CN115446330A - 一种利用3d打印技术制备高强度高韧性盾构刀具的方法 - Google Patents

一种利用3d打印技术制备高强度高韧性盾构刀具的方法 Download PDF

Info

Publication number
CN115446330A
CN115446330A CN202211098424.7A CN202211098424A CN115446330A CN 115446330 A CN115446330 A CN 115446330A CN 202211098424 A CN202211098424 A CN 202211098424A CN 115446330 A CN115446330 A CN 115446330A
Authority
CN
China
Prior art keywords
powder
printing
toughness
cutter
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211098424.7A
Other languages
English (en)
Inventor
徐淑波
胡馨支
高瑞兰
马锡全
景鹏飞
李嘉宁
韩娟娟
李婷婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jianzhu University
Original Assignee
Shandong Jianzhu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jianzhu University filed Critical Shandong Jianzhu University
Priority to CN202211098424.7A priority Critical patent/CN115446330A/zh
Publication of CN115446330A publication Critical patent/CN115446330A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automation & Control Theory (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种利用3D打印技术制备高强度高韧性盾构刀具的方法,其特征是:本发明提供的一种盾构机盘形刀圈的新型制备方法,借助计算机建模软件,先设计内部框架,以高韧性FeCoCrNiMn粉末和高强度钢粉末分层打印,粉末材料被制备为精准的盘形刀圈零件,再对盘形刀圈零件进行退火和淬火热处理,获得室温下稳定的马氏体和残余奥氏体的复相组织,最后在盘形刀圈表面进行激光熔覆和等离子喷涂强化刀具表面,提高耐磨性,从而得到具有高硬度外层和高韧性内层的盾构刀具,且对其进行表面强化和改性,使表面具有耐磨、耐蚀和耐高温氧化等性能。

Description

一种利用3D打印技术制备高强度高韧性盾构刀具的方法
技术领域
本发明涉及一种具有高强度高韧性且周期短精度高的盾构刀具的制备方法,具体涉及一种借助3D打印技术制备盾构机盘形刀圈的方法。
背景技术
近年来,随着我国城市地下空间的不断利用,轨道交通得以快速发展。盾构法因具有适应性强、作业干扰小、施工质量高和效率高等优势而成为地铁建设的最主要的方法之一。而盾构刀具是盾构机破岩的关键部位,是盾构机的牙齿,也是盾构机与掌子面直接接触部位,其工作条件恶劣、受力较为复杂,故耗损极大,其性能、寿命直接影响着地下工程的施工效果和施工效率。因此,要求刀具钢材料有足够的强度、较高的硬度、良好的冲击韧性和较高的屈服强度。
3D打印技术基于分层-叠加制造的原理,以数字化模型为基础,利用高能的激光束,将每一层的金属粉末熔化-凝固再逐层堆积,最后形成致密的金属构件,可以实现较高的精度及复杂构件的直接成形相比于传统的制造技术,其具有精度高、工艺简单、自由度高、节约原材料、节省时间等优点,在航空航天、工业、国防、医疗、汽车、电子等领域有着广泛的应用。目前可用于 3D 打印的原料主要有高分子材料(树脂、塑料、橡胶等)、金属材料(铝合金、钛合金、不锈钢等)和非金属材料(陶瓷、石膏、纸张等),其中高分子材料和非金属材料3D打印技术起步较早、研究较多,技术相对成熟。而金属材料 3D 打印技术则具备巨大的发展潜力。在金属材料 3D 打印领域中,由选择性激光烧结发展而来的选择性激光熔化技术(SLM),是目前最常用的金属 3D 打印技术之一 ,将3D打印技术应用于盾构刀具的制造具有深远前景。
传统的制造技术难以兼顾强度和韧性,本发明借助于3D打印技术,将不同材料填充于框架中,可实现盾构机盘形刀圈高韧性内部和高强硬度外层,同时对打印完成的盘形刀圈表面进行激光熔覆和等离子喷涂,进一步强化刀圈表面,增大使用寿命。
发明内容
针对上述问题,本发明借助3D打印技术提供了一种盾构刀具的新型制备方法。具体的,本发明利用3D打印技术实现刀圈材料多层化,并对盘形刀圈表面进行激光熔覆和等离子喷涂,开发出一种盾构刀具的新型制备方法。
本发明是通过如下技术方案来实现:
本发明提供的一种盾构刀具的新型制备方法,借助计算机建模软件,先设计内部框架,将设计的模型数据导入3D打印设备中,利用高能激光在粉末截面上扫描并熔化粉末,然后在冷却成型的粉末截面上继续熔化粉末、逐层叠加,最终粉末材料被制备为精准的盘形滚刀零件,然后对盘形滚刀零件进行退火和淬火热处理,获得室温下稳定的马氏体和残余奥氏体的复相组织,最后在盘形滚刀表面进行激光熔覆和等离子喷涂强化刀具表面,提高耐磨性,从而得到具有高硬度外层和高韧性内层的盾构刀具,且对其进行表面强化和改性,使表面具有耐磨、耐蚀和耐高温氧化等性能。利用3D打印成形技术制造盾构刀具的优点在于可自由设计内部框架,工艺流程简单。本发明提供了一种利用3D打印技术制备高强度高韧性盾构刀具的方法,包括如下步骤:
(1)设计框架:利用三维软件设计所需成形的三维零部件模型,并将其转换为可以切层的数据格式(STL文件)。在三维模型的底部建立一个合适高度的支撑体,并将三维模型和支撑体一同切成一定厚度的若干层,以获得零件各层截面的轮廓数据,并将其导入SLM设备中。
(2)复合材料粉末1的制备:按照摩尔百分比:5.0-35.0%的Fe、5.0-35.0%的Co、5.0-35.0%的Ni、0-30.0%的Cr、0-20.0%的Mn混合后将混合物进行球磨处理,使其最大球直径不超过40μm,得到用于3D打印内部的高韧性粉末FeCoCrNiMn;
(3)复合材料粉末2的制备:按质量百分比计,包括,0.15%-0.3%的C、0.4%-0.6%的V、0 .8%-1.2%的Ti、0.8%-1.5%的Mo、2.5%-5%的Cr、10%-12%的Ni、12%-15%的Co,余量为Fe,混合后将混合物进行真空熔炼和雾化制粉,其中真空熔炼温度为1200-1500℃,炉内气压为0.45-0.65MPa,雾化制粉通入惰性气体氩气,雾化压力为0.55-7MPa,得到用于3D打印的高强度钢粉末。
(4)打印过程:在工作缸上安装一个可拆装的成形基板(即工作台),然后通过铺粉装置中的刮刀在工作台上均匀地铺上一层很薄的待加工粉末。然后根据已导入 SLM 成形设备中的程序,激光选择性地扫描熔化合金粉末1,打印出盾构机盘形滚刀的内层,厚度为38-40mm,3D打印机的激光光斑直径为(50-120μm),扫描速度为14.9m/s,激光功率为400-600W;然后用粉末2在内层的基础上继续打印,作为盾构机盘形刀圈的外层,厚度为38-40mm,3D打印机的扫描间距为1-1.5mm,扫描速度为10-14m/s,激光功率为400-600W,直至整个模型加工完毕。收集成形制件以外的剩余金属粉末,除去杂质后下次继续使用,用线切割机将成形好的零件从基板上取下来。
(5)热处理工艺:对所述铸锭进行高温扩散退火,然后淬火至马氏体开始温度(Ms)和马氏体终止(Mf)温度之间的温度,并在淬火停止温度(TQ)或稍高的配分温度(TP)下保持适当的时间,以使碳从过饱和马氏体配分到残余奥氏体中,从而稳定到室温。
(6)表面强化:利用激光熔覆技术在盘形刀圈材料表面制备 CoCrTaAlY合金粘结层,激光熔覆时先利用高温等离子火焰流将CoCrTaAlY粉末加热到熔融状态,随着高速焰流撞击到高温合金基材表面,冷却形成涂层,其中P=2.71-3.2kW,v=8mm/s,然后再在涂层基础上利用等离子喷涂制备陶瓷层8%Y2O3-Zr02(YSZ)。
上述步骤(5)中,其高温退火的温度为1200-1280℃,保温时间至少为D/50+8小时,所述D为采用毫米计铸锭直径的数值;淬火的温度为1050-1100℃,保温25-35min。
本发明提供了一种利用3D打印技术制备高强度高韧性盾构刀具的方法,其优点在于:
1. 首先是方法上的创新:(1)利用3D打印技术中的选择性激光熔化技术,SLM 成形过程主要是激光与粉末的交互作用过程,激光束直径一般都是微米尺寸,因此粉末熔化的熔池通常都很小,而且激光的扫描速率快,与粉末的作用时间短,粉末的凝固-冷却速率很快,晶粒来不及长大使得成形的样品晶粒组织细小均匀,这还能有效抑制元素的偏析,成形的刀具零件综合性能更好;逐层堆积成形,可以将三维立体样件剖分成二维平面结构,因此可以构建结构复杂、传统方法难以加工的刀具;
(2)粉末1高熵合金FeCoCrNiMn具有更为优越的机械、化学和磁性能,包括高屈服强度、高断裂韧性、高耐磨性、强耐腐蚀性和优异的高温性能,在目前已知材料中断裂韧性最高,用于盘形刀圈内层可有效提高韧性,很大程度上减少断裂,增大刀具使用寿命。粉末2所制备的高强钢具有胞状的马氏体/贝氏体晶粒,晶粒之间被网状奥氏体包裹,不仅具有传统钢铁材料中相变强化、细晶强化、位错强化、析出强化等多种强塑性机制,还具有空间结构上的网状奥氏体强塑化机制,网状奥氏体在应力下可诱发TRIP和 TWIP效应,因而使打印出的样品具有较高的强度。
2. 工艺流程相对简单。传统的刀具加工通常需要多个工艺流程,所需要的工时较多,而 SLM 成形过程只需要将金属粉末加入粉缸,加工完成以后再将零件切下即可;材料利用率非常高。成形过程粉末的消耗量与成形的样品相等,未成形的粉末可以回收再利用,而传统加工方法会浪费掉很多胚料。因此,极大提高了材料的利用率;可以满足个性化定制。成形以前,只需要建立样件的三维模型,通过相应的软件,即可剖分处理成加工路径STL 图而不需要使用模具,降低了成本和模具加工周期,十分有利于盾构刀具的生产 。
3. 工艺流程创新:激光熔覆CoCrTaAlY可提高表面耐磨、耐蚀及耐高温抗氧化等性能,使熔覆层与基体形成冶金结合;利用等离子喷涂法制备的陶瓷层中的Zr02的存在形式主要是正方相 (t)、立方相(c)和少量单斜相(m);经过100 h高温氧化后,只有CoCrTaAlY涂层试样氧化累积增重将近0.12g·cm-2,而含YSZ涂层试样氧化累积增重大约0.08 g·cm-2,把氧化增重情况在数值上降低三分之一,有效地提升了材料的抗高温氧化作用,使盘形刀圈表面具有耐磨、耐蚀、耐高温氧化、电绝缘、隔热、防辐射和减磨等性能。
附图说明:
图1为盾构机盘形刀圈正等测图和前视图。
图2为盾构机盘形刀圈的正面剖视图,图中1为盘形刀圈内层,由高韧性复合材料粉末1打印,图中2为盘形刀圈外层,由高强度复合材料粉末2打印。
具体实施方式:
(1)利用三维软件设计所需成形的三维零部件模型,并将其转换为可以切层的数据格式(STL 文件)。在三维模型的底部建立一个合适高度的支撑体,并将三维模型和支撑体一同切成一定厚度的若干层,以获得零件各层截面的轮廓数据,并将其导入SLM 设备中。
(2)把Fe、Co、Ni、Cr、Mn按照摩尔百分比:5.0-35.0%、5.0-35.0%、5.0-35.0%、0-30.0%、0-20.0%混合后将混合物进行球磨处理,使其最大球直径不超过40μm,得到用于3D打印内部的高韧性粉末FeCoCrNiMn;
(3)将C粉末、V颗粒、Ti颗粒、Mo颗粒、Cr颗粒、Ni颗粒、Co粉末按质量比为0.15%-0.3%、0.4%-0 .6%、0 .8%-1 .2%、0.8%-1 .5%、2.5%-5%、10%-12%、12%-15%混合,余量为Fe,混合后将混合物进行真空熔炼和雾化制粉,其中真空熔炼温度为1200-1500℃,炉内气压为0.45-0.65MPa,雾化制粉通入惰性气体氩气,雾化压力为0.55-7MPa,得到用于3D打印的高强度钢粉末。
(4)利用选择性激光熔化技术(SLM)用粉末1打印出盘形刀圈内层,厚度为38-40mm,3D打印机的激光光斑直径为(50-120μm),扫描速度为14.9m/s,激光功率为400-600W;然后用粉末2在内层的基础上继续打印,作为盾构机盘形刀圈的外层,厚度为38-40mm,3D打印机的扫描间距为1-1.5mm,扫描速度为10-14m/s,激光功率为400-600W,制造过程中要始终通过腔体玻璃观察铺粉是否出现问题,刮刀运动过程中是否受阻。
(5)打印完成后,对零件进行热处理:1200℃高温退火2h,将试验钢加热至1050℃保温30min,出炉空冷。此时盾构刀具的组织类型为马氏体+残余奥氏体,具有高硬度和高屈服强度、良好的强韧性配比和优异的抗冲击性能。
利用激光熔覆技术在盘形刀圈材料表面制备 CoCrTaAlY合金粘结层,再使用等离子喷涂技术在粘结层表面喷涂陶瓷层8%Y2O3-Zr02(YSZ)。

Claims (6)

1.一种利用3D打印技术制备高强度高韧性盾构刀具的方法,其特征是借助计算机建模软件,先设计内部框架,将设计的模型数据导入3D打印设备中,以高韧性FeCoCrNiMn粉末和高强度钢粉末分层打印,激光光斑直径为(50-120μm),扫描速度为14.9m/s,激光功率为400-600W,粉末材料被制备为精准的盘形刀圈零件,对刀圈零件进行退火和淬火热处理,再在刀圈表面进行激光熔覆和等离子喷涂强化刀具表面,提高耐磨性,最终得到盾构刀具零件。
2.根据权利要求1所述的一种利用3D打印技术制备高强度高韧性盾构刀具的方法,其特征在于所用打印粉末1的合金元素及摩尔配比为:Fe:5-35%;Co:5-35%;Cr:5-35%;Ni:0-30%;Mn:0-20%。
3.根据权利要求1所述的一种利用3D打印技术制备高强度高韧性盾构刀具的方法,其特征在于所用打印粉末2的合金元素及按质量百分比为:包括,0.15%-0.3%的C、0.4%-0.6%的V、0 .8%-1 .2%的Ti、0.8%-1 .5%的Mo、2.5%-5%的Cr、10%-12%的Ni、12%-15%的Co,余量为Fe。
4.根据权利要求1所述的一种利用3D打印技术制备高强度高韧性盾构刀具的方法,其特征在于借助3D打印设备,其操作步骤如下:
利用选择性激光熔化技术(SLM)用权利要求2中制备的粉末打印出刀圈内层,厚度为38-40mm,3D打印机的激光光斑直径为(50-120μm),扫描速度为14.9m/s,激光功率为400-600W;然后用权利要求3中制备的粉末在内层的基础上继续打印,作为刀圈的外层,厚度为38-40mm,3D打印机的扫描间距为1-1.5mm,扫描速度为10-14m/s,激光功率为400-600W,制造过程中要始终通过腔体玻璃观察铺粉是否出现问题,刮刀运动过程中是否受阻。
5.根据权利要求1所述的一种利用3D打印技术制备高强度高韧性盾构刀具的方法,其特征在于,打印后热处理中,高温退火的温度为1200-1280℃,保温时间至少为D/50+8小时,所述D为采用毫米计铸锭直径的数值;淬火的温度为1000-1100℃,保温25-35min。
6.根据权利要求1所述的一种利用3D打印技术制备高强度高韧性盾构刀具的方法,其特征在于,表面强化时,先利用高温等离子火焰流将CoCrTaAlY粉末加热到熔融状态,随着高速焰流撞击到高温合金基材表面,冷却形成涂层,其中P=2.71-3.2kW,v=8mm/s,然后再在涂层基础上利用等离子喷涂制备陶瓷层8%Y2O3-Zr02(YSZ)。
CN202211098424.7A 2022-09-09 2022-09-09 一种利用3d打印技术制备高强度高韧性盾构刀具的方法 Pending CN115446330A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211098424.7A CN115446330A (zh) 2022-09-09 2022-09-09 一种利用3d打印技术制备高强度高韧性盾构刀具的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211098424.7A CN115446330A (zh) 2022-09-09 2022-09-09 一种利用3d打印技术制备高强度高韧性盾构刀具的方法

Publications (1)

Publication Number Publication Date
CN115446330A true CN115446330A (zh) 2022-12-09

Family

ID=84302546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211098424.7A Pending CN115446330A (zh) 2022-09-09 2022-09-09 一种利用3d打印技术制备高强度高韧性盾构刀具的方法

Country Status (1)

Country Link
CN (1) CN115446330A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104841930A (zh) * 2015-06-05 2015-08-19 哈尔滨工程大学 用于3d打印的高熵合金粉末及应用其制备高熵合金涂层的方法
CN108060322A (zh) * 2017-12-07 2018-05-22 中南大学 硬质高熵合金复合材料的制备方法
CN110802311A (zh) * 2019-11-12 2020-02-18 济南重工股份有限公司 一种盾构机滚刀刀圈抗磨、抗冲击处理方法
CN111702176A (zh) * 2020-06-29 2020-09-25 中国铁建重工集团股份有限公司 一种盾构机刀具的制备工艺
CN112048668A (zh) * 2020-08-28 2020-12-08 北京科技大学 一种高硬度盾构刀具用钢及其制造方法
EP3747573A1 (fr) * 2019-06-07 2020-12-09 Commissariat à l'Energie Atomique et aux Energies Alternatives Procede de fabrication additive d'une piece en un alliage cca nitrure
CN112404420A (zh) * 2020-11-19 2021-02-26 中南大学 一种用于3d打印的高强度钢粉末、其制备方法、3d打印方法及制得的高强度钢
CN114653954A (zh) * 2022-05-17 2022-06-24 山东建筑大学 一种激光熔覆纳米涂层盾构机微织构刀具
CN114991791A (zh) * 2022-05-25 2022-09-02 东北大学 一种双金属复合硬岩盾构机刀圈及制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104841930A (zh) * 2015-06-05 2015-08-19 哈尔滨工程大学 用于3d打印的高熵合金粉末及应用其制备高熵合金涂层的方法
CN108060322A (zh) * 2017-12-07 2018-05-22 中南大学 硬质高熵合金复合材料的制备方法
EP3747573A1 (fr) * 2019-06-07 2020-12-09 Commissariat à l'Energie Atomique et aux Energies Alternatives Procede de fabrication additive d'une piece en un alliage cca nitrure
CN110802311A (zh) * 2019-11-12 2020-02-18 济南重工股份有限公司 一种盾构机滚刀刀圈抗磨、抗冲击处理方法
CN111702176A (zh) * 2020-06-29 2020-09-25 中国铁建重工集团股份有限公司 一种盾构机刀具的制备工艺
CN112048668A (zh) * 2020-08-28 2020-12-08 北京科技大学 一种高硬度盾构刀具用钢及其制造方法
CN112404420A (zh) * 2020-11-19 2021-02-26 中南大学 一种用于3d打印的高强度钢粉末、其制备方法、3d打印方法及制得的高强度钢
CN114653954A (zh) * 2022-05-17 2022-06-24 山东建筑大学 一种激光熔覆纳米涂层盾构机微织构刀具
CN114991791A (zh) * 2022-05-25 2022-09-02 东北大学 一种双金属复合硬岩盾构机刀圈及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
顾振杰等: "等离子喷涂-激光熔覆CoCrTaAlY/ YSZ热障涂层的抗高温氧化机理及热震性能", 《中国激光》 *

Similar Documents

Publication Publication Date Title
EP2060343B1 (en) Metal powder for metal photofabrication and method of metal photofabrication using the same
JP7116495B2 (ja) 高炭素コバルト系合金
CN103143708B (zh) 一种硬质合金预制体的制备方法及采用该硬质合金预制体制备复合耐磨件的方法
KR102390062B1 (ko) 고 경도 3d 인쇄된 강철 제품
CN105014072B (zh) 一种W‑Cu药型罩的制备方法
CN112157242B (zh) 一种复合滚刀刀圈及其制备方法
CN113649594B (zh) 一种激光增材制造24CrNiMo合金钢的热等静压方法
CN108714695A (zh) 一种成分和组织双重梯度复合材料的制备方法
CN106435568A (zh) Mo‑Ni‑ZrO2梯度涂层及激光直接沉积制备方法
CN114294002B (zh) 一种具有过渡耐磨层的滚刀刀圈及其生产工艺
CN115446330A (zh) 一种利用3d打印技术制备高强度高韧性盾构刀具的方法
WO2022124359A1 (ja) 粉末から作製された造形体
KR20220131182A (ko) 철기 합금 및 금속 분말
CN113732280A (zh) 一种激光选区熔化用石墨烯增强镍基高温合金粉末及其制备方法
KR20210117297A (ko) 3d 프린팅된 높은 탄소 함량 강철 및 이를 제조하는 방법
CN110842199A (zh) 一种选区激光熔化制备具有复杂结构的纯钨构件的方法
CN111074065A (zh) 一种用于烧结机台车的覆膜砂烧结篦条及工艺
CN110923492B (zh) 一种硬质合金的制备方法及制砂用复合耐磨锤头
CN112458376B (zh) 滚刀刀圈及制备方法
CN115058631B (zh) 适用于氧化物弥散强化钢的同轴送粉复合搅拌摩擦处理的制造方法
CN117867489A (zh) 一种利用合金粉末提高镁碳砖模具服役寿命的激光加工方法
CN105483500A (zh) 一种汽车发动机缸体制备方法
CN115464153A (zh) 一种基于3d打印的梯度硬质合金及其制备方法
JP2024003888A (ja) 鋼粉末
JP2022072078A (ja) 金属粉末

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20221209