块的出光经所述反射模块反射后产生所述第二测量信号。The laser interferometer distance measurement error suppression system also includes a reflection module corresponding to the position of the interference distance measurement module, and the transmitted light entering the interference distance measurement module is reflected by the reflection module to generate the second Measure the signal. 4.如权利要求3所述的激光干涉仪测距误差抑制系统,其特征在于,4. laser interferometer ranging error suppression system as claimed in claim 3, is characterized in that, 所述反射模块设置在预设运动台上;并且,The reflection module is set on the preset motion table; and, 所述反射模块与所述干涉测距模块之间的距离基于预设伺服周期通过所述预设运动台进行调整。The distance between the reflective module and the interferometric ranging module is adjusted through the preset motion stage based on a preset servo period. 5.如权利要求4所述的激光干涉仪测距误差抑制系统,其特征在于,5. laser interferometer ranging error suppression system as claimed in claim 4, is characterized in that, 所述干涉测距模块包括第一干涉仪和第二干涉仪,所述反光模块包括第一反射镜和第二反射镜,所述分光模块包括第一分光镜和第二分光镜;其中,The interference ranging module includes a first interferometer and a second interferometer, the light reflection module includes a first mirror and a second mirror, and the light splitting module includes a first beam splitter and a second beam splitter; wherein, 所述第一反射镜和第二反射镜分别设置在所述预设运动台的X轴导轨和所述Y轴导轨上滑动,所述第一干涉仪与所述第一反射镜位置对应,所述第二干涉仪与所述第二反射镜位置对应;The first reflector and the second reflector are respectively arranged to slide on the X-axis guide rail and the Y-axis guide rail of the preset motion table, and the position of the first interferometer corresponds to the position of the first reflector, so The second interferometer corresponds to the position of the second mirror; 并且,所述激光发射模块发射的激光经所述第一分光镜分光后形成第一透射光和第一反射光;其中,所述第一透射光进入所述第一干涉仪后的出光经所述第二反射镜反射后形成所述第二测量信号的Y轴信号;所述第一反射光经所述第二分光镜后形成第二透射光和第二反射光,其中,所述第二透射光进入所述第二干涉仪后的出光经所述第第一反射镜反射后形成所述第二测量信号的X轴信号,所述第二反射光进入所述波长跟踪模块形成所述第一测量信号。In addition, the laser light emitted by the laser emitting module is split by the first beam splitter to form the first transmitted light and the first reflected light; wherein, after the first transmitted light enters the first interferometer, the emitted light passes through the first interferometer. The Y-axis signal of the second measurement signal is formed after being reflected by the second reflector; the first reflected light forms the second transmitted light and the second reflected light after passing through the second beam splitter, wherein the second After the transmitted light enters the second interferometer, the outgoing light is reflected by the first reflector to form the X-axis signal of the second measurement signal, and the second reflected light enters the wavelength tracking module to form the first A measurement signal. 6.如权利要求1至5中任意一项所述的激光干涉仪测距误差抑制系统,其特征在于,6. The laser interferometer ranging error suppression system according to any one of claims 1 to 5, characterized in that, 所述激光发射模块的参考信号接入所述相位卡的参考轴,所述第一测量信号接入所述相位卡的第一测量轴,所述第二测量信号接入所述相位卡的第二测量轴。The reference signal of the laser emitting module is connected to the reference axis of the phase card, the first measurement signal is connected to the first measurement axis of the phase card, and the second measurement signal is connected to the second axis of the phase card. Two measuring axes. 7.一种激光干涉仪测距误差抑制方法,其特征在于,利用如权利要求1至6中任意一项所述的激光干涉仪测距误差抑制系统进行干涉测距模块的误差抑制:包括:7. A laser interferometer ranging error suppression method is characterized in that, utilizing the laser interferometer ranging error suppression system according to any one of claims 1 to 6 to carry out the error suppression of the interference ranging module: comprising: 通过所述激光发射模块向所述分光模块发射激光,经所述分光模块分光后的反射光进入所述波长跟踪模块形成第一测量信号,经所述分光模块分光后的透射光通过所述干涉测距模块形成第二测量信号;The laser emitting module emits laser light to the spectroscopic module, the reflected light after splitting by the spectroscopic module enters the wavelength tracking module to form a first measurement signal, and the transmitted light after splitting by the spectroscopic module passes through the interference The ranging module forms a second measurement signal; 通过所述信号处理模块基于所述第一测量信号以及所述第二测量信号对所述干涉测距模块进行误差抑制。The signal processing module performs error suppression on the interference ranging module based on the first measurement signal and the second measurement signal. 8.如权利要求7所述的激光干涉仪测距误差抑制方法,其特征在于,8. laser interferometer ranging error suppression method as claimed in claim 7, is characterized in that, 所述第一测量信号和所述第二测量信号设置有n组,其中,n为整数,n≥10;并且,所述通过所述信号处理模块基于所述第一测量信号以及所述第二测量信号对所述干涉测距模块进行误差抑制包括:There are n groups of the first measurement signal and the second measurement signal, where n is an integer, and n≥10; and the passing through the signal processing module is based on the first measurement signal and the second measurement signal. The error suppression of the interference ranging module by the measurement signal includes: 通过所述信号处理模块,分别获取各组的第一测量信号的数据值c和第二测量信号的数据值d;Through the signal processing module, the data value c of the first measurement signal and the data value d of the second measurement signal of each group are obtained respectively; 将各组的数据值c与数据值d做线性拟合,以得到n个拟合系数A=[A1,A2,…,An];Linearly fit the data value c and data value d of each group to obtain n fitting coefficients A=[A1,A2,...,An]; 将预设的实际距离数据X=[x1,x2,…,xn]与A做线性拟合以得到拟合方程A=f(X);Linearly fitting the preset actual distance data X=[x1,x2,...,xn] to A to obtain the fitting equation A=f(X); 基于所述拟合方程A=f(X),得到所述干涉测距模块的测量距离优化数据值d1=d-f(X)c。Based on the fitting equation A=f(X), the measurement distance optimization data value d 1 =df(X)c of the interferometric ranging module is obtained. 9.如权利要求8所述的激光干涉仪测距误差抑制方法,其特征在于,9. laser interferometer ranging error suppression method as claimed in claim 8, is characterized in that, 所述第二测量信号的数据值d为所述干涉测距模块与发射模块相对静止时记录的测量数据,所述实际距离数据X为所述干涉测距模块与所述发射模块的实际距离;其中,The data value d of the second measurement signal is the measurement data recorded when the interference ranging module and the transmitting module are relatively stationary, and the actual distance data X is the actual distance between the interference ranging module and the transmitting module; in, 所述反射模块设置在预设运动台上,并且,通过调整所述反射模块在所述预设运动台上的位置得到n组测量距离数据值和n组实际距离数据值X=[x1,x2,…,xn]。The reflection module is set on the preset motion platform, and by adjusting the position of the reflection module on the preset motion platform, n sets of measured distance data values and n sets of actual distance data values X=[x1, x2 ,...,xn]. 10.如权利要求7所述的激光干涉仪测距误差抑制方法,其特征在于,10. laser interferometer ranging error suppression method as claimed in claim 7, is characterized in that, 所述第一测量信号和所述第二测量信号设置有n组,其中,n为整数,n≥10,所述第二测量信号包括X轴信号和的Y轴信号;并且,所述通过所述信号处理模块基于所述第一测量信号以及所述第二测量信号对所述干涉测距模块进行误差抑制包括:There are n sets of the first measurement signal and the second measurement signal, where n is an integer, n≥10, and the second measurement signal includes an X-axis signal and a Y-axis signal; The signal processing module performing error suppression on the interference ranging module based on the first measurement signal and the second measurement signal includes: 通过所述信号处理模块分别获取各组的第一测量信号的数据值c、X轴信号的X轴测量数据值dx和Y轴信号的Y轴测量数据值dy;The data value c of the first measurement signal of each group, the X-axis measurement data value dx of the X-axis signal, and the Y-axis measurement data value dy of the Y-axis signal are respectively obtained by the signal processing module; 将各组的X轴测量数据值dx和Y轴测量数据值dy分别与数据值c做线性拟合,以得到两路拟合系数Ax=[Ax1,Ax2,…,Axn],Ay=[Ay1,Ay2,…,Ayn];Linearly fit the X-axis measurement data value dx and Y-axis measurement data value dy of each group with the data value c to obtain the two-way fitting coefficient Ax=[Ax1,Ax2,...,Axn], Ay=[Ay1 ,Ay2,...,Ayn]; 将预设的实际距离数据X=[x1,x2,…,xn]与Ax做线性拟合以得到拟合方程Ax=f(X),并将预设的实际距离数据Y=[y1,y2,…,yn]与Ay做线性拟合以得到拟合方程Ay=f(Y);Linearly fit the preset actual distance data X=[x1,x2,...,xn] and Ax to obtain the fitting equation Ax=f(X), and make the preset actual distance data Y=[y1,y2 ,..., yn] do linear fitting with Ay to obtain fitting equation Ay=f(Y); 基于拟合方程Ax=f(X)以及拟合方程Ay=f(Y),得到所述干涉测距模块的X轴测量距离优化数据值dx1=dx-f(X)c以及Y轴测量距离优化数据值dy1=dy-f(Y)c。Based on the fitting equation Ax=f(X) and the fitting equation Ay=f(Y), obtain the X-axis measurement distance optimization data value dx1=dx-f(X)c and the Y-axis measurement distance of the interferometric ranging module Optimize data value dy1 = dy-f(Y)c.
CN202211003233.8A 2022-08-19 2022-08-19 Laser interferometer ranging error suppression system and method Pending CN115451828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211003233.8A CN115451828A (en) 2022-08-19 2022-08-19 Laser interferometer ranging error suppression system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211003233.8A CN115451828A (en) 2022-08-19 2022-08-19 Laser interferometer ranging error suppression system and method

Publications (1)

Publication Number Publication Date
CN115451828A true CN115451828A (en) 2022-12-09

Family

ID=84298860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211003233.8A Pending CN115451828A (en) 2022-08-19 2022-08-19 Laser interferometer ranging error suppression system and method

Country Status (1)

Country Link
CN (1) CN115451828A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116295096A (en) * 2023-02-10 2023-06-23 北京华卓精科科技股份有限公司 Device surface shape detection method, device and system

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765741A (en) * 1987-03-20 1988-08-23 Hewlett-Packard Company Wavelength tracking compensator for an interferometer
JPH07174510A (en) * 1993-12-17 1995-07-14 Nikon Corp Measuring device and measuring method
US20030025910A1 (en) * 2001-07-04 2003-02-06 Ulrich Kaczynski Interferometric measurement apparatus for wavelength calibration
CN102003935A (en) * 2010-11-03 2011-04-06 中国科学院光电技术研究所 A Method of Environmental Compensation in Laser Tracker Measurement
CN102564613A (en) * 2010-12-31 2012-07-11 上海微电子装备有限公司 Wavelength tracker
CN104160294A (en) * 2012-03-01 2014-11-19 莱卡地球系统公开股份有限公司 Method for determining a change in distance by means of interferometry
CN105043242A (en) * 2015-05-29 2015-11-11 北方民族大学 Contrast type anti-interference stepped plane reflector laser interferometer, calibration method and measurement method
CN105300275A (en) * 2015-11-27 2016-02-03 成都信息工程大学 A wavelength-corrected multi-beam step plane mirror laser interferometer and its measuring method
CN105352435A (en) * 2015-11-27 2016-02-24 成都信息工程大学 Laser wavelength correction type corner reflector laser interferometer and measuring method
CN105737733A (en) * 2016-02-04 2016-07-06 浙江理工大学 Air refractive index correction method in large-range absolute distance measurement
CN108732561A (en) * 2018-07-01 2018-11-02 北京工业大学 Laser traces measuring system air refraction compensation method based on dual wavelength interference
CN108917605A (en) * 2018-07-13 2018-11-30 北京工业大学 Laser traces system ZEMAX emulation mode based on double-wavelength method make-up air refractive index
CN110726366A (en) * 2019-10-28 2020-01-24 哈尔滨工业大学 Nonlinear error correction method for optical fiber Fabry-Perot interferometer
CN111351426A (en) * 2020-03-13 2020-06-30 大连理工大学 Semiconductor laser interferometer with real-time wavelength correction and stabilization functions
CN111670335A (en) * 2018-01-31 2020-09-15 Asml荷兰有限公司 Wavelength tracking system, method of calibrating wavelength tracking system, lithographic apparatus, method of determining absolute position of movable object, and interferometer system
CN113654457A (en) * 2021-07-22 2021-11-16 太原理工大学 Spectral confocal probe wavelength and displacement mapping relationship calibration device and fitting method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765741A (en) * 1987-03-20 1988-08-23 Hewlett-Packard Company Wavelength tracking compensator for an interferometer
JPH07174510A (en) * 1993-12-17 1995-07-14 Nikon Corp Measuring device and measuring method
US20030025910A1 (en) * 2001-07-04 2003-02-06 Ulrich Kaczynski Interferometric measurement apparatus for wavelength calibration
CN102003935A (en) * 2010-11-03 2011-04-06 中国科学院光电技术研究所 A Method of Environmental Compensation in Laser Tracker Measurement
CN102564613A (en) * 2010-12-31 2012-07-11 上海微电子装备有限公司 Wavelength tracker
CN104160294A (en) * 2012-03-01 2014-11-19 莱卡地球系统公开股份有限公司 Method for determining a change in distance by means of interferometry
CN105043242A (en) * 2015-05-29 2015-11-11 北方民族大学 Contrast type anti-interference stepped plane reflector laser interferometer, calibration method and measurement method
CN105352435A (en) * 2015-11-27 2016-02-24 成都信息工程大学 Laser wavelength correction type corner reflector laser interferometer and measuring method
CN105300275A (en) * 2015-11-27 2016-02-03 成都信息工程大学 A wavelength-corrected multi-beam step plane mirror laser interferometer and its measuring method
CN105737733A (en) * 2016-02-04 2016-07-06 浙江理工大学 Air refractive index correction method in large-range absolute distance measurement
CN111670335A (en) * 2018-01-31 2020-09-15 Asml荷兰有限公司 Wavelength tracking system, method of calibrating wavelength tracking system, lithographic apparatus, method of determining absolute position of movable object, and interferometer system
CN108732561A (en) * 2018-07-01 2018-11-02 北京工业大学 Laser traces measuring system air refraction compensation method based on dual wavelength interference
CN108917605A (en) * 2018-07-13 2018-11-30 北京工业大学 Laser traces system ZEMAX emulation mode based on double-wavelength method make-up air refractive index
CN110726366A (en) * 2019-10-28 2020-01-24 哈尔滨工业大学 Nonlinear error correction method for optical fiber Fabry-Perot interferometer
CN111351426A (en) * 2020-03-13 2020-06-30 大连理工大学 Semiconductor laser interferometer with real-time wavelength correction and stabilization functions
CN113654457A (en) * 2021-07-22 2021-11-16 太原理工大学 Spectral confocal probe wavelength and displacement mapping relationship calibration device and fitting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116295096A (en) * 2023-02-10 2023-06-23 北京华卓精科科技股份有限公司 Device surface shape detection method, device and system

Similar Documents

Publication Publication Date Title
CN104713473B (en) Laser mixes grating interferometer and its measuring method certainly
CN104007560B (en) Optical lens assistant resetting device
CN104154869B (en) White light interference lens center thickness measuring system and method
CN207180619U (en) Three-dimensional small angle error simultaneous measuring apparatus based on beam drift compensation
CN110715603A (en) System and method for simultaneously measuring five-degree-of-freedom errors of machine tool workbench
CN110455226B (en) Calibration system and method for laser collimation transceiving integrated straightness measurement
CN103309177A (en) Workpiece platform system of photoetching machine
CN116086361B (en) Straightness measuring device and error acquisition method for large stroke guide rail
CN107367224A (en) The inductance sensor calibration method and device of three optical axis laser interferometer measurements
CN107144217A (en) Fiber optic interferometric confocal system for optical element crudy on-line checking
CN102788562A (en) Subaperture splicing surface shape detection device with motion coordinate feedback
CN103673926A (en) Reflection cavity type confocal measuring method of super-large radius of curvature
Zhu et al. Roll angle measurement based on common path compensation principle
KR100814638B1 (en) Displacement measurement system using laser interferometer and error correction method
CN115451828A (en) Laser interferometer ranging error suppression system and method
CN113310434B (en) Method for measuring perpendicularity of two-dimensional linear motion platform
CN105509636B (en) Measuring method of laser interferometer adopting wavelength correction type multi-beam-angle step reflector
CN109798883B (en) High-precision two-dimensional translation table perpendicularity detection method and device
CN212806922U (en) Displacement measuring device, mask table measuring system and photoetching machine
Kuang et al. A novel method to enhance the sensitivity for two-degrees-of-freedom straightness measurement
CN108180844A (en) A kind of multiple degrees of freedom precise displacement monitoring system based on double-frequency laser interference principle
CN205619875U (en) A wavelength-corrected multi-beam stepped mirror laser interferometer
JP2014102192A (en) White color interference device, measuring method of position and displacement of the same
CN113091652B (en) A measuring system and method with roll angle self-correction function
CN109916315A (en) A measuring device based on split grating

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination