CN114653954A - 一种激光熔覆纳米涂层盾构机微织构刀具 - Google Patents

一种激光熔覆纳米涂层盾构机微织构刀具 Download PDF

Info

Publication number
CN114653954A
CN114653954A CN202210532187.4A CN202210532187A CN114653954A CN 114653954 A CN114653954 A CN 114653954A CN 202210532187 A CN202210532187 A CN 202210532187A CN 114653954 A CN114653954 A CN 114653954A
Authority
CN
China
Prior art keywords
cutter
laser
powder
coating
shield machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210532187.4A
Other languages
English (en)
Inventor
徐淑波
赵晨浩
薛现猛
张森
卢庆亮
孙化鑫
孙海波
张世超
胡馨支
马锡全
景鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jianzhu University
Original Assignee
Shandong Jianzhu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jianzhu University filed Critical Shandong Jianzhu University
Priority to CN202210532187.4A priority Critical patent/CN114653954A/zh
Publication of CN114653954A publication Critical patent/CN114653954A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/68Cleaning or washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/36Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/042Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling using a particular milling fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种激光熔覆纳米涂层盾构机微织构刀具的方法。首先利用机械球磨法制备刀刃与刀体粉末制成所需的混合粉末,并在超声冲击辅助下用3D打印技术实现对盾构机刀刃与刀体的一体打印;然后进行表面抛光去除表面污垢沉积,并利用光纤激光打标机进行刀具主切削刃处的激光微织构处理;进而超声波酒精和去离子水先后清洗,以保证盾构机刀具基体表面清洁无杂质;最后用搅拌球磨机制备熔覆涂层的纳米粉末,并用激光熔覆技术完成对对刀具表面高耐磨耐腐蚀纳米晶涂层的制备。本发明提高盾构机刀具的耐磨性、抗冲击性与高温力学性能,进而提高刀具的使用寿命。

Description

一种激光熔覆纳米涂层盾构机微织构刀具
技术领域
本发明属于硬质合金领域,具体涉及一种激光熔覆纳米涂层盾构机微织构刀具的方法。
背景技术
随着我国城市轨道交通建设规模的不断加大,盾构法施工技术以其可靠、安全和高效的特点在隧道工程施工中占据越来越重要的地位。我国地域辽阔、地质条件多样复杂,在地下苛刻的施工条件下,盾构刀具的磨损、断裂情况时常发生,特别是在在砂卵石、砾石地层掘进施工过程中,靠近刀盘外侧的刀具刃部要承受较大的冲击力,周边刀具的磨损形式主要是冲击磨损和磨粒磨损,这两种磨损形式是导致刀刃部分磨损的主要原因。由于硬质合金的硬度高而抗冲击韧性差,当安装于刀盘外缘的周边刀及齿刀以较高的速度切削土体时与地层中的石块发生碰撞,撞击结果便焊接在刀体刃部的硬质合金刀刃发生脱落或断裂,刀体上失去了高硬度硬质合金层后,硬度较低的刀具本体很快就会被磨损掉。
由于刀具的易磨损、抗冲击韧性差的特性,一方面会影响整体施工质量,延缓掘进速度;另一方面,增加了盾构停机换刀的工作量,从而导致工期延长,维护成本增加。盾构刀具磨损受刀具配置、刀具材质、地质情况及施工参数等多因素影响,而刀具的材料无疑是影响刀具磨损最根本的原因。因此,从刀具材质方面出发开展新型盾构刀具研发,对减少刀具磨损具有重要的意义。
综上所述,本发明的有益效果在于:通过对盾构机表面激光微织构与纳米涂层处理后,达到减少摩擦系数与提高表面硬度的目的,从而提高盾构机刀具的耐磨、抗冲击性与导热系数,以便在高温使用过程中将摩擦引起的热量迅速扩散出去,从而提高盾构机刀具在高温时的力学性能以及高温疲劳寿命。
发明内容
本发明专利是为了能够有效解决盾构机刀具工作时易磨损与抗冲击性较差的问题,通过3D打印成型的盾构机刀具基体经过激光微织构处理后,可快速制造出低成本、高耐磨性的刀具,为有效提高盾构机的掘进效率与盾构机刀具的服役寿命,而提供了一种激光熔覆纳米涂层盾构机微织构刀具的方法。
本发明是通过如下技术方案来实现:
本发明提供了一种激光熔覆纳米涂层盾构机微织构刀具的方法。首先利用机械球磨法制备刀刃与刀体粉末制成所需的混合粉末,并在超声冲击辅助下用3D打印技术实现对盾构机刀刃与刀体的一体打印;然后进行表面抛光去除表面污垢沉积,并利用光纤激光打标机进行刀具主切削刃处的激光微织构处理;进而超声波酒精和去离子水先后清洗,以保证盾构机刀具基体表面清洁无杂质;最后用搅拌球磨机制备熔覆涂层的纳米粉末,并用激光熔覆技术完成对对刀具表面高耐磨耐腐蚀纳米晶涂层的制备。
本发明的具体制备方法包括以下步骤:
步骤一:机械球磨法制粉
首先将质量比为W:C:Ni:Ti:Co=70~80:5~10:5~10:5~10:5~10的粉末倒入酒精溶液中用搅拌球磨机,磨球为WC-Co的硬质合金球,球料比10:1,转速450 r/min。然后利用真空干燥箱对浆料进行干燥并过筛,然后将上述混合粉末球磨6小时以上,在与钴粉混合后获得硬质合金粉末作为刀刃材料;刀体粉末由质量比为C:Cr:Mn:Fe=3~5:5~10:2~3:80~90的粉末经过搅拌球磨机球磨4h制成;
步骤二:3D打印技术制备盾构机刀具
根据实际刀具的参数进行三维建模,构建出刀具的三维模型,并对盾构机刀具的刀具进行切片分层,得到各截面轮廓数据,由截面轮廓数据生成对应的扫描路径;然后将步骤一得到的混合粉末添加到激光3D打印系统中,并在装置中添加超声冲击设备。由激光3D打印系统在超声波的作用下按照盾构机刀具的三维实体模型生成的加工程序依次将盾构机刀刃与刀体激光加工成型。其中激光3D打印系统运行时的激光功率为300W、扫描速度为1200mm/s、扫描间距为50μm、激光光斑为60μm。而超声冲击装置则以冲击速度为0.2m~0.5m/min对成形层进行1~4min冲击处理。然后将盾构机刀具基体置于乙醇中超声清洗,烘干。
步骤三:盾构机刀具表面抛光与激光微织构处理
先后使用粒度为800#与600#的金相砂纸对基体表面进行抛光处理,去除表面污垢沉积,使基体表面达到Sa1级清洁度。通过可输出中心波长为1064nm的激光的光纤激光打标机,然后设定激光工艺参数为光斑直径激光功率P=50W、扫描速度400mm/s、扫描次数N=5,对刀具前刀面靠近主切削刃处打出圆坑微织构阵列,打标深度为0.3~0.6mm。
步骤四:超声波丙酮冲洗盾构机刀具
采用超声波清洗机配合丙酮溶液对刀具表面进行清洗8分钟,完全除去基体表面附着物及杂质,结束后将其置于80℃的环境中干燥1~3h。
步骤五:纳米涂层材料的制备
将Co50自熔性合金粉末作为粘结相,并在粉末中加入一定量的WC颗粒与Al粉(质量分数为1%),激光熔覆粉末中WC与Co50的质量比为60~70:10~20。使用球磨(转速为50 r/min)对激光熔覆粉末进行混合﹐处理3~4 h后将其球磨至100nm以下,然后放在干燥箱中对其干燥,采用真空环境避免其发生氧化反应。
步骤六:激光熔覆耐磨耐腐蚀纳米涂层
通过预置或同步送粉方式铺在盾构机前刀刃的表面,厚度约为0.3~0.4mm,在流量为40L/min的氩气环境中使其在半导体激光器laserline LDF(激光功率为1000~1800w,扫描速度为5 mm/s,光斑直径为4~5mm,离焦量为45 mm)的辐照作用下,迅速熔化、扩展并快速凝固(冷速高达102~106*C/s),形成与刀具表面呈良好冶金结合的抗腐蚀、抗疲劳、高硬度、耐磨的纳米涂层。
步骤二中在3D打印中添加超声冲击装置可使晶粒细化,即可增强盾构机刀具基体的表面硬度,又能提高刀具的高温力学性能。
步骤二3D打印过程中,始终以纯度为99.9%的Ar气作为保护气体且保证流量为15L/min,以避免粉末高温氧化。
步骤三表面抛光与激光微织构处理的目的是为了改善3D打印后刀具表面往往毛刺较多与微观组织不均匀的问题,减少刀具表面的摩擦系数,改善刀具表面的力学性能。
本次发明设计的优点在于:
1、本发明通过的新型微织构盾构机刀具,钨、碳、钴、铁、镍、钛及不可避免的杂质等粉末按照一定质量百分数比例的混合制备出多晶碳化钨硬质合金粉末,这些材料资源丰富,价格便宜,可有效节约成本,制造出结构优化的高性能刀具,提高刀具的使用寿命,为探索3D打印技术在成型硬质合金方面的可能性提供了方向;
2、本发明通过3D打印技术制备盾构机刀具基体,实现盾构机刀具一体成型,且保证了刀体与刀刃部分间的可靠连接,有利于延长盾构机刀具的使用寿命;同时采用3D打印可快速制造出低成本、高耐磨性的刀具,能有效提高盾构机的掘进效率和节约施工成本,明显改善传统刀具制造过程中生产工序多、原材料损耗大、制造周期长的缺点;
3、本发明通过对盾构机刀具基体表面进行激光微织构处理,可使硬质合金表面的晶粒发生明显细化,从而使盾构机刀具无论是在耐磨性和耐腐蚀性上,还是在抗冲击性与耐高温性上,均具有足够的优势;而且对表面进行微织构处理后,切屑在流过前刀面的长度变短,从而能够使得微织构刀具比其他刀具具有更好的散热性。
4、本发明通过激光熔覆技术对盾构机刀具材料表面进行改性处理,获得耐磨损性能更高的纳米涂层,能够更好的对刀具起到保护作用,通过涂层表面的硬质WC大颗粒包覆在粘接相Co50中,部分熔化和分解的WC小颗粒形成固溶体,进一步降低刀具表面的摩擦系数和表面粗糙度,保证了切削过程中轴向切削力和径向切削力的稳定性。
附图说明:
图1为本发明硬质合金刀具剖视图。图1中的1-盾构机刀具基体、2-激光微织构处理形成的微坑、3-激光熔覆形成的高性能耐磨纳米涂层
具体实施方式:
步骤一:首先将质量比为W:C:Ni:Ti:Co=70:10:5:5:10的粉末倒入酒精溶液中用搅拌球磨机,磨球为WC-Co的硬质合金球,球料比10:1,转速450 r/min。然后利用真空干燥箱对浆料进行干燥并过筛,然后将上述混合粉末球磨6小时以上,在与钴粉混合后获得硬质合金粉末作为刀刃材料;刀体粉末由质量比为C:Cr:Mn:Fe=5:8:2:85的粉末经过搅拌球磨机球磨4h制成;
步骤二:根据实际刀具的参数进行三维建模,构建出刀具的三维模型,并对盾构机刀具的刀具进行切片分层,得到各截面轮廓数据,由截面轮廓数据生成对应的扫描路径;然后将步骤一得到的混合粉末添加到激光3D打印系统中,并在装置中添加超声冲击设备。由激光3D打印系统在超声波的作用下按照盾构机刀具的三维实体模型生成的加工程序依次将盾构机刀刃与刀体激光加工成型。其中激光3D打印系统运行时的激光功率为300W、扫描速度为1200mm/s、扫描间距为50μm、激光光斑为60μm。而超声冲击装置则以冲击速度为0.3m/min对成形层进行3min冲击处理。然后将盾构机刀具基体置于乙醇中超声清洗,烘干。
步骤三:先后使用粒度为800#与600#的金相砂纸对基体表面进行抛光处理,去除表面污垢沉积,使基体表面达到Sa1级清洁度。通过可输出中心波长为1064nm的激光的光纤激光打标机,然后设定激光工艺参数为光斑直径激光功率P=50W、扫描速度400mm/s、扫描次数N=5,对刀具前刀面靠近主切削刃处打出圆坑微织构阵列,打标深度为0.5mm。
步骤四:采用超声波清洗机配合丙酮溶液对刀具表面进行清洗8分钟,完全除去基体表面附着物及杂质,结束后将其置于80℃的环境中干燥1.5h。
步骤五:将Co50自熔性合金粉末作为粘结相,并在粉末中加入一定量的WC颗粒与Al粉(质量分数为1%),激光熔覆粉末中WC与Co50的质量比为65:10。使用球磨(转速为50 r/min)对激光熔覆粉末进行混合﹐处理3~4 h后将其球磨至100nm以下,然后放在干燥箱中对其干燥,采用真空环境避免其发生氧化反应。
步骤六:通过预置或同步送粉方式铺在盾构机前刀刃的表面,厚度约为0.3~0.4mm,在流量为40L/min的氩气环境中使其在半导体激光器laserline LDF(激光功率为1600w,扫描速度为5 mm/s,光斑直径为5mm,离焦量为45 mm)的辐照作用下,迅速熔化、扩展并快速凝固(冷速高达102~106*C/s),形成与刀具表面呈良好冶金结合的抗腐蚀、抗疲劳、高硬度、耐磨的纳米涂层。

Claims (5)

1.一种激光熔覆纳米涂层盾构机微织构刀具的方法;其特征在于首先利用机械球磨法制备刀刃与刀体粉末制成所需的混合粉末,并在超声冲击辅助下用3D打印技术实现对盾构机刀刃与刀体的一体打印;然后进行表面抛光去除表面污垢沉积,并利用光纤激光打标机进行刀具主切削刃处的激光微织构处理;进而超声波酒精和去离子水先后清洗,以保证盾构机刀具基体表面清洁无杂质;最后用搅拌球磨机制备熔覆涂层的纳米粉末,并用激光熔覆技术完成对对刀具表面高耐磨耐腐蚀纳米晶涂层的制备;其具体工艺方案如下:
(1)首先将质量比为W:C:Ni:Ti:Co=70:10:5:5:10的粉末倒入酒精溶液中用搅拌球磨机,磨球为WC-Co的硬质合金球,球料比10:1,转速450 r/min,然后利用真空干燥箱对浆料进行干燥并过筛,然后将上述混合粉末球磨6小时以上,在与钴粉混合后获得硬质合金粉末作为刀刃材料;刀体粉末由质量比为C:Cr:Mn:Fe=5:8:2:85的粉末经过搅拌球磨机球磨4h制成;
(2)根据实际刀具的参数进行三维建模,构建出刀具的三维模型,并对盾构机刀具的刀具进行切片分层,得到各截面轮廓数据,由截面轮廓数据生成对应的扫描路径;然后将步骤一得到的混合粉末添加到激光3D打印系统中,并在装置中添加超声冲击设备,由激光3D打印系统在超声波的作用下按照盾构机刀具的三维实体模型生成的加工程序依次将盾构机刀刃与刀体激光加工成型,其中激光3D打印系统运行时的激光功率为300W、扫描速度为1200mm/s、扫描间距为50μm、激光光斑为60μm,而超声冲击装置则以冲击速度为0.3m/min对成形层进行3min冲击处理,然后将盾构机刀具基体置于乙醇中超声清洗,烘干;
(3)先后使用粒度为800#与600#的金相砂纸对基体表面进行抛光处理,去除表面污垢沉积,使基体表面达到Sa1级清洁度,通过可输出中心波长为1064nm的激光的光纤激光打标机,然后设定激光工艺参数为光斑直径激光功率P=50W、扫描速度400mm/s、扫描次数N=5,对刀具前刀面靠近主切削刃处打出圆坑微织构阵列,打标深度为0.5mm;
(4)采用超声波清洗机配合丙酮溶液对刀具表面进行清洗8分钟,完全除去基体表面附着物及杂质,结束后将其置于80℃的环境中干燥1.5h;
(5)将Co50自熔性合金粉末作为粘结相,并在粉末中加入一定量的WC颗粒与Al粉(质量分数为1%),激光熔覆粉末中WC与Co50的质量比为65:10,使用球磨(转速为50 r/min)对激光熔覆粉末进行混合﹐处理3~4 h后将其球磨至100nm以下,然后放在干燥箱中对其干燥,采用真空环境避免其发生氧化反应;
(6)通过预置或同步送粉方式铺在盾构机前刀刃的表面,厚度约为0.3~0.4mm,在流量为40L/min的氩气环境中使其在半导体激光器laserline LDF(激光功率为1600w,扫描速度为5 mm/s,光斑直径为5mm,离焦量为45 mm)的辐照作用下,迅速熔化、扩展并快速凝固(冷速高达102~106*C/s),形成与刀具表面呈良好冶金结合的抗腐蚀、抗疲劳、高硬度、耐磨的纳米涂层。
2.权利要求1中一种激光熔覆纳米涂层盾构机微织构刀具的方法,其特征在于,通过3D打印成型盾构机刀具基体,显著提高了材料的利用率,降低制造的时间与成本。
3.权利要求1中一种激光熔覆纳米涂层盾构机微织构刀具的方法,其特征在于,3D打印中添加超声冲击装置可使晶粒细化,即可增强基体的表面硬度,又能提高刀具的高温力学性能。
4.权利要求1中一种激光熔覆纳米涂层盾构机微织构刀具的方法,其特征在于,在3D打印过程中,始终以纯度为99.9%的Ar气作为保护气体且保证流量为15 L/min,以避免粉末高温氧化。
5.权利要求1中一种激光熔覆纳米涂层盾构机微织构刀具的方法,其特征在于,通过表面抛光与激光微织构处理以改善3D打印后刀具表面往往毛刺较多与微观组织不均匀的问题,减少刀具表面的摩擦系数,改善刀具表面的力学性能。
CN202210532187.4A 2022-05-17 2022-05-17 一种激光熔覆纳米涂层盾构机微织构刀具 Withdrawn CN114653954A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210532187.4A CN114653954A (zh) 2022-05-17 2022-05-17 一种激光熔覆纳米涂层盾构机微织构刀具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210532187.4A CN114653954A (zh) 2022-05-17 2022-05-17 一种激光熔覆纳米涂层盾构机微织构刀具

Publications (1)

Publication Number Publication Date
CN114653954A true CN114653954A (zh) 2022-06-24

Family

ID=82037201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210532187.4A Withdrawn CN114653954A (zh) 2022-05-17 2022-05-17 一种激光熔覆纳米涂层盾构机微织构刀具

Country Status (1)

Country Link
CN (1) CN114653954A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115446330A (zh) * 2022-09-09 2022-12-09 山东建筑大学 一种利用3d打印技术制备高强度高韧性盾构刀具的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115446330A (zh) * 2022-09-09 2022-12-09 山东建筑大学 一种利用3d打印技术制备高强度高韧性盾构刀具的方法

Similar Documents

Publication Publication Date Title
CN106119838B (zh) 一种利用激光熔覆技术强化刀刃的刀具
CN103737273B (zh) 一种激光熔覆wc耐磨涂层的新型滚刀的制作工艺
CN102050633B (zh) 一种表面镀镍Si3N4晶须增韧聚晶立方氮化硼复合片及其制备方法
CN103290403B (zh) 一种制备高含量wc增强合金粉末涂层的方法
CN107513696B (zh) 金刚石涂层钻/铣刀具研磨预处理的方法
CN104250810B (zh) 一种热轧棒材裙板辊道激光熔覆制备wc硬质合涂层工艺方法
CN110819866B (zh) 一种WC-Co-B4C硬质合金的制备方法
CN103008993A (zh) 一种盾构机刮刀制造方法
CN101382072B (zh) 金刚石孕镶截齿及其制作工艺
CN110218998A (zh) 基于刀具刀刃处表面激光熔覆处理制备自磨刃刀具的方法
CN108817406A (zh) 一种烧结碳化钨胎体刀圈的配方和制备工艺
CN114653954A (zh) 一种激光熔覆纳米涂层盾构机微织构刀具
CN102816964A (zh) 超细晶粒Ti(C,N)基金属陶瓷工具的制备方法
CN112342449A (zh) 一种硬质合金及其制备方法和应用
CN108145793A (zh) 一种高耐磨金刚石锯片
CN113560564A (zh) 一种具有钻-磨复合功能的纳米金刚石多层钎焊钻头的制备方法
CN103600213B (zh) 一种棒料热剪切机刀板刃口的制备方法
CN106835121A (zh) 一种强化截齿的制备方法
CN100462478C (zh) Cvd金刚石涂层刀具的微波等离子退涂、重涂方法
CN110643931B (zh) 一种盾构刀具耐磨涂层及制备方法
CN100404448C (zh) 玻璃切磨两用锯片及其制作方法
CN110551483B (zh) 制备立方氮化硼碳化钛复合磨料的方法
CN202215247U (zh) 一种微纳陶瓷粒子激光强化的截齿
CN103436879B (zh) 一种激光熔覆强化分流锥的制备方法
CN103436880B (zh) 激光熔覆强化截齿座的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20220624