CN115436191A - Test method for researching shear mechanical properties of rock structural surface by combining photoelastic test - Google Patents
Test method for researching shear mechanical properties of rock structural surface by combining photoelastic test Download PDFInfo
- Publication number
- CN115436191A CN115436191A CN202210966631.3A CN202210966631A CN115436191A CN 115436191 A CN115436191 A CN 115436191A CN 202210966631 A CN202210966631 A CN 202210966631A CN 115436191 A CN115436191 A CN 115436191A
- Authority
- CN
- China
- Prior art keywords
- shear
- test
- normal
- loading
- box
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 104
- 239000011435 rock Substances 0.000 title claims abstract description 56
- 238000010998 test method Methods 0.000 title claims abstract description 31
- 238000006073 displacement reaction Methods 0.000 claims abstract description 36
- 238000010008 shearing Methods 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 18
- 230000008569 process Effects 0.000 claims abstract description 16
- 230000003068 static effect Effects 0.000 claims description 17
- 230000007246 mechanism Effects 0.000 claims description 14
- 238000012544 monitoring process Methods 0.000 claims description 9
- 238000007667 floating Methods 0.000 claims description 7
- 238000011160 research Methods 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 claims description 4
- 239000003638 chemical reducing agent Substances 0.000 claims description 3
- 239000003351 stiffener Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 abstract description 4
- 230000003287 optical effect Effects 0.000 abstract description 3
- 238000007405 data analysis Methods 0.000 abstract 1
- 238000010191 image analysis Methods 0.000 abstract 1
- 238000002360 preparation method Methods 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 31
- 238000012545 processing Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 2
- 230000036316 preload Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 101100327917 Caenorhabditis elegans chup-1 gene Proteins 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/24—Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0025—Shearing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/0202—Control of the test
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种结合光弹试验研究岩石结构面剪切力学特性的试验方法,属于岩石力学工程技术领域。The invention relates to a test method for studying the shear mechanical properties of a rock structural plane combined with a photoelastic test, and belongs to the technical field of rock mechanics engineering.
背景技术Background technique
在漫长的地质作用下,岩体被节理、断层、裂隙等结构面切割,呈现极高的不连续性,纵横交错、成因复杂的结构面控制着岩体的力学行为。在实际工程实践中,岩体结构面的剪切变形是岩体工程中常见的一种破坏模式,剪切变形会导致致岩体结构失稳、诱发地震、岩爆等地质灾害的。因此,研究岩体结构面的剪切力学特性有利于揭示裂隙岩体失稳机理及其破坏机制,对岩体工程的设计、施工及运营维护全过程具有十分重要的意义。Under the long-term geological action, the rock mass is cut by structural planes such as joints, faults, and fissures, showing extremely high discontinuity. The crisscross structural planes with complex origins control the mechanical behavior of the rock mass. In actual engineering practice, the shear deformation of the structural plane of the rock mass is a common failure mode in rock mass engineering. The shear deformation will lead to the instability of the rock mass structure, induce earthquakes, rockbursts and other geological disasters. Therefore, the study of the shear mechanical properties of rock mass discontinuities is conducive to revealing the instability mechanism and failure mechanism of fractured rock mass, and is of great significance to the whole process of rock mass engineering design, construction, operation and maintenance.
目前,有很多观测岩石节理应力状态的技术手段,其中光弹性试验方法可以直观模拟研究岩石节理内部的应力场变化,实时观测岩体结构面的剪切变形特征,有比较强的优越性。通常是在光弹试验平台上进行光弹性试验,而光弹性试验平台是由一整套装置组合而成,其中包括,激光器、起偏镜(1/4波片)、加载装置,检偏镜(1/4波片)和摄像机等装置,但是在进行光弹试验时,由于试验装置或场地等条件的限制,目前常用的试验方法多是在恒定力条件下进行试验,即在试验装置保持恒定的法向荷载和剪切荷载条件下,研究观测岩体结构面的剪切力学特性,没有考虑加载速率和变形速率的影响。然而,这种方法具有很强的局限性,仅适合于模拟锚固岩体边坡和深部工程岩体在结构面受到静荷载作用时的破坏变形过程。对于不同环境中的工程岩体,其所处的受力环境各不相同,进而在结构面发生破坏变形时,其法向加载条件和剪切加载条件形式多种多样,如对于深部硐室的围岩体、锚固岩体边坡等,由于硐室开挖后岩体存在临空面,在地应力作用下,岩石结构面将发生初始的剪切变形,将导致结构面剪切和法向可能同时受到动态荷载的作用,处于动态变化过程中,这种情况下采用动态法向和剪切加载条件更符合工程实际。At present, there are many technical means for observing the stress state of rock joints. Among them, the photoelastic test method can directly simulate and study the stress field changes inside the rock joints, and observe the shear deformation characteristics of the rock mass structural plane in real time, which has a relatively strong advantage. Usually, the photoelasticity test is carried out on the photoelastic test platform, and the photoelastic test platform is composed of a complete set of devices, including laser, polarizer (1/4 wave plate), loading device, analyzer ( 1/4 wave plate) and cameras and other devices, but in the photoelastic test, due to the limitations of the test device or site conditions, most of the commonly used test methods are to test under constant force conditions, that is, when the test device remains constant Under the conditions of normal load and shear load, the study observes the shear mechanical properties of the rock mass structural plane, without considering the influence of loading rate and deformation rate. However, this method has strong limitations and is only suitable for simulating the failure and deformation process of anchored rock mass slopes and deep engineering rock masses when the structural plane is subjected to static loads. For engineering rock masses in different environments, the stress environments they are in are different, and when the structural plane fails and deforms, the normal loading conditions and shear loading conditions are varied. For example, for deep chambers Surrounding rock masses, anchored rock mass slopes, etc., due to the presence of free surfaces in the rock mass after the excavation of the chamber, under the action of in-situ stress, the initial shear deformation of the rock structural surface will occur, which will lead to shear and normal deformation of the structural surface. It may be affected by dynamic load at the same time, and it is in the process of dynamic change. In this case, it is more in line with engineering practice to adopt dynamic normal and shear loading conditions.
根据上述情况,岩体结构面在发生剪切破坏变形的过程中,其法向和剪切的受力都不是保持静止不变的,法向和剪切荷载的加载速率和变形速率都处于动态变化中。目前试验室进行试验研究岩体结构面的剪切力学特性时,考虑的加载条件较为单一,没有完全根据实际工程情况设计试验。因此,在研究结果应用方面不可避免地存在一定的局限性。According to the above situation, during the process of shear failure and deformation of the rock mass structural surface, the normal and shear forces are not kept static, and the loading rate and deformation rate of the normal and shear loads are dynamic. changing. At present, when the laboratory conducts tests to study the shear mechanical properties of rock mass structural planes, the loading conditions considered are relatively simple, and the tests are not completely designed according to the actual engineering conditions. Therefore, there are inevitably some limitations in the application of research results.
发明内容Contents of the invention
本发明所要解决的技术问题在于针对目前常见的试验方法无法研究观测岩体结构面的动态破坏变形特性,而提供了一种结合光弹试验研究岩石结构面剪切力学特性的试验方法,该方法通过自行研制设计的直剪仪可以设置不同的法向加载速率、法向变形速率、剪切加载速率及剪切变形速率。根据拟研究的问题,选择合适的加载速率和变形速率,可以很好地模拟工程岩体结构面的不同受力环境,从而为探究静态荷载或动态荷载作用下岩体结构面的剪切力学特性和变形特性提供试验基础。The technical problem to be solved by the present invention is to provide a test method for studying the shear mechanical properties of the rock structural plane combined with the photoelastic test, aiming at the fact that the current common test methods cannot study and observe the dynamic failure and deformation characteristics of the structural plane of the rock mass. Through the self-developed direct shear instrument, different normal loading rates, normal deformation rates, shear loading rates and shear deformation rates can be set. According to the problem to be studied, choosing the appropriate loading rate and deformation rate can well simulate the different stress environments of the structural surface of the rock mass, so as to explore the shear mechanical properties of the structural surface of the rock mass under static load or dynamic load. and deformation characteristics provide the basis for the experiment.
本发明为解决上述技术问题采用以下技术方案:The present invention adopts the following technical solutions for solving the problems of the technologies described above:
一种结合光弹试验研究岩石结构面剪切力学特性的试验方法,基于光弹试验平台和直剪仪,直剪仪包括:基座单元、加载单元、数据采集单元、控制单元以及剪切盒:A test method for studying the shear mechanical properties of rock structural planes combined with photoelastic tests, based on a photoelastic test platform and a direct shear instrument, the direct shear instrument includes: a base unit, a loading unit, a data acquisition unit, a control unit, and a shear box :
所述基座单元设置于直剪仪的底部,用于承载支撑整个直剪仪的重量,包括底部支撑板和连接在所述底部支撑板底部和地面之间的第一高度调节机构,底部支撑板的底部与光弹试验平台之间连接有第一直线导轨移动副,通过所述第一直线导轨移动副调节直剪仪在光弹试验平台上的位置,通过第一高度可调机构调节所述直剪仪的高度,使得进行光弹试验时光路能依次对准,形成连贯性;The base unit is arranged at the bottom of the direct shear instrument, and is used to bear and support the weight of the entire direct shear instrument, including a bottom support plate and a first height adjustment mechanism connected between the bottom of the bottom support plate and the ground, and the bottom support There is a first linear guide rail moving pair connected between the bottom of the plate and the photoelastic test platform, through which the position of the direct shear instrument on the photoelastic test platform is adjusted, and the first height adjustable mechanism Adjusting the height of the direct shear instrument, so that the light path can be aligned sequentially during the photoelastic test to form continuity;
所述加载单元设置于基座单元上侧,包括刚性框架和设置在所述刚性框架上的法向加载装置、剪切加载装置以及支撑装置,其中,所述法向加载装置和剪切加载装置均采用伺服电动缸,所述法向加载装置的伺服电动缸安装在所述刚性框架的顶部,所述剪切加载装置的伺服电动缸安装在所述刚性框架的左侧;The loading unit is arranged on the upper side of the base unit, and includes a rigid frame and a normal loading device, a shearing loading device and a supporting device arranged on the rigid frame, wherein the normal loading device and the shearing loading device Both adopt servo electric cylinders, the servo electric cylinder of the normal loading device is installed on the top of the rigid frame, and the servo electric cylinder of the shear loading device is installed on the left side of the rigid frame;
所述支撑装置用于在试验过程中对剪切盒进行支撑,包括安装在所述刚性框架右侧的第一支撑装置和安装在刚性框架底部的第二支撑装置;The support device is used to support the shear box during the test, including a first support device installed on the right side of the rigid frame and a second support device installed at the bottom of the rigid frame;
所述刚性框架的右侧设有竖向滑槽,第一支撑装置通过螺丝紧固在所述竖向滑槽上;The right side of the rigid frame is provided with a vertical chute, and the first supporting device is fastened on the vertical chute by screws;
所述第二支撑装置与法向加载装置在同一直线上,通过第二高度调节机构连接在刚性框架的底部;The second supporting device is on the same straight line as the normal loading device, and is connected to the bottom of the rigid frame through a second height adjustment mechanism;
所述数据监测和采集单元,设置于加载单元内部,用于监测和采集试验过程中的试验数据,包括法向压力传感器、切向压力传感器、法向位移传感器和切向位移传感器;The data monitoring and acquisition unit is arranged inside the loading unit for monitoring and collecting test data during the test, including a normal pressure sensor, a tangential pressure sensor, a normal displacement sensor and a tangential displacement sensor;
所述控制单元,其信号输入端与所述数据监测和采集单元连接,信号输出端与所述加载单元连接;The control unit has a signal input terminal connected to the data monitoring and acquisition unit, and a signal output terminal connected to the loading unit;
所述剪切盒,用于放置试验试样,包括几何尺寸相同的上剪切盒和下剪切盒两部分,剪切盒的前后面均无遮板,使得光源可以通过试样,保证光路的连贯性;上剪切盒内壁和下剪切盒内壁都设置有与试样尺寸相吻合的凹槽,试样顺着凹槽放入剪切盒中被紧紧的固定住;The shearing box is used to place the test sample, including two parts of the upper shearing box and the lower shearing box with the same geometric size. There are no shields on the front and back of the shearing box, so that the light source can pass through the sample, ensuring the light path The continuity; the inner wall of the upper shear box and the inner wall of the lower shear box are provided with a groove that matches the size of the sample, and the sample is placed into the shear box along the groove and is tightly fixed;
包括以下步骤:Include the following steps:
步骤一:将直剪仪插电启动后将法向伺服电动缸与剪切伺服电动缸的工作长度调至最短状态,调节基座单元使其与刚性框架底部保持平齐,并将直剪仪调至合适的高度和位置,把制备好的光弹试验试样放入剪切盒中固定住,再将上剪切盒和下剪切盒分别安装到第一顶板和第二顶板上;Step 1: After the direct shear instrument is plugged in and started, adjust the working length of the normal servo electric cylinder and the shear servo electric cylinder to the shortest state, adjust the base unit to keep it flush with the bottom of the rigid frame, and turn the direct shear instrument Adjust to a suitable height and position, put the prepared photoelastic test sample into the shear box and fix it, and then install the upper shear box and the lower shear box on the first top plate and the second top plate respectively;
步骤二:调整剪切盒与顶板的位置,使上剪切盒上端面的中心与法向伺服电动缸驱动端的中心处在同一直线上,下剪切盒左侧面的中心与剪切伺服电动缸驱动端的中心处于同一水平位置,保持节理面初始状态吻合;Step 2: Adjust the position of the shear box and the top plate so that the center of the upper surface of the upper shear box is on the same line as the center of the drive end of the normal servo electric cylinder, and the center of the left side of the lower shear box is in line with the center of the shear servo electric cylinder. The center of the driving end of the cylinder is at the same horizontal position, and the initial state of the joint surface is kept consistent;
步骤三:通过控制单元预先设置目标参数选择不同的加载模式,所述目标参数包括:法向和剪切目标荷载值、加载速率和变形速率,控制法向伺服电动缸与剪切伺服电动缸分别进行预加载直至伺服电动缸驱动端与剪切盒端面刚好完全接触,保持剪切盒稳定,此时上剪切盒沿法向和剪切方向固定,无位移,下剪切盒沿节理面的法向固定,只可以沿剪切方向自由移动,但不允许发生沿节理面法向的位移;Step 3: Select different loading modes by setting target parameters in advance through the control unit. The target parameters include: normal and shear target load values, loading rate and deformation rate, and control the normal servo electric cylinder and the shear servo electric cylinder respectively. Carry out preloading until the drive end of the servo electric cylinder is just in full contact with the end face of the shear box to keep the shear box stable. At this time, the upper shear box is fixed along the normal direction and the shear direction without displacement, and the lower shear box is fixed along the joint surface. The normal direction is fixed, and it can only move freely along the shear direction, but displacement along the normal direction of the joint surface is not allowed;
步骤四:若为静态加载模式,则控制法向电动缸和剪切电动缸分别以恒定的加载速率和变形速率对试样施加法向荷载和剪切荷载至目标值后保持静止恒定;若为动态加载模式,则法向荷载和剪切荷载到达目标值后,继续控制法向电动缸或剪切电动缸按照预设的加载速率和变形速率对试样进行加载,直至法向或剪切位移到达一定值时结束试验,控制单元采集试验过程中传感器的数据且处理为相应曲线,同时使用高速摄像机实时拍摄记录整个加载过程中试样变化的照片;Step 4: If it is a static loading mode, control the normal electric cylinder and the shear electric cylinder to apply the normal load and the shear load to the sample at a constant loading rate and deformation rate respectively, and then keep it static and constant; if it is In dynamic loading mode, after the normal load and shear load reach the target value, continue to control the normal electric cylinder or shear electric cylinder to load the sample according to the preset loading rate and deformation rate until the normal or shear displacement End the test when it reaches a certain value, the control unit collects the data of the sensor during the test and processes it into a corresponding curve, and uses a high-speed camera to shoot and record photos of the sample changes during the entire loading process in real time;
步骤五:加载结束后,将加载装置归位,先卸载剪切方向荷载,法向荷载不动,以防法向荷载卸载时,剪切方向突然变形,等到剪切加载装置与剪切盒不接触后,再卸载法向荷载;最后取下剪切盒,将试样拆除、清理,然后进行下一组试验;Step 5: After the loading is finished, return the loading device to its original position, unload the load in the shear direction first, and keep the normal load in place to prevent sudden deformation in the shear direction when the normal load is unloaded. After contact, unload the normal load; finally remove the shear box, remove and clean the sample, and then proceed to the next set of tests;
步骤六:试验结束后基于试验过程中采集的图像和各项数据,根据光弹试验原理模拟分析岩体结构面的剪切力学特性和变形特征。Step 6: After the test, based on the images and various data collected during the test, simulate and analyze the shear mechanical properties and deformation characteristics of the rock mass structural surface according to the principle of photoelastic test.
所述第一高度调节机构包括脚杯和支撑柱,所述支撑柱通过脚杯上的第一丝杆安装于所述脚杯上。The first height adjustment mechanism includes a foot cup and a support column, and the support column is installed on the foot cup through a first screw rod on the foot cup.
所述刚性框架内、外侧都设置有加强筋,防止进行光弹试验加载时直剪仪出现振动与抖动,保证试验平台的稳定性。Ribs are provided inside and outside the rigid frame to prevent vibration and shaking of the direct shear instrument during photoelastic test loading and ensure the stability of the test platform.
所述伺服电动缸的驱动端上连接有浮动接头,确保加载时与剪切盒充分接触,进而将电动缸施加的负荷完全传递到试样。The driving end of the servo electric cylinder is connected with a floating joint to ensure full contact with the shear box when loading, and then completely transfer the load applied by the electric cylinder to the sample.
所述法向加载装置的伺服电动缸和剪切加载装置的伺服电动缸上都安装有减速机Both the servo electric cylinder of the normal loading device and the servo electric cylinder of the shear loading device are equipped with reducers
所述第一支撑装置包括螺丝、第一顶杆和第一顶板;第一顶杆通过螺丝安装在刚性框架的右侧,第一顶杆的顶端连接所述第一顶板;The first supporting device includes a screw, a first push rod and a first top plate; the first push rod is installed on the right side of the rigid frame through screws, and the top end of the first push rod is connected to the first top plate;
所述第二支撑装置包括第二丝杆、第二顶板和滑槽导轨,第二顶板安装在低阻滑槽导轨上,低阻滑槽导轨通过四个可调高度的第二丝杆固定在刚性框架的底部。The second support device includes a second screw rod, a second top plate and a chute guide rail, the second top plate is installed on the low-resistance chute guide rail, and the low-resistance chute guide rail is fixed on the Bottom of rigid frame.
所述上剪切盒右侧面设有第一滑轨,第一顶板上有第一滑槽,上剪切盒通过所述第一滑轨安装在所述第一顶板的所述第一滑槽上;The right side of the upper shear box is provided with a first slide rail, and the first top plate has a first slide groove, and the upper shear box is installed on the first slide rail of the first top plate through the first slide rail. on the slot;
所述下剪切盒底面设有第二滑轨,第二顶板上设有第二滑槽,下剪切盒通过所述第二滑轨安装在所述第二顶板的所述第二滑槽上。The bottom surface of the lower shearing box is provided with a second slide rail, and the second top plate is provided with a second chute, and the lower shearing box is installed on the second chute of the second top plate through the second slide rail superior.
所述拍摄的图像指用于光弹试验分析的应力光图,采集的试验数据包括,法向荷载、法向位移、剪切荷载、剪切位移;The image taken refers to the stress light map used for photoelastic test analysis, and the collected test data includes normal load, normal displacement, shear load, and shear displacement;
所述静态加载模式指对试样施加的法向与剪切荷载到达目标值后保持不变直到试验结束;The static loading mode refers to that the normal and shear loads applied to the sample remain unchanged until the end of the test after reaching the target value;
动态加载模式分为静态法向-动态剪切加载模式、动态法向-静态剪切加载模式和动态法向-动态剪切加载模式三种情况。The dynamic loading mode is divided into static normal-dynamic shear loading mode, dynamic normal-static shear loading mode and dynamic normal-dynamic shear loading mode.
依据拍摄记录的应力光图和试样结构面法向荷载、法向位移、剪切荷载、剪切位移数据,根据光弹试验原理计算试样的应力场和应变场,绘制法向荷载-法向位移曲线、法向位移-剪切位移曲线、剪切荷载-剪切位移曲线,通过分析得到岩体结构面的剪切力学特性及变形特征。According to the recorded stress light map and the normal load, normal displacement, shear load and shear displacement data of the sample structure surface, the stress field and strain field of the sample are calculated according to the photoelastic test principle, and the normal load-normal The shear mechanical properties and deformation characteristics of the rock mass structural plane are obtained through analysis.
本发明采用以上技术方案与现有技术相比,具有以下技术效果:Compared with the prior art, the present invention adopts the above technical scheme and has the following technical effects:
第一.该试验方法根据光弹试验原理,基于自行设计研制的直剪仪可以精确分析不同加载条件下的岩体结构面剪切力学特性和变形特征,保证了光弹试验的精确性和稳定性。First. According to the principle of photoelastic test, this test method can accurately analyze the shear mechanical properties and deformation characteristics of rock mass structural plane under different loading conditions based on the self-designed direct shear instrument, which ensures the accuracy and stability of photoelastic test.
第二.利用直剪仪的控制系统,可以设置不同的加载速率和变形速率而实现不同加载模式下的岩体结构面剪切试验,如静态加载剪切试验和动态加载剪切试验。。second. Using the control system of the direct shear instrument, different loading rates and deformation rates can be set to achieve rock mass structural plane shear tests under different loading modes, such as static loading shear tests and dynamic loading shear tests. .
第三.该试验方法通过控制配套控制软件预设加载目标参数(法向和剪切目标荷载值、加载速率和变形速率)进而考虑了不同加载模式(静态加载模式或动态加载模式)下岩石结构面发生的剪切破坏,能够更为真实地再现工程岩体剪切破坏过程,并且试验方法简单、易于操作,能够为岩石结构面剪切力学特性和变形特征研究提供试验基础。third. This test method takes into account the occurrence of rock structural planes under different loading modes (static loading mode or dynamic loading mode) by controlling the supporting control software to preset loading target parameters (normal and shear target load values, loading rate and deformation rate). Shear failure can more realistically reproduce the shear failure process of engineering rock mass, and the test method is simple and easy to operate, which can provide an experimental basis for the study of shear mechanical properties and deformation characteristics of rock structural planes.
附图说明Description of drawings
图1是试验方法流程图;Fig. 1 is test method flow chart;
图2是直剪仪的主视图;Fig. 2 is the front view of direct shear instrument;
图3是光弹试验平台的整体示意图;Fig. 3 is the overall schematic diagram of the photoelastic test platform;
图4是直剪仪的剪切盒细节图;Fig. 4 is the detail drawing of the cutting box of the direct shearing instrument;
图5是直剪仪的控制原理方框图;Fig. 5 is the control principle block diagram of direct shear instrument;
图6是直剪仪的控制软件界面图。Fig. 6 is a control software interface diagram of the direct shear instrument.
图中:1是脚杯、2是支撑柱、3是底部支撑板、4是刚性框架、5是螺丝、6是第一顶杆、7是第一顶板、8是法向压力传感器、9是法向浮动接头、10是法向伺服电动缸、11是法向位移传感器、12是剪切位移传感器、13是剪切伺服电动缸、14是剪切浮动接头、15是剪切压力传感器、16是三角板、17是第二丝杆、18是第二顶板、19是低阻滑槽导轨、20是下剪切盒、21是上剪切盒、22是滑块、23是加强筋、24是计算机、25是放大电路、26是信号处理电路、27是控制软件、28是显示屏、29是鼠标、键盘。In the figure: 1 is the foot cup, 2 is the support column, 3 is the bottom support plate, 4 is the rigid frame, 5 is the screw, 6 is the first ejector rod, 7 is the first top plate, 8 is the normal pressure sensor, 9 is the Normal floating joint, 10 is normal servo electric cylinder, 11 is normal displacement sensor, 12 is shear displacement sensor, 13 is shear servo electric cylinder, 14 is shear floating joint, 15 is shear pressure sensor, 16 17 is the second screw rod, 18 is the second top plate, 19 is the low-resistance chute guide rail, 20 is the lower shear box, 21 is the upper shear box, 22 is the slider, 23 is the rib, 24 is Computer, 25, amplifying circuit, 26, signal processing circuit, 27, control software, 28, display screen, 29, mouse, keyboard.
具体实施方式detailed description
下面结合附图和实施例对本发明进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.
如图1、图2、图3、图4、图5、图6所示,本发明提供一种结合光弹试验研究岩石结构面剪切力学特性的试验方法,基于光弹试验平台,其上安装有能结合光弹试验研究岩石节理剪切力学特性的直剪仪,包括基座单元,加载单元,数据监测和采集单元,控制单元以及剪切盒。加载单元位于基座单元上部,基座单元支撑整个直剪仪的重量,数据监测和采集单元安装在加载单元内部,控制单元控制直剪仪的运行。As shown in Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5 and Fig. 6, the present invention provides a test method for studying the shear mechanical properties of rock structural planes in combination with photoelastic tests, based on a photoelastic test platform, on which A direct shear instrument is installed to study the shear mechanical properties of rock joints in combination with photoelastic tests, including a base unit, a loading unit, a data monitoring and acquisition unit, a control unit and a shear box. The loading unit is located on the upper part of the base unit, the base unit supports the weight of the entire direct shear instrument, the data monitoring and acquisition unit is installed inside the loading unit, and the control unit controls the operation of the direct shear instrument.
所述基座单元包括第一高度调节机构和底部支撑板3。第一高度调节机构由四个脚杯1和四个支撑柱2组成。支撑柱2通过脚杯上的第一丝杆被安装于脚杯1上,底部支撑板3通过螺栓被安装在四个支撑柱2上,通过旋转脚杯丝杆实现基座高度的调节,从而保证了该直剪仪在不同高度条件下都可以进行光弹试验,也将直剪仪支撑固定在地面上。底部支撑板底部与光弹试验平台之间连接有第一直线导轨移动副,通过所述第一直线导轨移动副调节直剪仪在光弹试验平台上的位置,通过第一高度可调机构调节所述直剪仪的高度,使得进行光弹试验时光路能依次对准,形成连贯性,材料均采用不锈钢,最大承重可达200kg,如图2、3所示。The base unit includes a first height adjustment mechanism and a
所述加载单元包括法向加载装置,剪切加载装置和支撑装置。加载单元的加载速率和变形速率最高分别可达5KN/s和100mm/s,加载负荷最高可达10KN,试验空间最大可达100mm(法向)×200mm(切向)。法向加载装置和剪切加载装置都是由伺服电动缸和浮动接头组成,伺服电动缸上安装有减速机,确保电动缸能实现稳定的无极调速。支撑装置分为位于刚性框架右侧的第一支撑装置和位于刚性框架底部的第二支撑装置,第一支撑装置从右到左由螺丝5、第一顶杆6和第一顶板7组成,第二支撑装置从上到下由第二顶板18,滑槽导轨19和四个第二丝杆17组成。The loading unit includes a normal loading device, a shear loading device and a supporting device. The loading rate and deformation rate of the loading unit can reach up to 5KN/s and 100mm/s respectively, the loading load can reach up to 10KN, and the test space can reach up to 100mm (normal direction) × 200mm (tangential direction). Both the normal loading device and the shearing loading device are composed of a servo electric cylinder and a floating joint. A reducer is installed on the servo electric cylinder to ensure that the electric cylinder can realize stable stepless speed regulation. The support device is divided into the first support device located on the right side of the rigid frame and the second support device located at the bottom of the rigid frame. The first support device is composed of
刚性框架4采用多层不锈钢材料,内侧设置有三角板16,且内外侧都设置有加强筋23进行加固,保证在试验加载过程中刚性框架不会发生变形,防止直剪仪振动或抖动影响试验结果。法向加载装置和剪切加载装置分别设置在刚性框架4的顶部和左侧,浮动接头安装在伺服电动缸上,确保加载时与剪切盒充分接触,进而将电动缸施加的负荷完全传递到试样。第一支撑装置的顶板7安装在第一顶杆6上,第一顶杆通过螺丝5被固定在刚性框架4右侧,第一顶杆6是可伸缩杆。The rigid frame 4 is made of multi-layer stainless steel, with
第二支撑装置与法向加载装置在同一直线上,第二顶板18安装在低阻滑槽导轨19上,通过四个可调高度的第二丝杆17被固定在刚性框架4的底部,既实现了剪切盒在切向能水平左右滑动,又最大程度避免了摩擦力对试验的影响。第一支撑装置和第二支撑装置的长度和位置都可进行调节,保证光源能完整透过试样,保证光路的连贯性与试验的稳定性。第一顶板7和第二顶板18上设有滑槽,与上剪切盒21右侧面与下剪切盒20底面的滑轨相吻合,限制了剪切盒在试验时只能沿着特定方向滑动,如图2、3所示。The second supporting device is on the same straight line as the normal loading device, and the second
所述数据监测和采集单元包括与计算机相连接的法向压力传感器8、法向位移传感器11、剪切压力传感器15、剪切位移传感器11和信号处理电路26。压力传感器设置在浮动接头上,可以实时监测和采集施加在试样上的负荷。位移传感器分别设置在伺服电动缸上,可以实时监测和采集试样的变形位移,如图2、3所示。The data monitoring and acquisition unit includes a
所述控制单元包括计算机24、放大电路25、信号处理电路26、控制软件27和显示屏28。传感器采集到的数据经过信号处理电路26处理后,再经放大电路25传输给控制软件27,计算机24一端连接控制软件27,另一端连接加载单元。显示屏28会显示自行设计的配套控制软件界面27,通过控制软件设置试验中的目标参数法向和剪切目标荷载值、加载速率和变形速率可以实现不同的加载模式静态加载模式和动态加载模式。传感器采集到的数据和目标参数作为输出信号被采集、存储在计算机24中,经过计算机24的处理之后作为伺服加载机制的输入信号,形成直剪仪的闭环控制。显示屏28会实时显示加载速率,变形速率、位移和负荷等参数,以及负荷-时间曲线和位移-时间曲线等。控制软件27后期可升级,以满足新的加载模式或参数要求,如图5、6所示。The control unit includes a
所述剪切盒用于放置光弹试样,包括几何尺寸相同的上剪切盒21和下剪切盒20两部分,剪切盒的前后面无遮板,以便利用高速摄像机拍摄记录节理试样的变形破坏过程。上下剪切盒内壁都有凹槽,试样顺着凹槽放入剪切盒中被紧紧的固定住,确保试样在试验过程中不会发生错动和滑移。上剪切盒21右侧面和下剪切盒20底面都设置有滑轨,分别与第一顶板7和第二顶板18的滑槽相吻合。确保上剪切盒21可以沿节理面的法向自由移动,但不能发生沿剪切方向的位移;下剪切盒20可以沿剪切方向自由移动,但不能发生沿节理面法向的位移,确保试验能稳定进行,如图2、3、4所示。The shearing box is used to place the photoelastic sample, and includes two parts, the
本发明的实施例如下所示:Embodiments of the present invention are as follows:
实施例1Example 1
本实施例研究静态加载模式下岩体结构面剪切力学特性的试验方法,试验方法包括如下步骤:This embodiment studies the test method of the shear mechanical properties of the rock mass structural plane under the static loading mode, and the test method includes the following steps:
步骤一:将直剪仪插电启动后将法向伺服电动缸与剪切伺服电动缸的工作长度调至最短状态,调节基座单元使其与刚性框架底部保持平齐,并将直剪仪调至合适的高度和位置,把制备好的光弹试验试样放入剪切盒中固定住,再将上剪切盒和下剪切盒分别安装到第一顶板和第二顶板上;Step 1: After the direct shear instrument is plugged in and started, adjust the working length of the normal servo electric cylinder and the shear servo electric cylinder to the shortest state, adjust the base unit to keep it flush with the bottom of the rigid frame, and turn the direct shear instrument Adjust to a suitable height and position, put the prepared photoelastic test sample into the shear box and fix it, and then install the upper shear box and the lower shear box on the first top plate and the second top plate respectively;
步骤二:调整剪切盒与顶板的位置,使上剪切盒上端面的中心与法向伺服电动缸驱动端的中心处在同一直线上,下剪切盒左侧面的中心与剪切伺服电动缸驱动端的中心处于同一水平位置,保持节理面初始状态吻合;Step 2: Adjust the position of the shear box and the top plate so that the center of the upper surface of the upper shear box is on the same line as the center of the drive end of the normal servo electric cylinder, and the center of the left side of the lower shear box is in line with the center of the shear servo electric cylinder. The center of the driving end of the cylinder is at the same horizontal position, and the initial state of the joint surface is kept consistent;
步骤三:通过控制单元预先设置目标参数,所述目标参数包括:法向和剪切目标荷载值、加载速率和变形速率,控制法向伺服电动缸与剪切伺服电动缸分别进行预加载直至伺服电动缸驱动端与剪切盒端面刚好完全接触,保持剪切盒稳定,此时上剪切盒沿法向和剪切方向固定,无位移,下剪切盒沿节理面的法向固定,只可以沿剪切方向自由移动,但不允许发生沿节理面法向的位移;Step 3: Set the target parameters in advance through the control unit. The target parameters include: normal and shear target load values, loading rate and deformation rate, and control the normal servo electric cylinder and the shear servo electric cylinder respectively to preload until the servo The driving end of the electric cylinder is just in full contact with the end face of the shear box to keep the shear box stable. At this time, the upper shear box is fixed along the normal direction and the shear direction without displacement, and the lower shear box is fixed along the normal direction of the joint surface. It can move freely along the shear direction, but the displacement along the normal direction of the joint surface is not allowed;
步骤四:控制法向电动缸和剪切电动缸分别以恒定的加载速率和变形速率对试样施加法向荷载和剪切荷载至目标值后保持静止恒定,直至到达预定时间时结束试验,控制单元采集试验过程中传感器的数据且处理为相应曲线,同时使用高速摄像机实时拍摄记录整个加载过程中试样变化的照片;Step 4: Control the normal electric cylinder and the shear electric cylinder to apply the normal load and shear load to the sample at a constant loading rate and deformation rate respectively, and then keep it static and constant until the predetermined time is reached. The unit collects the data of the sensor during the test and processes it into a corresponding curve, and uses a high-speed camera to take real-time photos of the changes in the sample during the entire loading process;
步骤五:加载结束后,将加载装置归位,先卸载剪切方向荷载,法向荷载不动,以防法向荷载卸载时,剪切方向突然变形,等到剪切加载装置与剪切盒不接触后,再卸载法向荷载;最后取下剪切盒,将试样拆除、清理,然后进行下一组试验;Step 5: After the loading is finished, return the loading device to its original position, unload the load in the shear direction first, and keep the normal load in place to prevent sudden deformation in the shear direction when the normal load is unloaded. After contact, unload the normal load; finally remove the shear box, remove and clean the sample, and then proceed to the next set of tests;
步骤六:试验结束后基于试验过程中采集的图像和各项数据,根据光弹试验原理模拟分析岩体结构面的剪切力学特性和变形特征。Step 6: After the test, based on the images and various data collected during the test, simulate and analyze the shear mechanical properties and deformation characteristics of the rock mass structural surface according to the principle of photoelastic test.
实施例2Example 2
本实施例研究动态法向-动态剪切加载模式下岩体结构面剪切力学特性的试验方法,试验方法包括如下步骤:This embodiment studies the test method of the shear mechanical properties of the rock mass structural plane under the dynamic normal direction-dynamic shear loading mode, and the test method includes the following steps:
步骤一:将直剪仪插电启动后将法向伺服电动缸与剪切伺服电动缸的工作长度调至最短状态,调节基座单元使其与刚性框架底部保持平齐,并将直剪仪调至合适的高度和位置,把制备好的光弹试验试样放入剪切盒中固定住,再将上剪切盒和下剪切盒分别安装到第一顶板和第二顶板上;Step 1: After the direct shear instrument is plugged in and started, adjust the working length of the normal servo electric cylinder and the shear servo electric cylinder to the shortest state, adjust the base unit to keep it flush with the bottom of the rigid frame, and turn the direct shear instrument Adjust to a suitable height and position, put the prepared photoelastic test sample into the shear box and fix it, and then install the upper shear box and the lower shear box on the first top plate and the second top plate respectively;
步骤二:调整剪切盒与顶板的位置,使上剪切盒上端面的中心与法向伺服电动缸驱动端的中心处在同一直线上,下剪切盒左侧面的中心与剪切伺服电动缸驱动端的中心处于同一水平位置,保持节理面初始状态吻合;Step 2: Adjust the position of the shear box and the top plate so that the center of the upper surface of the upper shear box is on the same line as the center of the drive end of the normal servo electric cylinder, and the center of the left side of the lower shear box is in line with the center of the shear servo electric cylinder. The center of the driving end of the cylinder is at the same horizontal position, and the initial state of the joint surface is kept consistent;
步骤三:通过控制单元预先设置目标参数,所述目标参数包括:法向和剪切目标荷载值、加载速率和变形速率,控制法向伺服电动缸与剪切伺服电动缸分别进行预加载直至伺服电动缸驱动端与剪切盒端面刚好完全接触,保持剪切盒稳定,此时上剪切盒沿法向和剪切方向固定,无位移,下剪切盒沿节理面的法向固定,只可以沿剪切方向自由移动,但不允许发生沿节理面法向的位移;Step 3: Set the target parameters in advance through the control unit. The target parameters include: normal and shear target load values, loading rate and deformation rate, and control the normal servo electric cylinder and the shear servo electric cylinder respectively to preload until the servo The driving end of the electric cylinder is just in full contact with the end face of the shear box to keep the shear box stable. At this time, the upper shear box is fixed along the normal direction and the shear direction without displacement, and the lower shear box is fixed along the normal direction of the joint surface. It can move freely along the shear direction, but the displacement along the normal direction of the joint surface is not allowed;
步骤四:控制法向电动缸和剪切电动缸分别以恒定的加载速率和变形速率对试样施加法向荷载和剪切荷载至目标值后,继续控制法向电动缸和剪切电动缸按照预设的加载速率和变形速率对试样进行加载,直至法向和剪切位移到达一定值时结束试验,控制单元采集试验过程中传感器的数据且处理为相应曲线,同时使用高速摄像机实时拍摄记录整个加载过程中试样变化的照片;Step 4: Control the normal direction electric cylinder and the shear electric cylinder to apply the normal load and shear load to the sample at a constant loading rate and deformation rate respectively to the target value, then continue to control the normal direction electric cylinder and the shear electric cylinder according to Load the sample at the preset loading rate and deformation rate until the test ends when the normal direction and shear displacement reach a certain value. The control unit collects the data of the sensor during the test and processes it into a corresponding curve. At the same time, a high-speed camera is used to shoot and record in real time Photographs of specimen changes throughout the loading process;
步骤五:加载结束后,将加载装置归位,先卸载剪切方向荷载,法向荷载不动,以防法向荷载卸载时,剪切方向突然变形,等到剪切加载装置与剪切盒不接触后,再卸载法向荷载;最后取下剪切盒,将试样拆除、清理,然后进行下一组试验。Step 5: After the loading is finished, return the loading device to its original position, unload the load in the shear direction first, and keep the normal load in place to prevent sudden deformation in the shear direction when the normal load is unloaded. After contact, unload the normal load; finally remove the shear box, remove and clean the sample, and then proceed to the next set of tests.
步骤六:试验结束后基于试验过程中采集的图像和各项数据,根据光弹试验原理模拟分析岩体结构面的剪切力学特性和变形特征。Step 6: After the test, based on the images and various data collected during the test, simulate and analyze the shear mechanical properties and deformation characteristics of the rock mass structural surface according to the principle of photoelastic test.
实施例3Example 3
本实施例研究静态法向-动态剪切加载模式下岩体结构面剪切力学特性的试验方法,试验方法包括如下步骤:This embodiment studies the test method of the shear mechanical properties of the rock mass structural plane under the static normal direction-dynamic shear loading mode, and the test method includes the following steps:
基于实施例2,并且,在步骤四中先通过直剪仪法向加载装置和剪切加载装置分别以恒定的加载速率和变形速率对试样施加法向荷载和剪切荷载到达目标值后,法向加载装置保持荷载目标值不动,只需剪切加载装置按照预设的加载速率和变形速率对试样继续进行加载。Based on
实施例4Example 4
本实施例研究动态法向-静态剪切加载模式下岩体结构面剪切力学特性的试验方法,试验方法包括如下步骤:This embodiment studies the test method of the shear mechanical properties of the rock mass structural plane under the dynamic normal direction-static shear loading mode, and the test method includes the following steps:
基于实施例2,并且,在步骤四中先通过直剪仪法向加载装置和剪切加载装置分别以恒定的加载速率和变形速率对试样施加法向荷载和剪切荷载到达目标值后,剪切加载装置保持荷载目标值不动,只需法向加载装置按照预设的加载速率和变形速率对试样继续进行加载。Based on
本技术领域技术人员可以理解的是,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。Those skilled in the art can understand that, unless otherwise defined, all terms (including technical terms and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It should also be understood that terms such as those defined in commonly used dictionaries should be understood to have a meaning consistent with the meaning in the context of the prior art, and unless defined as herein, are not to be interpreted in an idealized or overly formal sense Explanation.
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。上面对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。The above embodiments are only to illustrate the technical ideas of the present invention, and can not limit the protection scope of the present invention with this. All technical ideas proposed in accordance with the present invention, any changes made on the basis of technical solutions, all fall within the protection scope of the present invention. Inside. The embodiments of the present invention have been described in detail above, but the present invention is not limited to the above embodiments, and various changes can be made without departing from the gist of the present invention within the scope of knowledge of those skilled in the art. .
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210966631.3A CN115436191B (en) | 2022-08-12 | 2022-08-12 | Test method for researching shear mechanical properties of rock structural surface by combining photoelastic test |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210966631.3A CN115436191B (en) | 2022-08-12 | 2022-08-12 | Test method for researching shear mechanical properties of rock structural surface by combining photoelastic test |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115436191A true CN115436191A (en) | 2022-12-06 |
CN115436191B CN115436191B (en) | 2025-01-17 |
Family
ID=84242627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210966631.3A Active CN115436191B (en) | 2022-08-12 | 2022-08-12 | Test method for researching shear mechanical properties of rock structural surface by combining photoelastic test |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115436191B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116148058A (en) * | 2023-01-04 | 2023-05-23 | 山东科技大学 | Rock mass true triaxial indoor test method based on first unloading and then anchoring |
CN119147391A (en) * | 2024-11-18 | 2024-12-17 | 成都理工大学 | A multi-angle core structural surface rapid shearing device and test method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003294601A (en) * | 2002-04-01 | 2003-10-15 | Tosetsu Doboku Consultant:Kk | Indoor shear testing apparatus for brittle rock |
JP2014044086A (en) * | 2012-08-24 | 2014-03-13 | Chugoku Electric Power Co Inc:The | Dynamic test device |
CN103792133A (en) * | 2014-03-05 | 2014-05-14 | 中国科学院地质与地球物理研究所 | Test system and method for performance test of rock mass structural surface |
CN106596295A (en) * | 2017-01-13 | 2017-04-26 | 中国矿业大学(北京) | Angle-variable subzero-temperature direct shear apparatus for rock and test operation method |
CN111157356A (en) * | 2020-02-17 | 2020-05-15 | 北京科技大学 | A test device for the evolution of frost heave force of ice-bearing cracks in rock mass under stress disturbance |
-
2022
- 2022-08-12 CN CN202210966631.3A patent/CN115436191B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003294601A (en) * | 2002-04-01 | 2003-10-15 | Tosetsu Doboku Consultant:Kk | Indoor shear testing apparatus for brittle rock |
JP2014044086A (en) * | 2012-08-24 | 2014-03-13 | Chugoku Electric Power Co Inc:The | Dynamic test device |
CN103792133A (en) * | 2014-03-05 | 2014-05-14 | 中国科学院地质与地球物理研究所 | Test system and method for performance test of rock mass structural surface |
CN106596295A (en) * | 2017-01-13 | 2017-04-26 | 中国矿业大学(北京) | Angle-variable subzero-temperature direct shear apparatus for rock and test operation method |
CN111157356A (en) * | 2020-02-17 | 2020-05-15 | 北京科技大学 | A test device for the evolution of frost heave force of ice-bearing cracks in rock mass under stress disturbance |
Non-Patent Citations (1)
Title |
---|
冉耀等: "直立岩质切向边坡岩体原位直剪试验研究", 水利水电技术, vol. 50, no. 9, 20 September 2019 (2019-09-20), pages 162 - 167 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116148058A (en) * | 2023-01-04 | 2023-05-23 | 山东科技大学 | Rock mass true triaxial indoor test method based on first unloading and then anchoring |
CN116148058B (en) * | 2023-01-04 | 2024-01-30 | 山东科技大学 | A true triaxial laboratory test method for rock mass based on first unloading and then anchoring |
CN119147391A (en) * | 2024-11-18 | 2024-12-17 | 成都理工大学 | A multi-angle core structural surface rapid shearing device and test method |
Also Published As
Publication number | Publication date |
---|---|
CN115436191B (en) | 2025-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109490085B (en) | A rock impact loading-unloading confining pressure test system and its use method | |
WO2021008009A1 (en) | Dynamic shear test device and method employing single-axis two-way synchronous control electromagnetic loading | |
CN107941615B (en) | Triaxial test machine and test system | |
CN115436191A (en) | Test method for researching shear mechanical properties of rock structural surface by combining photoelastic test | |
CN104913974B (en) | The biaxial stretch-formed fatigue test system of material Micro Mechanical Properties and its method of testing | |
CN114324010B (en) | Multi-directional dynamic shear mechanics test system for rock mass structural plane based on shaking table principle | |
CN109142067B (en) | Experimental method and device for stress wave propagation in rock-like material under gradient static stress | |
CN107014689A (en) | A kind of combination of true triaxial sound plus unloading test system based on Hopkinson pressure bar | |
CN104913977A (en) | Indoor frozen soil model pile static force loading experimental device and method | |
CN210893972U (en) | Uniaxial Bidirectional Synchronous Control Electromagnetic Loading Dynamic Shear Test Device | |
CN106996900B (en) | Axial tension-compression test device and test method under restraint | |
CN204694560U (en) | A kind of indoor frozen soil model stake static loading experimental provision | |
CN108007800A (en) | A kind of model test apparatus and test method for circulating the sedimentation of the dynamic load soil body | |
CN106989995A (en) | A kind of adjustable Rock And Soil of lateral spacing condition vertically compresses ancillary test device | |
CN112665994B (en) | Gravity unloading rock mass dynamic unloading test system and method | |
CN113484163B (en) | Apparatus and method for rheological relaxation coupling impact disturbance test of multi-layer material shear | |
CN207798559U (en) | A kind of three-axis tester and pilot system | |
CN115876983A (en) | Dynamic disturbance testing machine system and method for simulating slope instability in open pits in cold regions | |
CN202153223U (en) | Simulation loading and measurement system for complex deformation of geological soft materials | |
CN110967265A (en) | A coupled dynamic-static loading test system | |
CN209911105U (en) | Structural test loading device capable of keeping lateral direction and axial direction vertical | |
US11639884B2 (en) | Shear control instrument under three-dimensional space condition and control method of shear control instrument | |
CN115343173A (en) | Direct shear apparatus capable of combining photoelastic test to research mechanical characteristics of rock joint shearing | |
CN102288124B (en) | System for simulating, loading and measuring complex deformation of geological soft material | |
CN114755117A (en) | Multidirectional dynamic shear test system and method for soil-rock mixture based on vibration table |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |