CN115449368B - 一种氮掺杂双发射荧光碳点及其制备方法和应用 - Google Patents

一种氮掺杂双发射荧光碳点及其制备方法和应用 Download PDF

Info

Publication number
CN115449368B
CN115449368B CN202211154500.1A CN202211154500A CN115449368B CN 115449368 B CN115449368 B CN 115449368B CN 202211154500 A CN202211154500 A CN 202211154500A CN 115449368 B CN115449368 B CN 115449368B
Authority
CN
China
Prior art keywords
nitrogen
fluorescent carbon
emission fluorescent
doped double
carbon dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211154500.1A
Other languages
English (en)
Other versions
CN115449368A (zh
Inventor
石利红
常丹
杨永兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN202211154500.1A priority Critical patent/CN115449368B/zh
Publication of CN115449368A publication Critical patent/CN115449368A/zh
Application granted granted Critical
Publication of CN115449368B publication Critical patent/CN115449368B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6447Fluorescence; Phosphorescence by visual observation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明提供一种氮掺杂双发射荧光碳点及其制备方法和应用,属于荧光纳米材料领域。碳点制备步骤:将中性红和柠檬酸溶于二次水中并装入水热反应釜中进行水热反应;得到的产物经离心、过滤除去不溶物,用透析袋透析除去杂质,冷冻干燥后得到氮掺杂双发射荧光碳点。本发明工艺简单,成本较低,制得的氮掺杂双发射荧光碳点可作为比率荧光和比率吸收双信号纳米探针用于水溶液中检测Hg2+,以及作为比率荧光探针用于活细胞中和斑马鱼中高选择性、高灵敏度地检测Hg2+。此外,制得的氮掺杂双发射荧光碳点还可制作成试纸用于检测Hg2+,更加方便、实用。本发明碳点稳定性高、毒副作用小、水溶性以及生物相容性好,在生物传感、体内体外成像等领域有广阔的应用前景。

Description

一种氮掺杂双发射荧光碳点及其制备方法和应用
技术领域
本发明涉及荧光纳米材料,具体涉及一种氮掺杂双发射荧光碳点及其制备方法和应用。
背景技术
碳点是一种新型的零维碳纳米材料,粒径小于10nm,自2004年被意外发现(X.Y.Xu,R.Ray,Y.L.Gu,et al.Electrophoretic analysis and purification offluorescent single-walled carbon nanotube fragments,J.Am.Chem.Soc.,2004,126,12736-12737)以来受到了广泛关注。作为一种新型荧光碳纳米材料,碳点不仅具有优良的光学性能、稳定的荧光性质和良好的生物相容性等特点,并且在化学与生物传感、生物成像、药物传递和光催化等方面具有独特的优势。
目前,碳点的合成方法主要有两种:自上而下法和自下而上法。自上而下法,通常是将大分子碳材料通过一定的物理、化学等方法破碎成小分子的碳点,主要包括电弧放电法、激光烧蚀法、电化学氧化法等。自下而上法,是以小分子的含碳材料为前驱体,通过不同的手段合成碳点,包括高温热解法、水热法、微波法、超声波法等。
目前,绝大多数碳点基荧光探针是基于单波长荧光强度的变化,很容易受到许多不可避免因素(如光源强度波动、仪器灵敏度、探针分布不均匀)的影响而使检测精度降低。碳点基比率荧光探针是通过测量探针材料两个不同波长处的荧光强度,以其比值作为信号参量来测定目标物,从而可以对环境干扰进行自校准,提高检测的准确度和灵敏度。因此,构建碳点基比率荧光探针在化学/生物传感领域具有重要的意义。
发明内容
本发明目的在于提供一种氮掺杂双发射荧光碳点及其制备方法,该方法原料简单、制备条件要求低,制得的氮掺杂双发射荧光碳点毒性小、荧光量子产率高、水溶性及生物相容性好,可将其作为比率荧光和比率吸收双信号纳米探针用于水溶液中检测Hg2+,并将其作为比率荧光纳米探针用于活细胞中和斑马鱼中检测Hg2+,以及制成试纸用于Hg2+检测。
为实现上述目的,本发明提供的技术方案为:
一种氮掺杂双发射荧光碳点的制备方法,包括如下步骤:
(1)按质量比1:2.5~10:1400~1600将中性红和柠檬酸加入二次水中,制得混合液;
(2)将步骤(1)得到的混合液转移到水热反应釜中,进行水热反应;
(3)将步骤(2)得到的产物离心、过滤除去不溶物,透析后,得到氮掺杂双发射荧光碳点溶液;
(4)将步骤(3)得到的氮掺杂双发射荧光碳点溶液冷冻干燥后得到目标氮掺杂双发射荧光碳点。
所述步骤(1)中中性红、柠檬酸和二次水的质量比为1:3~8:1450~1550。
所述步骤(2)中水热反应的温度为150~200℃,优选180℃,时间为2~4h,优选3h。
所述步骤(3)中的透析是用截留分子量为500~1000Da的透析袋透析12~20h。
本发明方法制备的氮掺杂双发射荧光碳点可作为比率荧光探针用于水溶液中、活细胞中和斑马鱼中检测Hg2+,以及制成试纸用于Hg2+检测。
与现有技术相比,本发明的有益效果:
(1)本发明以来源广泛的中性红和柠檬酸为反应物,用一步水热法合成氮掺杂双发射荧光碳点,制备方法绿色环保、便捷、操作简便,无需额外的修饰和钝化。
(2)本发明所制得的氮掺杂双发射荧光碳点具有良好的光学性能,可作为比率探针用于荧光法和紫外法光学双模式检测水溶液中的Hg2+,消除了由外界不稳定因素引起的误差,使其检测精确度大大提高。
(3)本发明所制得的氮掺杂双发射荧光碳点染色的纸基传感器,可用于现场实时地半定量分析Hg2+
(4)本发明所制得的氮掺杂双发射荧光碳点因其稳定性高、毒副作用小、水溶性以及生物相容性好,在生物传感、体内成像和体外成像等领域有广阔的应用前景。
附图说明
图1为实施例1制备的氮掺杂双发射荧光碳点的透射电镜图和尺寸分布图
图2为实施例1制备的氮掺杂双发射荧光碳点的红外光谱图
图3为实施例1制备的氮掺杂双发射荧光碳点的X射线光电子能谱图
图4为实施例1制备的氮掺杂双发射荧光碳点的紫外吸收光谱图
图5为实施例1制备的氮掺杂双发射荧光碳点在不同激发波长下的荧光发射光谱图
图6为实施例1制备的氮掺杂双发射荧光碳点溶液随Hg2+浓度变化的荧光发射光谱图
图7为实施例1制备的氮掺杂双发射荧光碳点溶液随Hg2+浓度变化的紫外吸收光谱图
图8为实施例1制备的氮掺杂双发射荧光碳点标记的HeLa细胞的激光共聚焦图
图9为实施例1制备的氮掺杂双发射荧光碳点标记的斑马鱼的激光共聚焦图
图10为实施例1制备的氮掺杂双发射荧光碳点浸染的滤纸纸基传感图
具体实施方式
以下实施例进一步阐述本发明的内容,但本发明并不局限于这些实施例。
实施例1
氮掺杂双发射荧光碳点的制备:
(1)将0.02g中性红和0.1g柠檬酸分散到30mL二次水中,制得混合液;
(2)将(1)得到的混合液置于水热釜中,在180℃下水热反应3h;
(3)将(2)得到的产物用离心机以3000r/min转速离心20min除去不溶物,再用截留分子量为500~1000Da的透析袋透析18h除去杂质,得到氮掺杂双发射荧光碳点溶液;
(4)将(3)得到的氮掺杂双发射荧光碳点溶液冷冻干燥,得到氮掺杂双发射荧光碳点。
制备的氮掺杂双发射荧光碳点的透射电镜图和尺寸分布图见图1。
制备的氮掺杂双发射荧光碳点的红外光谱图见图2。
制备的氮掺杂双发射荧光碳点的X射线光电子能谱图见图3。
制备的氮掺杂双发射荧光碳点的紫外吸收光谱见图4。
制备的氮掺杂双发射荧光碳点在不同激发波长下的荧光发射光谱图见图5,其中1~6分别是激发波长为340nm、350nm、360nm、370nm、380nm和390nm激发下的荧光光谱图。
实施例2
氮掺杂双发射荧光碳点的制备:
(1)将0.02g中性红和0.1g柠檬酸分散到30mL二次水中,制得混合液;
(2)将(1)得到的混合液置于水热釜中,在160℃下水热反应4h;
(3)将(2)得到的产物用离心机以3000r/min转速离心20min除去不溶物,再用截留分子量为500~1000Da的透析袋透析18h除去杂质,得到氮掺杂双发射荧光碳点溶液;
(4)将(3)得到的氮掺杂双发射荧光碳点溶液冷冻干燥,得到氮掺杂双发射荧光碳点。
实施例3
氮掺杂双发射荧光碳点的制备:
(1)将0.02g中性红和0.1g柠檬酸分散到30mL二次水中,制得混合液;
(2)将(1)得到的混合液置于水热釜中,在170℃下水热反应4h;
(3)将(2)得到的产物用离心机以3000r/min转速离心20min除去不溶物,再用截留分子量为500~1000Da的透析袋透析18h除去杂质,得到氮掺杂双发射荧光碳点溶液;
(4)将(3)得到的氮掺杂双发射荧光碳点溶液冷冻干燥,得到氮掺杂双发射荧光碳点。
实施例4
氮掺杂双发射荧光碳点的制备:
(1)将0.02g中性红和0.15g柠檬酸分散到30mL二次水中,制得混合液;
(2)将(1)得到的混合液置于水热釜中,在180℃下水热反应4h;
(3)将(2)得到的产物用离心机以3000r/min转速离心20min除去不溶物,再用截留分子量为500~1000Da的透析袋透析15h除去杂质,得到氮掺杂双发射荧光碳点溶液;
(4)将(3)得到的氮掺杂双发射荧光碳点溶液冷冻干燥,得到氮掺杂双发射荧光碳点。
实施例5
氮掺杂双发射荧光碳点的制备:
(1)将0.02g中性红和0.15g柠檬酸分散到30mL二次水中,制得混合液;
(2)将(1)得到的混合液置于水热釜中,在190℃下水热反应4h;
(3)将(2)得到的产物用离心机以3000r/min转速离心20min除去不溶物,再用截留分子量为500~1000Da的透析袋透析15h除去杂质,得到氮掺杂双发射荧光碳点溶液;
(4)将(3)得到的氮掺杂双发射荧光碳点溶液冷冻干燥,得到氮掺杂双发射荧光碳点。
实施例6
氮掺杂双发射荧光碳点的制备:
(1)将0.02g中性红和0.15g柠檬酸分散到30mL二次水中,制得混合液;
(2)将(1)得到的混合液置于水热釜中,在200℃下水热反应3h;
(3)将(2)得到的产物用离心机以3000r/min转速离心20min除去不溶物,再用截留分子量为500~1000Da的透析袋透析15h除去杂质,得到氮掺杂双发射荧光碳点溶液;
(4)将(3)得到的氮掺杂双发射荧光碳点溶液冷冻干燥,得到氮掺杂双发射荧光碳点。
实施例7
实施例1制备的氮掺杂双发射荧光碳点作为Hg2+探针的灵敏度实验:
用pH=7.0的PBS缓冲液和HgCl2分别配制Hg2+浓度为10μmol·L-1、20μmol·L-1、30μmol·L-1、40μmol·L-1、50μmol·L-1、60μmol·L-1、70μmol·L-1、80μmol·L-1、90μmol·L-1、100μmol·L-1、110μmol·L-1、120μmol·L-1、130μmol·L-1、140μmol·L-1和150μmol·L-1的溶液,分别将实施例1制备的氮掺杂双发射荧光碳点溶解到上述含不同浓度Hg2+的溶液中,固定激发波长为360nm,在室温下进行荧光光谱检测,计算620nm处的强度与410nm处的强度比值(I410/I620),从而对Hg2+进行检测。
氮掺杂双发射荧光碳点溶液随Hg2+浓度变化的荧光发射光谱图见图6,其中1~16分别是Hg2+浓度为0μmol·L-1、10μmol·L-1、20μmol·L-1、30μmol·L-1、40μmol·L-1、50μmol·L-1、60μmol·L-1、70μmol·L-1、80μmol·L-1、90μmol·L-1、100μmol·L-1、110μmol·L-1、120μmol·L-1、130μmol·L-1、140μmol·L-1和150μmol·L-1的氮掺杂双发射荧光碳点溶液的荧光发射光谱图;从图中可以看出随着Hg2+浓度的增加,在620nm处的荧光强度逐渐降低,而在410nm处荧光强度逐渐增加。
实施例8
实施例1制备的氮掺杂双发射荧光碳点对Hg2+的紫外-可见滴定实验:
用pH=7.0的PBS缓冲液和HgCl2分别配制Hg2+浓度为20μmol·L-1、40μmol·L-1、60μmol·L-1、80μmol·L-1、100μmol·L-1、120μmol·L-1和140μmol·L-1的溶液,分别将实施例1制备的氮掺杂双发射荧光碳点溶解到上述含不同浓度Hg2+的溶液中,在20℃下进行紫外-可见光谱检测。
氮掺杂双发射荧光碳点溶液随Hg2+浓度变化的紫外-可见吸收光谱图见图7,其中1~8分别是Hg2+浓度为20μmol·L-1、40μmol·L-1、60μmol·L-1、80μmol·L-1、100μmol·L-1、120μmol·L-1和140μmol·L-1的氮掺杂双发射荧光碳点溶液的紫外-可见吸收光谱图;从图中可以看出随着Hg2+浓度的增加,在328nm处的吸收峰逐渐增加,而在528nm处的吸收峰逐渐降低。
实施例9
实施例1制备的氮掺杂双发射荧光碳点在细胞成像半定量检测Hg2+方面的应用实验:
实施例1制备的氮掺杂双发射荧光碳点用于标记HeLa细胞,见图8。激发波长为405nm,发射波长设置为400nm~450nm(通道1)和580nm~760nm(通道2)。图8显示了氮掺杂双发射荧光碳点标记的细胞图,400nm~450nm处呈现蓝色荧光,580nm~760nm处呈现红色荧光。保持所有上述设置不变的情况下,在加入Hg2+后,随着时间的增加(20分钟),400nm~450nm处的蓝色荧光逐渐增强,而580nm~760nm处的红色荧光明显变弱(如图8)。
实施例10
实施例1制备的氮掺杂双发射荧光碳点在斑马鱼成像半定量检测Hg2+方面的应用实验:
实施例1制备的氮掺杂双发射荧光碳点用于标记斑马鱼,见图9。激发波长为405nm,发射波长设置为400nm~450nm(通道1)和580nm~760nm(通道2)。图9A显示了氮掺杂双发射荧光碳点标记的斑马鱼图,400nm~450nm处呈现蓝色荧光,580nm~760nm处呈现红色荧光。保持所有上述设置不变的情况下,在加入Hg2+后,400nm~450nm处的蓝色荧光逐渐增强,而580nm~760nm处的红色荧光明显变弱(如图9B)。
实施例11
实施例1制备的氮掺杂双发射荧光碳点在Hg2+纸基传感方面的应用实验:
实施例1制备的氮掺杂双发射荧光碳点用于纸基传感检测Hg2+。将制备的碳点溶液充分浸透滤纸,干燥,压平,得到含有氮掺杂双发射荧光碳点的试纸。将不同浓度(25μmol·L-1、50μmol·L-1、75μmol·L-1、100μmol·L-1、125μmol·L-1)的Hg2+溶液均匀喷洒在含有氮掺杂双发射荧光碳点的试纸上,在紫外灯下观察并记录纸基条荧光颜色的改变。图10显示了在紫外灯下,含有氮掺杂双发射荧光碳点的试纸随着Hg2+浓度的增加由粉红色逐渐变为紫色。

Claims (5)

1.一种氮掺杂双发射荧光碳点的应用,是在水溶液中比率荧光检测Hg2+的应用,所述的氮掺杂双发射荧光碳点通过包括如下步骤的方法制备得到:
(1)将0.02 g中性红和0.1 g柠檬酸分散到30 mL二次水中,制得混合液;
(2)将(1)得到的混合液置于水热釜中,在180℃下水热反应3 h;
(3)将(2)得到的产物用离心机以3000 r/min转速离心20 min除去不溶物,再用截留分子量为500~1000 Da的透析袋透析18 h除去杂质,得到氮掺杂双发射荧光碳点溶液;
(4)将(3)得到的氮掺杂双发射荧光碳点溶液冷冻干燥,得到氮掺杂双发射荧光碳点。
2.如权利要求1所述的氮掺杂双发射荧光碳点的应用,是在制备活细胞中检测Hg2+的试剂中的应用。
3.如权利要求1所述的氮掺杂双发射荧光碳点的应用,是在制备斑马鱼中检测Hg2+的试剂中的应用。
4.一种氮掺杂双发射荧光碳点的应用,是在水溶液中比率吸收检测Hg2+的应用,所述的氮掺杂双发射荧光碳点通过包括如下步骤的方法制备得到:
(1)将0.02 g中性红和0.1 g柠檬酸分散到30 mL二次水中,制得混合液;
(2)将(1)得到的混合液置于水热釜中,在180℃下水热反应3 h;
(3)将(2)得到的产物用离心机以3000 r/min转速离心20 min除去不溶物,再用截留分子量为500~1000 Da的透析袋透析18 h除去杂质,得到氮掺杂双发射荧光碳点溶液;
(4)将(3)得到的氮掺杂双发射荧光碳点溶液冷冻干燥,得到氮掺杂双发射荧光碳点。
5.一种氮掺杂双发射荧光碳点制备成的试纸在检测Hg2+的应用,所述的氮掺杂双发射荧光碳点通过包括如下步骤的方法制备得到:
(1)将0.02 g中性红和0.1 g柠檬酸分散到30 mL二次水中,制得混合液;
(2)将(1)得到的混合液置于水热釜中,在180℃下水热反应3 h;
(3)将(2)得到的产物用离心机以3000 r/min转速离心20 min除去不溶物,再用截留分子量为500~1000 Da的透析袋透析18 h除去杂质,得到氮掺杂双发射荧光碳点溶液;
(4)将(3)得到的氮掺杂双发射荧光碳点溶液冷冻干燥,得到氮掺杂双发射荧光碳点。
CN202211154500.1A 2022-09-22 2022-09-22 一种氮掺杂双发射荧光碳点及其制备方法和应用 Active CN115449368B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211154500.1A CN115449368B (zh) 2022-09-22 2022-09-22 一种氮掺杂双发射荧光碳点及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211154500.1A CN115449368B (zh) 2022-09-22 2022-09-22 一种氮掺杂双发射荧光碳点及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115449368A CN115449368A (zh) 2022-12-09
CN115449368B true CN115449368B (zh) 2023-07-18

Family

ID=84307526

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211154500.1A Active CN115449368B (zh) 2022-09-22 2022-09-22 一种氮掺杂双发射荧光碳点及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115449368B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116814256A (zh) * 2023-06-28 2023-09-29 江南大学 一种双发射碳点荧光探针及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113980678A (zh) * 2021-11-24 2022-01-28 华中农业大学 一种绿光激发的碳量子点及其在提高植物光合作用中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Lysosome-targeted red-fluorescent carbon dots for turn-on detection of permanganate and pH in vivo and in vitro;Dan Chang et al.;《Sensors and Actuators B: Chemical》;第349卷;第1-12页 *
Smilax China-derived yellow-fluorescent carbon dots for temperature sensing, Cu2+ detection and cell imaging;Chang, Dan et al.;《Analyst 》;第145卷;第2176-2183页 *
氮、磷共掺杂碳点在Fe3+检测和细胞多色成像中的应用;李晓峰等;《山西大学学报(自然科学版)》;第43卷;第581-589页 *
碳量子点/聚中性红修饰电极同时检测鸟嘌呤和腺嘌呤;张克营等;《分析实验室》;第31卷;第1160-1164页 *

Also Published As

Publication number Publication date
CN115449368A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
CN104591130B (zh) 一种荧光碳量子点及其制备方法和应用
Niu et al. Controllable electrochemical/electroanalytical approach to generate nitrogen-doped carbon quantum dots from varied amino acids: pinpointing the utmost quantum yield and the versatile photoluminescent and electrochemiluminescent applications
CN110272734B (zh) 一种用于no检测的高量子产率碳量子点制备方法及其应用
Wang et al. Optical, electrochemical and catalytic methods for in-vitro diagnosis using carbonaceous nanoparticles: a review
CN110562954B (zh) 一种荧光碳点探针的制备方法及在检测Fe2+的应用
CN110938430A (zh) 一种硅、氮共掺杂碳量子点及其制备方法和应用
Long et al. Low-temperature rapid synthesis of high-stable carbon dots and its application in biochemical sensing
Zheng et al. An enzyme-free fluorescent sensing platform for the detection of uric acid in human urine
Ensafi et al. An optical sensor with specific binding sites for the detection of thioridazine hydrochloride based on ZnO-QDs coated with molecularly imprinted polymer
CN115449368B (zh) 一种氮掺杂双发射荧光碳点及其制备方法和应用
Cao et al. Photoelectrochemical determination of malathion by using CuO modified with a metal-organic framework of type Cu-BTC
CN110358535B (zh) 基于内滤效应检测硫化氢及活细胞内硫化氢成像的荧光碳点纳米探针及其使用方法
Wang et al. A dual-emission fluorescence sensor constructed by encapsulating double carbon dots in zeolite imidazole frameworks for sensing Pb2+
CN108195816A (zh) 以间苯三酚为碳源微波快速合成碳点检测溶液pH的方法
Zhu et al. One-pot hydrothermal synthesis of fluorescent carbon quantum dots with tunable emission color for application in electroluminescence detection of dopamine
CN109852383B (zh) 基于富勒烯的快速高效响应谷胱甘肽的荧光探针及其制备方法和应用
CN112094641B (zh) 一种三发射荧光碳点及其制备方法和应用
Li et al. Photothermal sensor based on water-soluble CsPbBr3@ sulfobutylether-β-cyclodextrins nanocomposite using a thermometer as readout
Long et al. Synthesis of multiple-color emitting carbon dots by co-doping of sulfur and nitrogen
Liu et al. Carbon dots-based dopamine sensors: Recent advances and challenges
CN113861973B (zh) 一种氮磷共掺杂比率荧光碳点及其制备方法和应用
Hou et al. Preparation of temperature-responsive nanomicelles with AIE property as fluorescence probe for detection of Fe3+ and Fe2+
CN114656959A (zh) 一种硫掺杂双发射荧光碳点及其制备方法和应用
JP5382690B2 (ja) ナノスケールpHセンサー
Diyuk et al. Luminescent carbon nanoparticles immobilized in polymer hydrogels for pH sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant