CN113861973B - 一种氮磷共掺杂比率荧光碳点及其制备方法和应用 - Google Patents

一种氮磷共掺杂比率荧光碳点及其制备方法和应用 Download PDF

Info

Publication number
CN113861973B
CN113861973B CN202111269240.8A CN202111269240A CN113861973B CN 113861973 B CN113861973 B CN 113861973B CN 202111269240 A CN202111269240 A CN 202111269240A CN 113861973 B CN113861973 B CN 113861973B
Authority
CN
China
Prior art keywords
phosphorus
nitrogen
fluorescent carbon
ratio fluorescent
carbon dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111269240.8A
Other languages
English (en)
Other versions
CN113861973A (zh
Inventor
石利红
冯建烊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN202111269240.8A priority Critical patent/CN113861973B/zh
Publication of CN113861973A publication Critical patent/CN113861973A/zh
Application granted granted Critical
Publication of CN113861973B publication Critical patent/CN113861973B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种氮磷共掺杂比率荧光碳点及其制备方法和应用。碳点制备步骤:将1,8‑二氨基萘、磷酸、甲酰胺与二次水一并装入水热反应釜中进行水热反应;得到的产物经离心、过滤除去不溶物,用透析袋透析除去杂质,冷冻干燥得到氮磷共掺杂比率荧光碳点。本发明制备方法简单,成本较低,制得的氮磷共掺杂比率荧光碳点可作为比率荧光传感器用于水溶液中、活细胞中和斑马鱼中高选择性、高灵敏度地连续检测Mn(Ⅶ)和GSH。此外,制得的氮磷共掺杂比率荧光碳点还可制作成试纸用于检测Mn(Ⅶ)和GSH。

Description

一种氮磷共掺杂比率荧光碳点及其制备方法和应用
技术领域
本发明涉及荧光纳米材料的制备及应用,具体涉及一种氮磷共掺杂比率荧光碳点及其制备方法和应用。
背景技术
碳点是一种粒径小于10nm,以碳为骨架结构的新型零维碳纳米材料。2004年,Xu等在研究碳纳米管时偶然发现碳点(X.Y.Xu,R.Ray,Y.L.Gu,et al.Electrophoreticanalysis and purification of fluorescent single-walled carbon nanotubefragments,J.Am.Chem.Soc.,2004,126,12736-12737.)。作为新型的荧光材料,相比其他荧光材料,碳点具有制备简单、稳定性好、抗光漂白性好、水溶性高、生物相容性好、低毒性等优点,被广泛应用于荧光传感领域。
目前,碳点的合成方法主要有两种:自上而下法和自下而上法。自上而下法是将大块的含碳材料分割获得小粒径碳点,主要包括电弧放电法、激光烧蚀法、电化学氧化法等。自下而上法是以小分子的含碳材料为前驱体,通过高温热解法、水热法、微波法、超声波法等合成碳点。
目前所合成的碳点基的荧光传感器总是基于单波长荧光强度的变化(增强或减弱)。然而,基于单波长荧光强度变化的传感器通常会受到一些不可避免的因素的影响,例如背景信号、外界干扰、碳点浓度、仪器效率等,这大大妨碍了检测物的精确测定。对于荧光传感器在生物系统中的应用而言,基于单波长荧光强度变化的传感器也会受到生物自体荧光(一般为短波长)的干扰。相对而言,比率荧光传感是基于检测两个分辨良好的发射峰的荧光强度比值的检测方法,在一定程度上解决了基于单波长荧光强度变化传感器所存在的问题。目前,关于比率荧光的碳点传感器已有报道。文献(F.F.Du,Z.Cheng,G.H.Wang,etal.Carbon Nanodots as a Multifunctional Fluorescent Sensing Platform forRatiometric Determination of Vitamin B2 and“Turn-Off”Detection of pH,J.Agric.Food Chem.2021,69,2836-2844.)以康乃馨花瓣和聚乙烯亚胺制备的碳点用于比率检测维生素B2。文献(Z.H.Guo,Y.Jiao,F.F.Du,et al.Facile synthesis ofratiometric fluorescent carbon dots for pH visual sensing and cellularimaging,J.Talanta.2020,216,120943)使用氮硫共掺杂碳点比率检测pH;文献(H.L.Zhang,F.Gao,Y.Jiao,et al.Highly sensitive carbon dots fluorescent probewith ratiometric emission for the determination of ClO-.Analyst,2020,145,2212-2218)以酸性品红和柠檬酸制备的碳点比率检测次氯酸。然而,据我们所了解,用于检测Mn(Ⅶ)的比率荧光碳点传感器未见报道。因此,寻找检测Mn(Ⅶ)的比率荧光碳点并扩展其应用的研究具有重要的意义。
发明内容
本发明目的在于提供一种氮磷共掺杂比率荧光碳点及其制备方法,该方法原料方便易得、制备条件要求低,制得的氮磷共掺杂比率荧光碳点稳定性高、水溶性好、毒性小、生物相容性好,可作为比率荧光传感器用于水溶液中、活细胞中和斑马鱼中检测Mn(Ⅶ)和GSH,以及制成试纸用于Mn(Ⅶ)和GSH检测。
为实现上述目的,本发明提供的技术方案为:
一种氮磷共掺杂比率荧光碳点的制备方法,包括如下步骤:
(1)按质量比1:2.5~10:5~25:100~200将1,8-二氨基萘、磷酸和甲酰胺分散到二次水中,制得混合液;
(2)将步骤(1)得到的混合液置于水热釜中,进行水热反应,水热反应温度为180~220℃,时间为1~9h;
(3)将步骤(2)得到的产物离心、过滤除去不溶物,用截留分子量为500~1000Da的透析袋透析12~24h除去杂质,得到氮磷共掺杂比率荧光碳点溶液;
(4)将步骤(3)得到的氮磷共掺杂比率荧光碳点溶液冷冻干燥,得到目标氮磷共掺杂比率荧光碳点。
所述步骤(1)中1,8-二氨基萘、磷酸、甲酰胺和二次水的质量比为1:4~10:5~20:100~200。
所述步骤(2)中水热反应的温度为180~200℃,时间为1~6h。
本发明方法制备的氮磷共掺杂比率荧光碳点可作为比率荧光传感器用于水溶液中、活细胞中和斑马鱼中检测Mn(Ⅶ)和GSH,以及制成试纸用于Mn(Ⅶ)和GSH检测。
与现有技术相比,本发明的优点在于:
(1)本发明所制得的氮磷共掺杂比率荧光碳点具有良好的发光性能,可作为比率荧光传感器检测Mn(Ⅶ)和GSH,消除了由外界不稳定因素引起的仪器的系统误差和背景误差,使其检测精确度大大提高。相比我们查询到的最灵敏的碳点基的检测方法,灵敏度提高了七倍(见表1)。
(2)本发明所制得的氮磷共掺杂比率荧光碳点因其稳定性高、毒副作用小、水溶性以及生物相容性好,在生物传感、细胞成像和纸基传感等领域有广阔的应用前景。
附图说明
图1为实施例1制备的氮磷共掺杂比率荧光碳点的透射电镜图和尺寸分布图
图2为实施例1制备的氮磷共掺杂比率荧光碳点的红外光谱图
图3为实施例1制备的氮磷共掺杂比率荧光碳点的X射线光电子能谱图
图4为实施例1制备的氮磷共掺杂比率荧光碳点的紫外吸收光谱图
图5为实施例1制备的氮磷共掺杂比率荧光碳点在不同激发波长下的荧光发射光谱图
图6为实施例1制备的氮磷共掺杂比率荧光碳点溶液随Mn(Ⅶ)浓度变化的荧光发射光谱图
图7为实施例1制备的氮磷共掺杂比率荧光碳点与Mn(Ⅶ)的混合液随GSH浓度变化的荧光发射光谱图
图8为实施例1制备的氮磷共掺杂比率荧光碳点溶液、氮磷共掺杂比率荧光碳点与Mn(Ⅶ)的混合液和氮磷共掺杂比率荧光碳点与Mn(Ⅶ)及GSH的混合液(依次为左、中、右)在340nm激发下的荧光图片
图9为实施例1制备的氮磷共掺杂比率荧光碳点标记的HeLa细胞的激光共聚焦图
图10为实施例1制备的氮磷共掺杂比率荧光碳点标记的斑马鱼的激光共聚焦图
图11为实施例1制备的氮磷共掺杂比率荧光碳点浸染的滤纸纸基传感图
具体实施方式
以下实施例进一步阐述本发明的内容,但本发明并不局限于这些实施例。
实施例1
氮磷共掺杂比率荧光碳点的制备:
(1)将0.2g 1,8-二氨基萘、1mL磷酸和3mL甲酰胺分散到20mL二次水中,制得混合液;
(2)将(1)得到的混合液置于水热釜中,在200℃下水热反应5h;
(3)将(2)得到的产物用离心机以3000r/min转速离心20min除去不溶物得到澄清的黄色溶液,用截留分子量为500~1000Da的透析袋透析18h,除去杂质,得到氮磷共掺杂比率荧光碳点溶液;
(4)将(3)得到的氮磷共掺杂比率荧光碳点溶液冷冻干燥,得到氮磷共掺杂比率荧光碳点。
制备的氮磷共掺杂比率荧光碳点的透射电镜图和尺寸分布图见图1。
制备的氮磷共掺杂比率荧光碳点的红外光谱图见图2。
制备的氮磷共掺杂比率荧光碳点的X射线光电子能谱图见图3。
制备的氮磷共掺杂比率荧光碳点的紫外吸收光谱见图4。
制备的氮磷共掺杂比率荧光碳点在不同激发波长下的荧光发射光谱图见图5,其中1~6分别是激发波长为300nm、310nm、320nm、330nm、340nm和350nm激发下的荧光光谱。
实施例2
氮磷共掺杂比率荧光碳点的制备:
(1)将0.2g 1,8二氨基萘、1mL磷酸和3mL甲酰胺分散到20mL二次水中,制得混合液;
(2)将(1)得到的混合液置于水热釜中,在180℃下水热反应5h;
(3)将(2)得到的产物用离心机以3000r/min转速离心20min除去不溶物得到澄清的黄色溶液,用截留分子量为500~1000Da的透析袋透析18h,除去杂质,得到氮磷共掺杂比率荧光碳点溶液;
(4)将(3)得到的氮磷共掺杂比率荧光碳点溶液冷冻干燥,得到氮磷共掺杂比率荧光碳点。
实施例3
氮磷共掺杂比率荧光碳点的制备:
(1)将0.2g 1,8-二氨基萘、1mL磷酸和3mL甲酰胺分散到20mL二次水中,制得混合液;
(2)将(1)得到的混合液置于水热釜中,在200℃下水热反应3h;
(3)将(2)得到的产物用离心机以3000r/min转速离心20min除去不溶物得到澄清的黄色溶液,用截留分子量为500~1000Da的透析袋透析24h,除去杂质,得到氮磷共掺杂比率荧光碳点溶液;
(4)将(3)得到的氮磷共掺杂比率荧光碳点溶液冷冻干燥,得到氮磷共掺杂比率荧光碳点。
实施例4
氮磷共掺杂比率荧光碳点的制备:
(1)将0.2g 1,8-二氨基萘、2mL磷酸和3mL甲酰胺分散到20mL二次水中,制得混合液;
(2)将(1)得到的混合液置于水热釜中,在200℃下水热反应5h;
(3)将(2)得到的产物用离心机以3000r/min转速离心20min除去不溶物得到澄清的黄色溶液,用截留分子量为500~1000Da的透析袋透析18h,除去杂质,得到氮磷共掺杂比率荧光碳点溶液;
(4)将(3)得到的氮磷共掺杂比率荧光碳点溶液冷冻干燥,得到氮磷共掺杂比率荧光碳点。
实施例5
氮磷共掺杂比率荧光碳点的制备:
(1)将0.2g 1,8-二氨基萘、1mL磷酸和3mL甲酰胺分散到20mL二次水中,制得混合液;
(2)将(1)得到的混合液置于水热釜中,在180℃下水热反应6h;
(3)将(2)得到的产物用离心机以3000r/min转速离心20min除去不溶物得到澄清的黄色溶液,用截留分子量为500~1000Da的透析袋透析18h,除去杂质,得到氮磷共掺杂比率荧光碳点溶液;
(4)将(3)得到的氮磷共掺杂比率荧光碳点溶液冷冻干燥,得到氮磷共掺杂比率荧光碳点。
实施例6
氮磷共掺杂比率荧光碳点的制备:
(1)将0.2g 1,-8二氨基萘、1mL磷酸和5mL甲酰胺分散到20mL二次水中,制得混合液;
(2)将(1)得到的混合液置于水热釜中,在200℃下水热反应5h;
(3)将(2)得到的产物用离心机以3000r/min转速离心20min除去不溶物得到澄清的黄色溶液,用截留分子量为500~1000Da的透析袋透析12h,除去杂质,得到氮磷共掺杂比率荧光碳点溶液;
(4)将(3)得到的氮磷共掺杂比率荧光碳点溶液冷冻干燥,得到氮磷共掺杂比率荧光碳点。
实施例7
实施例1制备的氮磷共掺杂比率荧光碳点作为Mn(Ⅶ)传感器的灵敏度实验:
用pH=7.0的PBS缓冲液和KMnO4分别配制Mn(Ⅶ)浓度为2μmol·L-1、4μmol·L-1、8μmol·L-1、12μmol·L-1、16μmol·L-1、20μmol·L-1、24μmol·L-1、28μmol·L-1、32μmol·L-1、36μmol·L-1、38μmol·L-1和40μmol·L-1的溶液,分别将0.02g实施例1制备的氮磷共掺杂比率荧光碳点溶解到1mL上述含不同浓度Mn(Ⅶ)的溶液中,固定激发波长为340nm,在室温下进行荧光光谱检测,计算600nm处的强度与445nm处的强度比值(I600/I445),从而对Mn(Ⅶ)进行检测。
氮磷共掺杂比率荧光碳点溶液随Mn(Ⅶ)浓度变化的荧光发射光谱图见图6,其中1~13分别是Mn(Ⅶ)浓度为0μmol·L-1、2μmol·L-1、4μmol·L-1、8μmol·L-1、12μmol·L-1、16μmol·L-1、20μmol·L-1、24μmol·L-1、28μmol·L-1、32μmol·L-1、36μmol·L-1、38μmol·L-1和40μmol·L-1的氮磷共掺杂比率荧光碳点溶液的荧光发射光谱图;从图中可以看出随着Mn(Ⅶ)浓度的增加,在445nm处的荧光强度逐渐降低,而在600nm处出现新峰并且荧光强度逐渐增加。
实施例8
实施例1制备的氮磷共掺杂比率荧光碳点与Mn(Ⅶ)的混合液(碳点浓度20g·L-1,Mn(Ⅶ)浓度为40μmol·L-1)用于GSH传感器的灵敏度实验:
将不同质量的GSH加入到溶有氮磷共掺杂比率荧光碳点与Mn(Ⅶ)的混合液中,使GSH浓度分别为2μmol·L-1、4μmol·L-1、8μmol·L-1、12μmol·L-1、16μmol·L-1、20μmol·L-1、24μmol·L-1、26μmol·L-1和28μmol·L-1,固定激发波长为340nm,在室温下进行荧光光谱检测。
氮磷共掺杂比率荧光碳点与Mn(Ⅶ)的混合液随GSH浓度变化的荧光发射光谱图见图7,其中1~10分别是GSH浓度为0μmol·L-1、2μmol·L-1、4μmol·L-1、8μmol·L-1、12μmol·L-1、16μmol·L-1、20μmol·L-1、24μmol·L-1、26μmol·L-1和28μmol·L-1时氮磷共掺杂比率荧光碳点与Mn(Ⅶ)的混合液的荧光发射光谱图;从图中可以看出随着GSH浓度的增加,在445nm处的荧光强度变化不大,而在600nm处的荧光强度逐渐降低。
实施例9
如图8,将实施例1制备的氮磷共掺杂比率荧光碳点溶液置于比色皿中,在340nm激发下,氮磷共掺杂比率荧光碳点溶液为蓝色荧光(左),加入Mn(Ⅶ)(浓度为40μmol·L-1)后变为橙色荧光(中),再加入GSH(浓度为28μmol·L-1)后,又恢复为蓝色荧光(右)。
实施例10
实施例1制备的氮磷共掺杂比率荧光碳点在细胞成像方面的应用实验:
实施例1制备的氮磷共掺杂比率荧光碳点用于标记HeLa细胞,见图9。激发波长为405nm,发射波长设置为400nm~550nm(通道1)和550nm~700nm(通道2)。图9A显示了氮磷共掺杂比率荧光碳点标记的细胞图,400nm~550nm处呈现亮蓝色荧光,550nm~760nm处呈现暗橙色荧光。保持所有上述设置不变的情况下,在加入Mn(Ⅶ)后,400nm~550nm处的蓝色荧光明显变弱,而550nm~760nm处的橙色荧光显著增强(如图9B),继续加入GSH,400nm~550nm处的呈现暗蓝色荧光,而550nm~760nm处的橙色荧光显著降低(如图9C)。
实施例11
实施例1制备的氮磷共掺杂比率荧光碳点在斑马鱼成像方面的应用实验:
实施例1制备的氮磷共掺杂比率荧光碳点用于斑马鱼成像,见图10。激发波长为405nm,发射波长设置为400nm~560nm(通道1)和550nm~760nm(通道2)。图10A显示了氮磷共掺杂比率荧光碳点孵育的斑马鱼图,400nm~550nm处呈现亮蓝色荧光,550nm~760nm处呈现暗橙色荧光。保持所有上述设置不变的情况下,在加入Mn(Ⅶ)后,400nm~550nm处的蓝色荧光明显变弱,而550nm~760nm处的橙色荧光显著增强(如图10B),继续加入GSH,400nm~550nm处的呈现暗蓝色荧光,而550nm~760nm处的橙色荧光显著降低(如图10C)。
实施例12
实施例1制备的氮磷共掺杂比率荧光碳点在Mn(Ⅶ)纸基传感方面的应用实验:
实施例1制备的氮磷共掺杂比率荧光碳点用于纸基传感检测Mn(Ⅶ),见图11A。将制备的碳点溶液充分浸透滤纸,随后干燥、压平得到含有氮磷共掺杂比率荧光碳点的试纸,之后将不同浓度(10μmol·L-1、15μmol·L-1、20μmol·L-1、25μmol·L-1、30μmol·L-1和40μmol·L-1)的Mn(Ⅶ)溶液均匀喷洒在含有氮磷共掺杂比率荧光碳点的试纸上,在紫外灯下观察并记录纸基条荧光颜色的改变。图11A显示了在紫外灯下,含有氮磷共掺杂比率荧光碳点的试纸随着Mn(Ⅶ)浓度的增加由蓝色荧光逐渐变为橙色荧光。
实施例13
实施例1制备的氮磷共掺杂比率荧光碳点在GSH纸基传感方面的应用实验:
实施例1制备的氮磷共掺杂比率荧光碳点用于纸基传感检测GSH,见图11B。将制备的碳点溶液充分浸透滤纸,得到含有氮磷共掺杂比率荧光碳点的试纸,之后将40μmol·L-1的Mn(Ⅶ)均匀喷洒在含有氮磷共掺杂比率荧光碳点的纸基条上,干燥,压平得到含有氮磷共掺杂比率荧光碳点与Mn(Ⅶ)的试纸,在此基础上配制不同浓度的GSH溶液(4μmol·L-1、8μmol·L-1、12μmol·L-1、16μmol·L-1、20μmol·L-1、28μmol·L-1)并均匀喷洒在含有氮磷共掺杂比率荧光碳点与Mn(Ⅶ)的试纸上,在紫外灯下观察并记录试纸荧光颜色的改变。图11B显示了在紫外灯下,试纸荧光随着GSH浓度的增加由橙色逐渐变为蓝色。
实施例14
实施例1制备的氮磷共掺杂比率荧光碳点与现有碳点基的检测方法灵敏度的比较,见表1。
表1:
Figure BDA0003327528780000071
Figure BDA0003327528780000081

Claims (3)

1.氮磷共掺杂比率荧光碳点作为比率荧光传感器在水溶液中检测Mn(Ⅶ)和GSH的应用,所述氮磷共掺杂比率荧光碳点通过包括如下步骤的方法制备得到:
(1)按质量比1:4~10:5~20:100~200将1,8-二氨基萘、磷酸和甲酰胺加入二次水中,制得混合液;
(2)将步骤(1)得到的混合液转移到水热反应釜中,进行水热反应,所述水热反应的温度为180~200℃,时间为1~6h;
(3)将步骤(2)得到的产物离心、过滤除去不溶物,透析后,得到氮磷共掺杂比率荧光碳点溶液;
(4)将步骤(3)得到的氮磷共掺杂比率荧光碳点溶液冷冻干燥后得到目标氮磷共掺杂比率荧光碳点。
2.氮磷共掺杂比率荧光碳点在制备在活细胞中检测Mn(Ⅶ)和GSH的试剂中的应用,所述氮磷共掺杂比率荧光碳点通过包括如下步骤的方法制备得到:
(1)按质量比1:4~10:5~20:100~200将1,8-二氨基萘、磷酸和甲酰胺加入二次水中,制得混合液;
(2)将步骤(1)得到的混合液转移到水热反应釜中,进行水热反应,所述水热反应的温度为180~200℃,时间为1~6h;
(3)将步骤(2)得到的产物离心、过滤除去不溶物,透析后,得到氮磷共掺杂比率荧光碳点溶液;
(4)将步骤(3)得到的氮磷共掺杂比率荧光碳点溶液冷冻干燥后得到目标氮磷共掺杂比率荧光碳点。
3.氮磷共掺杂比率荧光碳点制备成的试纸在检测Mn(Ⅶ)和GSH中的应用,所述氮磷共掺杂比率荧光碳点通过包括如下步骤的方法制备得到:
(1)按质量比1:4~10:5~20:100~200将1,8-二氨基萘、磷酸和甲酰胺加入二次水中,制得混合液;
(2)将步骤(1)得到的混合液转移到水热反应釜中,进行水热反应,所述水热反应的温度为180~200℃,时间为1~6h;
(3)将步骤(2)得到的产物离心、过滤除去不溶物,透析后,得到氮磷共掺杂比率荧光碳点溶液;
(4)将步骤(3)得到的氮磷共掺杂比率荧光碳点溶液冷冻干燥后得到目标氮磷共掺杂比率荧光碳点。
CN202111269240.8A 2021-10-29 2021-10-29 一种氮磷共掺杂比率荧光碳点及其制备方法和应用 Active CN113861973B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111269240.8A CN113861973B (zh) 2021-10-29 2021-10-29 一种氮磷共掺杂比率荧光碳点及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111269240.8A CN113861973B (zh) 2021-10-29 2021-10-29 一种氮磷共掺杂比率荧光碳点及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113861973A CN113861973A (zh) 2021-12-31
CN113861973B true CN113861973B (zh) 2023-03-07

Family

ID=78985920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111269240.8A Active CN113861973B (zh) 2021-10-29 2021-10-29 一种氮磷共掺杂比率荧光碳点及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113861973B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106566538A (zh) * 2016-10-08 2017-04-19 北京师范大学 高量子产率的本征态荧光可调的碳点及其制法和应用
CN108410457A (zh) * 2018-04-25 2018-08-17 山西大学 一种多功能荧光碳量子点及其制备方法和应用
CN109207148A (zh) * 2017-07-08 2019-01-15 张宏伟 一种高收率碳量子点的宏量制备方法
CN109385276A (zh) * 2018-12-20 2019-02-26 南京大学 高性能红光碳量子点材料及其制备方法和生物成像应用
CN110982517A (zh) * 2019-11-02 2020-04-10 上海大学 利用一锅法制备全光谱荧光碳点的方法
CN111847424A (zh) * 2020-06-24 2020-10-30 华南师范大学 一种窄光谱发射的红光碳量子点及其水热制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106566538A (zh) * 2016-10-08 2017-04-19 北京师范大学 高量子产率的本征态荧光可调的碳点及其制法和应用
CN109207148A (zh) * 2017-07-08 2019-01-15 张宏伟 一种高收率碳量子点的宏量制备方法
CN108410457A (zh) * 2018-04-25 2018-08-17 山西大学 一种多功能荧光碳量子点及其制备方法和应用
CN109385276A (zh) * 2018-12-20 2019-02-26 南京大学 高性能红光碳量子点材料及其制备方法和生物成像应用
CN110982517A (zh) * 2019-11-02 2020-04-10 上海大学 利用一锅法制备全光谱荧光碳点的方法
CN111847424A (zh) * 2020-06-24 2020-10-30 华南师范大学 一种窄光谱发射的红光碳量子点及其水热制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于糊精碳量子点荧光信号"关-开"测定L-抗坏血酸的研究;张越诚等;《化学研究与应用》;20190415(第04期);1-4 *

Also Published As

Publication number Publication date
CN113861973A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
Ali et al. Upconverting nanoparticle based optical sensor for carbon dioxide
Chao et al. Ultrastable and ultrasensitive pH-switchable carbon dots with high quantum yield for water quality identification, glucose detection, and two starch-based solid-state fluorescence materials
Alas et al. Solvatochromic surface-passivated carbon dots for fluorometric moisture sensing in organic solvents
Arshad et al. Aggregation-induced red shift in N, S-doped chiral carbon dot emissions for moisture sensing
CN105949473B (zh) 稀土配位聚合物荧光探针的制备方法及其h2o2和葡萄糖检测应用
CN107033886B (zh) 具有催化和指示双功能的荧光碳点及其制备方法和应用
CN110562954B (zh) 一种荧光碳点探针的制备方法及在检测Fe2+的应用
Rasheed Carbon dots as potential greener and sustainable fluorescent nanomaterials in service of pollutants sensing
Ding et al. An upconversion nanocomposite for fluorescence resonance energy transfer based cholesterol-sensing in human serum
Li et al. One-pot synthesis of aqueous soluble and organic soluble carbon dots and their multi-functional applications
Zhao et al. A fluorescence-switchable carbon dot for the reversible turn-on sensing of molecular oxygen
CN114199847A (zh) 一种利用荧光碳点检测次氯酸根的方法
CN112480914A (zh) 三发射碳点和固体室温磷光材料及其合成方法
Qu et al. Magnolia denudata leaf-derived near-infrared carbon dots as fluorescent nanoprobes for palladium (Ⅱ) detection and cell imaging
Liu et al. Synthesis of carbon quantum dots from lac dye for silicon dioxide imaging and highly sensitive ethanol detecting
CN112126428A (zh) 一种橙色荧光碳点及其制备方法和应用
CN108732151B (zh) 针对挥发性胺具有高灵敏光学响应的发光金纳米粒子制备及其快速分析检测方法
CN105236397B (zh) 碳量子点‑石墨烯纳米片复合体的制备方法
CN115449368B (zh) 一种氮掺杂双发射荧光碳点及其制备方法和应用
CN112094641B (zh) 一种三发射荧光碳点及其制备方法和应用
CN113861973B (zh) 一种氮磷共掺杂比率荧光碳点及其制备方法和应用
CN101671555A (zh) 一种基于钌(ii)配合物的一氧化氮荧光探针及其应用
CN114956049B (zh) 一种长波长比率荧光碳点及其制备方法和应用
Diyuk et al. Luminescent carbon nanoparticles immobilized in polymer hydrogels for pH sensing
Hou et al. Preparation of temperature-responsive nanomicelles with AIE property as fluorescence probe for detection of Fe3+ and Fe2+

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant