CN115428198A - 膜电极接合体及固体高分子型燃料电池 - Google Patents

膜电极接合体及固体高分子型燃料电池 Download PDF

Info

Publication number
CN115428198A
CN115428198A CN202180024275.7A CN202180024275A CN115428198A CN 115428198 A CN115428198 A CN 115428198A CN 202180024275 A CN202180024275 A CN 202180024275A CN 115428198 A CN115428198 A CN 115428198A
Authority
CN
China
Prior art keywords
catalyst layer
electrode
electrode catalyst
volume
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180024275.7A
Other languages
English (en)
Inventor
岸克行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Publication of CN115428198A publication Critical patent/CN115428198A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1065Polymeric electrolyte materials characterised by the form, e.g. perforated or wave-shaped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

提供能够提高发电性能的膜电极接合体及固体高分子型燃料电池。本发明的一个方式涉及的用于固体高分子型燃料电池的膜电极接合体(10)具备:高分子电解质膜(11)、燃料电极侧电极催化剂层(12A)、以及氧电极侧电极催化剂层(12C),燃料电极侧电极催化剂层(12A)和氧电极侧电极催化剂层(12C)各自包含空隙,该空隙包含直径在3nm以上5.5μm以下的范围内的细孔,在将燃料电极侧电极催化剂层(12A)和氧电极侧电极催化剂层(12C)中的全部细孔的细孔容积进行积分而得的值设为第1积分容积的情况下,第1积分容积除以两个电极催化剂层中所含的催化剂物质的质量而得的值在2.8以上4.5以下的范围内。

Description

膜电极接合体及固体高分子型燃料电池
技术领域
本发明涉及膜电极接合体及固体高分子型燃料电池。
背景技术
燃料电池通过氢与氧的化学反应来产生电流。与常规的发电方式相比,燃料电池具有高效率、低环境负荷、并且只有较低的噪音,作为清洁能源而受到关注。特别是,能够在室温附近使用的固体高分子型燃料电池被认为有望应用于车载用电源、家庭用固定电源等。
固体高分子型燃料电池通常具有通过层叠多个单电池而成的结构。单电池具有通过由2个隔板夹着1个膜电极接合体而成的结构。膜电极接合体具备高分子电解质膜、供给燃料气体的燃料电极(阳极)以及供给氧化剂的氧电极(阴极)。燃料电极接合到高分子电解质膜的第1面上,氧电极接合到与第1面相反的第2面上。隔板具有气体流路和冷却水流路。燃料电极和氧电极各自具备电极催化剂层和气体扩散层。在各电极中,电极催化剂层与高分子电解质膜接触。电极催化剂层包含铂系贵金属等的催化剂物质、导电性载体以及高分子电解质。气体扩散层兼具透气性和导电性。
固体高分子型燃料电池通过以下电化学反应而产生电流。首先,在燃料电极的电极催化剂层中,燃料气体中所含的氢被催化剂物质氧化,产生质子和电子。所产生的质子通过电极催化剂层内的高分子电解质以及高分子电解质膜而到达氧电极的电极催化剂层。与质子同时产生的电子则通过电极催化剂层内的导电性载体、气体扩散层、隔板以及外部电路而到达氧电极的电极催化剂层。在氧电极的电极催化剂层中,质子和电子与氧化剂气体中所含的氧反应而生成水。
气体扩散层使从隔板供给的气体扩散,并将该气体供给至电极催化剂层。电极催化剂层具有细孔,该电极催化剂层的细孔输送气体和产生的水等多种物质。燃料电极的细孔需要具有将燃料气体顺利地供给到作为氧化还原的反应场所的三相界面的功能。氧电极的细孔需要具有将氧化剂气体顺利地供给到电极催化剂层内的功能。为了顺利地供给燃料气体和氧气,进而为了提高燃料电池的发电性能,电极催化剂层在细孔之间需要设置间隔以抑制细孔的致密分布。作为抑制细孔的致密分布的结构,例如提出了包含碳颗粒或碳纤维的电极催化剂层(例如,参照专利文献1、2)。
现有技术文献
专利文献
专利文献1:日本特开10-241703号公报
专利文献2:日本专利第5537178号公报
发明内容
发明所要解决的课题
在专利文献1中,通过组合具有彼此不同的粒径(平均一次粒径)的碳颗粒,从而可以抑制电极催化剂层中的细孔的分布变得致密。另外,在专利文献2中,通过组合具有彼此不同的长度的碳纤维,从而可以抑制电极催化剂层中的细孔的分布变得致密。另一方面,即使是碳颗粒的粒径的组合彼此相同的层,根据层的组成和形成层的条件等,细孔的大小和细孔的分布也可能会彼此不同。另外,即使是碳纤维的长度的组合彼此相同的层,同样地,细孔的大小和细孔的分布也可能会彼此不同。由于燃料电池的发电性能根据细孔的大小和细孔的分布而极大地发生变化,因此,从提高发电性能的观点来看,在使用碳颗粒的组合或碳纤维的组合的方法中仍然存在有改进的余地。
本发明是鉴于上述那样的情况而完成的,目的在于提供能够提高发电性能的膜电极接合体及固体高分子型燃料电池。
用于解决课题的手段
用于解决上述课题的膜电极接合体的一个方式是用于固体高分子型燃料电池的膜电极接合体,具备:包含第1面、和与所述第1面相反一侧的面即第2面的固体高分子电解质膜;包含第1催化剂物质、负载所述第1催化剂物质的第1导电性载体、以及第1高分子电解质且与所述第1面接合的燃料电极侧电极催化剂层;以及包含第2催化剂物质、负载所述第2催化剂物质的第2导电性载体、第2高分子电解质、以及纤维状物质且与所述第2面接合的氧电极侧电极催化剂层,所述燃料电极侧电极催化剂层和所述氧电极侧电极催化剂层各自包含空隙,所述空隙包含直径在3nm以上5.5μm以下的范围内的细孔,所述细孔的直径即细孔直径是由通过压汞法测定的细孔容积计算出的值,在将所述燃料电极侧电极催化剂层和所述氧电极侧电极催化剂层中的全部的所述细孔的所述细孔容积进行积分而得的值设为第1积分容积的情况下,所述第1积分容积除以所述两个电极催化剂层中所含的所述催化剂物质的质量即催化剂物质质量而得的值在2.8以上4.5以下的范围内。
用于解决上述课题的固体高分子型燃料电池的一个方式是具备上述膜电极接合体的固体高分子型燃料电池。
发明的效果
根据本发明,能够提高固体高分子型燃料电池的发电性能。
附图说明
[图1]为示意性地示出本发明的第1实施方式的膜电极接合体的结构的剖面图。
[图2]为示意性地示出图1所示的膜电极接合体所具备的电极催化剂层的结构的示意图。
[图3]为示意性地示出具备图1所示的膜电极接合体的固体高分子型燃料电池的构成的分解透视图。
[图4]为示出实施例和比较例中的细孔直径的分布曲线的曲线图。
[图5]为示出实施例和比较例中的细孔直径与积分细孔容积率的关系的曲线图。
[图6]为示出本发明的第2实施方式的电极催化剂层中的细孔直径的分布曲线的一个例子的曲线图。
具体实施方式
[第1实施方式]
参照图1至图5,对电极催化剂层、膜电极接合体以及固体高分子型燃料电池的第1实施方式进行说明。以下,将依次说明膜电极接合体、电极催化剂层、构成固体高分子型燃料电池的单电池的构成、膜电极接合体的制造方法、以及实施例。
[膜电极接合体]
参照图1,对膜电极接合体的构成进行说明。图1示出了沿着膜电极接合体的厚度方向的剖面结构。
如图1所示,膜电极接合体10具备高分子电解质膜11、氧电极侧电极催化剂层12C以及燃料电极侧电极催化剂层12A。高分子电解质膜11是固体状的高分子电解质膜,即,是固体高分子电解质膜。在高分子电解质膜11中的彼此相对的一对面中,氧电极侧电极催化剂层12C接合到一个面上,燃料电极侧电极催化剂层12A接合到另一个面上。在高分子电解质膜11中,燃料电极侧电极催化剂层12A所接合的面是第1面,氧电极侧电极催化剂层12C所接合的面是第2面。氧电极侧电极催化剂层12C是构成氧电极(阴极)的电极催化剂层。燃料电极侧电极催化剂层12A是构成燃料电极(阳极)的电极催化剂层。电极催化剂层12的外周部可以用未图示的垫片等进行密封。
[电极催化剂层]
参照图2,对膜电极接合体10所具备的电极催化剂层的构成进行更具体的说明。需要说明的是,以下说明的电极催化剂层是应用于氧电极侧电极催化剂层12C和燃料电极侧电极催化剂层12A这两者的构成,但是以下构成也可以仅应用于氧电极侧电极催化剂层12C和燃料电极侧电极催化剂层12A中的任意一者。
如图2所示,电极催化剂层12包含催化剂物质21、导电性载体22、高分子电解质23以及纤维状物质24。电极催化剂层12也可以不包含纤维状物质24。具体而言,燃料电极侧电极催化剂层12A可以不包含纤维状物质24。在电极催化剂层12当中,不存在催化剂物质21、导电性载体22、高分子电解质23以及纤维状物质24的部分为空隙。在本实施方式中,在空隙当中,将具有3nm以上5.5μm以下的直径的空隙定义为“细孔”。
在电极催化剂层12中,根据通过压汞法测定的细孔容积Vp计算出的细孔的直径是细孔直径D。需要说明的是,细孔直径D被定义为通过压汞法得到的圆筒模型化后的细孔的直径D。
即,燃料电极侧电极催化剂层12A和氧电极侧电极催化剂层12C各自包含空隙,该空隙包含直径在3nm以上5.5μm以下的范围内的细孔。并且,细孔的直径即细孔直径D是根据通过压汞法测定的细孔容积Vp计算出的值。
这里,对于上述细孔容积Vp的分布进行说明。细孔容积Vp的分布通过细孔容积Vp相对于细孔直径D(3nm≤D≤5.5μm)的分布函数(=dVp/dlogD)(Log微分细孔容积分布)来表示。细孔容积Vp的分布通过压汞法得到。
由于水银具有高的表面张力,因此在使水银进入到细孔中时需要施加预定的压力P。可以根据为了使水银进入到细孔中而施加的压力P和压入到细孔中的水银量来求出细孔容积Vp的分布和比表面积。所施加的压力P与在该压力P下水银能够进入的细孔直径D的关系可以通过被称为Washburn方程的式(1)来表示。需要说明的是,在下式(1)中,γ是水银的表面张力,θ是水银与细孔壁面的接触角。在本实施方式中,将表面张力γ设为0.48N/m,并且将接触角θ设为130°,计算细孔直径D。
D=-4γcosθ/P…式(1)
需要说明的是,当使用压汞法实际进行测定时,通过施加彼此不同的压力P来分别记录所压入的水银的容积。然后,基于上述式(1),将各压力P换算为细孔直径D。另外,假设所压入的水银的容积与细孔容积Vp相等,则将细孔直径从D增加至D+dD时细孔容积Vp的增加量即细孔容积增加量dV相对于细孔直径D作图。该曲线的峰为细孔容积Vp的分布的峰。
在电极催化剂层12中,发电功能的提高所需要的功能为(例如)电极催化剂层12内的三相界面的维持、气体在电极催化剂层12中的扩散、以及电极催化剂层12中所产生的水的排出。并且,为了提高上述功能,电极催化剂层12内需要具有空隙,适当的空隙量由发生电化学反应的催化剂物质量来决定。另外,适于维持三相界面的细孔直径D、适于气体扩散的细孔直径D、以及适于所产生的水的排出的细孔直径D不必相同,适于发电性能的提高的细孔直径D需要包括这些细孔直径D。
从上述观点来看,电极催化剂层12、即燃料电极侧电极催化剂层12A和氧电极侧电极催化剂层12C中的至少一者满足下述条件1至条件3中的至少1者。
[条件1]
在条件1中,表示细孔容积Vp相对于细孔直径D的分布的分布曲线的峰包含在细孔直径D为0.06μm以上0.11μm以下(0.06μm≤D≤0.11μm)的范围内。分布曲线的峰优选包含在细孔直径D为0.07μm以上0.11μm以下(0.07μm≤D≤0.11μm)的范围。通过使分布曲线的峰包含在细孔直径D为0.06μm以上0.11μm以下的范围,可以使电极催化剂层12包含足以使电极催化剂层12具备充分的气体扩散性和排水性的尺寸的空隙。
[条件2]
在电极催化剂层12中,对全部的细孔的细孔容积Vp进行积分而得的值为第1积分容积(ΣVp1)。对细孔直径D为50nm以下的细孔的细孔容积Vp进行积分而得的值为第2积分容积(ΣVp2)。在条件2中,第2积分容积相对于第1积分容积的百分比(ΣVp2/ΣVp1×100)的值在25%以上45%以下的范围内。需要说明的是,各积分容积可以通过在对应于各积分容积的细孔直径D的范围内对细孔容积Vp进行积分来计算得出。
[条件3]
在电极催化剂层12中,对细孔直径D为90nm以上的细孔的细孔容积Vp进行积分而得的值为第3积分容积(ΣVp3)。在条件3中,第3积分容积相对于第1积分容积的百分比(ΣVp3/ΣVp1×100)的值在15%以上35%以下的范围内。需要说明的是,第3积分容积可以通过在细孔直径D为90nm以上的范围内对细孔容积Vp进行积分来计算得出。
如在满足条件3的情况下,在电极催化剂层12中所含的细孔当中,通过以上述比例包含直径相对较大的细孔,从而可以在电极催化剂层12内维持三相界面的同时提高电极催化剂层12中的气体扩散性和所产生的水的排出性。另外,如在满足条件2的情况下,在电极催化剂层12中所含的细孔当中,通过以上述比例包含直径相对较小的细孔,从而可以在电极催化剂层12中维持三相界面的同时提高电极催化剂层12中的气体扩散性和所产生的水的排出性。
需要说明的是,电极催化剂层12的厚度优选在5μm以上30μm以下的范围内。通过使电极催化剂层12的厚度为30μm以下,可以抑制在电极催化剂层12中产生裂纹。另外,在固体高分子型燃料电池中使用电极催化剂层12的情况下,可以抑制气体、所产生的水的扩散性以及导电性的降低,进而可以抑制固体高分子型燃料电池的输出的降低。另外,通过使电极催化剂层12的厚度为5μm以上,使得在电极催化剂层12中难以产生厚度的偏差,可以抑制电极催化剂层12中所含的催化剂物质21和高分子电解质23的分布变得不均匀。需要说明的是,电极催化剂层12的表面的裂纹或厚度不均匀是不优选的,这是因为在将电极催化剂层12用作固体高分子型燃料电池的一部分并且长期运行(使用)固体高分子型燃料电池的情况下,固体高分子型燃料电池的耐久性极有可能受到不利影响。
电极催化剂层12的厚度可以通过例如使用扫描电子显微镜(SEM)观察电极催化剂层12的剖面来进行测量。作为使电极催化剂层12的剖面露出来的方法,例如可以使用离子研磨和超薄切片机等方法。当使电极催化剂层12的剖面露出来时,优选对电极催化剂层12进行冷却。由此,可以减轻对电极催化剂层12所包含的高分子电解质23的损害。
[固体高分子型燃料电池的构成]
参照图3,对具备膜电极接合体10的固体高分子型燃料电池的构成进行说明。以下所说明的构成是固体高分子型燃料电池的一个例子中的构成。另外,图3示出了固体高分子型燃料电池所具备的单电池的构成。固体高分子型燃料电池可以具备多个单电池并且可以是通过层叠多个单电池而成的构成。
如图3所示,固体高分子型燃料电池30具备膜电极接合体10、一对气体扩散层、以及一对隔板。一对气体扩散层是氧电极侧气体扩散层31C和燃料电极侧气体扩散层31A。一对隔板是氧电极侧隔板32C和燃料电极侧隔板32A。
氧电极侧气体扩散层31C与氧电极侧电极催化剂层12C相接触。氧电极侧电极催化剂层12C和氧电极侧气体扩散层31C形成了氧电极(阴极)30C。燃料电极侧气体扩散层31A与燃料电极侧电极催化剂层12A相接触。燃料电极侧电极催化剂层12A和燃料电极侧气体扩散层31A形成了燃料电极(阳极)30A。
在高分子电解质膜11中,接合有氧电极侧电极催化剂层12C的面是氧电极面,接合有燃料电极侧电极催化剂层12A的面为燃料电极面。在氧电极面当中,没有被氧电极侧电极催化剂层12C覆盖的部分是外周部。氧电极侧垫片13C位于外周部。在燃料电极面当中,没有被燃料电极侧电极催化剂层12A覆盖的部分是外周部。燃料电极侧垫片13A位于外周部。通过垫片13C、13A,从而可以抑制气体从各个面的外周部泄漏。
在固体高分子型燃料电池30的厚度方向上,氧电极侧隔板32C和燃料电极侧隔板32A将由膜电极接合体10、以及2个气体扩散层31C、31A形成的多层体夹在中间。氧电极侧隔板32C与氧电极侧气体扩散层31C相对向。燃料电极侧隔板32A与燃料电极侧气体扩散层31A相对向。
在氧电极侧隔板32C中,相对向的一对面分别具有多个凹槽。在一对面当中,与氧电极侧气体扩散层31C相对向的对向面所具有的凹槽是气体流路32Cg。在一对面当中,与对向面相反的一侧的面所具有的凹槽是冷却水流路32Cw。
在燃料电极侧隔板32A中,相对向的一对面分别具有多个凹槽。在一对面当中,与燃料电极侧气体扩散层31A相对向的对向面所具有的凹槽是气体流路32Ag。在一对面当中,与对向面相反的一侧的面所具有的凹槽是冷却水流路32Aw。
各隔板32C、32A具有导电性并且由不透气的材料形成。
在固体高分子型燃料电池30中,氧化剂经由氧电极侧隔板32C的气体流路32Cg而供给到氧电极30C。另外,在固体高分子型燃料电池30中,燃料经由燃料电极侧隔板32A的气体流路32Ag而供给到燃料电极30A。由此,固体高分子型燃料电池30进行发电。需要说明的是,作为氧化剂,例如可列举出空气和氧气等。作为燃料,例如可列举出含有氢的燃料气体和有机燃料等。
在固体高分子型燃料电池30中,在燃料电极30A中发生下述反应式(1)所示的反应。与此相对,在氧电极30C中发生下述反应式(2)所示的反应。
H2→2H++2e-…反应式(1)
1/2O2+2H++2e-→H2O…反应式(2)
这样,本实施方式的固体高分子型燃料电池30是通过向氧电极30C供给含有氧的气体以在氧电极30C中产生水的燃料电池。
如上所述,本实施方式的电极催化剂层12能够应用于燃料电极侧电极催化剂层12A,另外也能够应用于氧电极侧电极催化剂层12C。这里,根据上述反应式(2),在氧电极30C中,由氧、质子和电子产生水。在氧电极30C中产生的水没有排出至氧电极30C外部的情况下,含氧气体向氧电极30C的供给会被水妨碍。由此,固体高分子型燃料电池30的发电性能会降低。在这方面,本实施方式的电极催化剂层12通过满足上述各条件而具有高的排水性,因此通过将这样的电极催化剂层12应用于氧电极30C所具备的氧电极侧电极催化剂层12C,从而可以更加显著地获得提高固体高分子型燃料电池30的发电性能的效果。
[膜电极接合体的制造方法]
以下,对于上述膜电极接合体的制造方法进行说明。
在制造膜电极接合体10时,首先,将催化剂物质21、导电性载体22、高分子电解质23以及纤维状物质24混合在分散介质中以制作混合物,然后通过对该混合物进行分散处理,从而制作催化剂油墨。需要说明的是,可以从催化剂油墨所含的物质中省略纤维状物质24。分散处理可以使用例如行星式球磨机、珠磨机以及超声波均质机等来进行。
催化剂油墨的分散介质可以使用这样的溶剂:不腐蚀催化剂物质21、导电性载体22、高分子电解质23以及纤维状物质24,并且在分散介质的流动性高的状态下,可以溶解高分子电解质23,或者能够将高分子电解质23分散为微细的凝胶。分散介质中可以包含水,水与高分子电解质23的相容性良好。催化剂油墨优选包含挥发性的液体有机溶剂。当溶剂是低级醇时,存在着火的风险,因此优选将水与这样的溶剂混合。在催化剂油墨不会因高分子电解质23的分离而变得白浊或凝胶化的范围内,可以将水与溶剂混合。
通过在将所制作的催化剂油墨涂布到基材上之后进行干燥,从而从催化剂油墨的涂膜中除去溶剂。由此,在基材上形成了电极催化剂层12。可以将高分子电解质膜11或转印用基材用作基材。在将高分子电解质膜11用作基材的情况下,例如可以使用以下方法:将催化剂油墨直接涂布到高分子电解质膜11的表面,然后通过从催化剂油墨的涂膜中除去溶剂,从而形成电极催化剂层12。
在使用转印用基材的情况下,通过在将催化剂油墨涂布在转印用基材上之后对催化剂油墨进行干燥,从而制作带有催化剂层的基材。然后,例如,通过在使带有催化剂层的基材中的电极催化剂层12的表面与高分子电解质膜11接触的状态下进行加热和加压,从而使电极催化剂层12和高分子电解质膜11接合。通过将电极催化剂层12接合于高分子电解质膜11的两面,从而可以制造膜电极接合体10。
可以使用各种涂布方法将催化剂油墨涂布到基材上。涂布方法例如可以列举出模涂布、辊涂布、幕式涂布、喷涂和刮刀法等。涂布方法优选使用模涂布。从涂布期间的中途的膜厚稳定、并且能够进行间歇涂布的方面来看,优选模涂布。作为使催化剂油墨的涂膜干燥的方法,例如可以采用使用热风烘箱的干燥、IR(远红外线)干燥、使用热板的干燥、以及减压干燥等。干燥温度在40℃以上200℃以下的范围内,优选在约40℃以上120℃以下的范围内。干燥时间在0.5分钟以上1小时以下的范围内,优选在约1分钟以上30分钟以下的范围内。
在转印用基材上形成电极催化剂层12的情况下,在转印电极催化剂层12时施加到电极催化剂层12的压力和温度对膜电极接合体10的发电性能产生影响。为了获得发电性能高的膜电极接合体,施加到多层体的压力优选在0.1MPa以上20MPa以下的范围内。通过使压力为20MPa以下,可以抑制电极催化剂层12被过度压缩。通过使压力为0.1MPa以上,可以抑制由于电极催化剂层12与高分子电解质膜11的接合性降低而导致的发电性能降低。当考虑到提高高分子电解质膜11与电极催化剂层12的界面的接合性、抑制界面电阻时,接合时的温度优选在高分子电解质膜11、或电极催化剂层12所含的高分子电解质23的玻璃化转变点附近。
转印用基材例如可以使用高分子膜和由氟系树脂形成的片材。氟系树脂的转印性优异。作为氟系树脂,例如可以使用乙烯四氟乙烯共聚物(ETFE)、四氟乙烯-六氟丙烯共聚物(FEP)、四氟全氟烷基乙烯基醚共聚物(PFA)、以及聚四氟乙烯(PTFE)等。形成高分子膜的高分子例如可列举出聚酰亚胺、聚对苯二甲酸乙二醇酯、聚酰胺(尼龙(注册商标))、聚砜、聚醚砜、聚苯硫醚、聚醚醚酮、聚醚酰亚胺、聚芳酯、以及聚萘二甲酸乙二醇酯等。转印用基材也可以使用气体扩散层。
电极催化剂层12的细孔的大小和分布可以通过调节加热催化剂油墨涂膜的温度、加热涂膜的速度、直到催化剂油墨干燥的加压条件、纤维状物质24的混合比例、催化剂油墨的溶剂组成、调节催化剂油墨时的分散强度等来进行调节。例如,纤维状物质24的混合比例越高,则对应于分布曲线的峰的细孔直径D越大,第2积分容积相对于第1积分容积的比例越小,第3积分容积相对于第1积分容积的比例越大。
催化剂物质21例如可以使用铂族中所含的金属、铂族以外的金属、以及这些金属的合金、氧化物、复合氧化物以及碳化物等。铂族中所含的金属为铂、钯、钌、铱、铑以及锇。铂族以外的金属可以使用铁、铅、铜、铬、钴、镍、锰、钒、钼、镓以及铝等。
导电性载体22可以使用具有导电性且能够在不被催化剂物质21腐蚀的情况下负载催化剂物质21的载体。导电性载体22可以使用碳颗粒。碳颗粒可以使用(例如)炭黑、石墨、黑铅、活性炭、碳纳米管、碳纳米纤维以及富勒烯。碳颗粒的粒径(平均一次粒径)优选在约10nm以上1000nm以下的范围内、更优选在约10nm以上100nm以下的范围内。通过使粒径为10nm以上,碳颗粒不会过于致密地塞在电极催化剂层12中,由此,可以抑制电极催化剂层12的气体扩散性降低。通过使粒径为1000nm以下,可以防止在电极催化剂层12中产生裂纹。
高分子电解质膜11和电极催化剂层12中所含的高分子电解质可以使用具有质子传导性的电解质。高分子电解质例如可以使用氟系高分子电解质和烃系高分子电解质。氟系高分子电解质可以使用具有四氟乙烯骨架的高分子电解质。需要说明的是,作为具有四氟乙烯骨架的高分子电解质,可以例举出杜邦公司制的Nafion(注册商标)。作为烃系高分子电解质,例如可以使用磺化聚醚酮、磺化聚醚砜、磺化聚醚醚砜、磺化多硫化物、以及磺化聚苯撑等。
高分子电解质膜11中所含的高分子电解质和电极催化剂层12中所含的高分子电解质23可以是彼此相同的电解质,也可以是彼此不同的电解质。但是,考虑到高分子电解质膜11与电极催化剂层12的界面处的界面电阻、湿度变化时的高分子电解质膜11与电极催化剂层12的尺寸变化率,高分子电解质膜11中所含的高分子电解质和电极催化剂层12中所含的高分子电解质23优选为彼此相同的电解质或者彼此类似的电解质。
纤维状物质24可以使用电子传导性纤维和质子传导性纤维。电子传导性纤维可以列举出碳纤维、碳纳米管、碳纳米角以及导电性高分子纳米纤维等。从导电性和分散性的观点来看,优选使用碳纳米纤维作为纤维状物质24。
从可以减少由贵金属形成的催化剂的使用量的观点来看,具有催化能力的电子传导性纤维是更优选的。在电极催化剂层12用作构成氧电极的电极催化剂层、即氧电极侧电极催化剂层12C的情况下,具有催化能力的电子传导性纤维可以列举出由碳纳米纤维制成的碳合金催化剂。具有催化能力的电子传导性纤维也可以是由燃料电极用的电极活性物质形成的纤维。电极活性物质可以使用包含选自由Ta、Nb、Ti以及Zr组成的组中的至少一种过渡金属元素的物质。包含过渡金属元素的物质可以列举出:过渡金属元素的碳氮化物的部分氧化物、或者过渡金属元素的导电性氧化物、以及过渡金属元素的导电性氧氮化物。
质子传导性纤维只要是由具有质子传导性的高分子电解质形成的纤维即可。用于形成质子传导性纤维的材料可以使用氟系高分子电解质和烃系高分子电解质等。氟系高分子电解质例如可以使用:杜邦公司制的Nafion(注册商标)、旭硝子株式会社制的Flemion(注册商标)、旭化成株式会社制的Aciplex(注册商标)以及Gore公司制的Gore Select(注册商标)等。烃系高分子电解质可以使用:磺化聚醚酮、磺化聚醚砜、磺化聚醚醚砜、磺化多硫化物、磺化聚苯撑、磺化聚酰亚胺、以及酸掺杂型聚苯并噁唑等电解质。
纤维状物质24可以仅使用上述纤维当中的一种,也可以使用上述纤维当中的两种以上。作为纤维状物质24,可以一起使用电子传导性纤维和质子传导性纤维。在上述纤维状物质24当中,纤维状物质24优选包含选自由碳纳米纤维、碳纳米管以及电解质纤维构成的组中的至少一者。
纤维状物质24的纤维直径优选在0.5nm以上500nm以下的范围内、更优选在5nm以上200nm以下的范围内。通过将纤维直径设定在0.5nm以上500nm以下的范围内,可以增加电极催化剂层12内的空隙,进而能够提高固体高分子型燃料电池30的输出。纤维状物质24的纤维长度优选在1μm以上50μm以下的范围内、更优选在1μm以上20μm以下的范围内。通过将纤维长度设定在1μm以上50μm以下的范围内,可以提高电极催化剂层12的强度,进而在形成电极催化剂层12时,可以抑制在电极催化剂层12中产生裂纹。此外,可以增加电极催化剂层12内的空隙,进而能够提高固体高分子型燃料电池30的输出。
电极催化剂层12中的催化剂物质21的质量可以根据催化剂层用浆料涂布量或干燥质量求出。另外,可以根据原子吸收光谱分析(AAS)、电感耦合等离子体分析(ICP-AES)等求出。
[第1实施方式的效果]
如上所述,在本实施方式的膜电极接合体10中,在由燃料电极侧电极催化剂层12A和氧电极侧电极催化剂层12C构成的电极催化剂层12中所含的空隙当中,当将直径在3nm以上5.5μm以下的范围内的空隙设为细孔时,由通过压汞法测定的细孔容积计算出的细孔的直径为细孔直径D,在将全部细孔的细孔容积Vp进行积分而得的值为第1积分容积(ΣVp1)、将细孔直径D为50nm以下的细孔的细孔容积Vp进行积分而得的值为第2积分容积(ΣVp2)的情况下,第2积分容积(ΣVp2)相对于第1积分容积(ΣVp1)的百分比的值可以在25%以上55%以下的范围内、进一步可以在25%以上45%以下的范围内。
另外,在膜电极接合体10中,在由燃料电极侧电极催化剂层12A和氧电极侧电极催化剂层12C构成的电极催化剂层12中所含的空隙当中,当将直径在3nm以上5.5μm以下的范围内的空隙设为细孔时,由通过压汞法测定的细孔容积计算出的细孔的直径为细孔直径D,在将全部细孔的细孔容积Vp进行积分而得的值为第1积分容积(ΣVp1)、将细孔直径D为90nm以上的细孔的细孔容积Vp进行积分而得的值为第3积分容积(ΣVp3)的情况下,第3积分容积(ΣVp3)相对于第1积分容积(ΣVp1)的百分比的值可以在10%以上35%以下的范围内、进一步可以在15%以上35%以下的范围内。
根据上述各构成,能够在维持三相界面的同时提高气体的扩散性和所产生的水的排出性,由此能够提高发电性能。
另外,在膜电极接合体10中,如后所述,将全部细孔的细孔容积Vp进行积分而得的积分容积V相对于电极催化剂层12的体积Vo的百分比的值可以在65%以上90%以下的范围内。根据上述构成,电极催化剂层12可以具有更充分的气体扩散性和排水性。
另外,在膜电极接合体10中,纤维状物质24可以包含选自电子传导性纤维和质子传导性纤维中的一种或两种以上的纤维状物质,电子传导性纤维可以包含选自由碳纳米纤维、碳纳米管、以及含过渡金属的纤维构成的组中的至少一种。
另外,在膜电极接合体10中,在将燃料电极侧电极催化剂层12A中所含的纤维状物质24设为第1纤维状物质、将氧电极侧电极催化剂层12C中所含的纤维状物质24设为第2纤维状物质的情况下,燃料电极侧电极催化剂层12A的每单位体积的第1纤维状物质的质量可以大于氧电极侧电极催化剂层12C的每单位体积的第2纤维状物质的质量。
根据上述构成,通过使燃料电极侧电极催化剂层12A的每单位体积的纤维状物质24的质量大于氧电极侧电极催化剂层12C的每单位体积的第2纤维状物质的质量,从而燃料电极侧电极催化剂层12A比氧电极侧电极催化剂层12C更容易包含具有更大的细孔直径D的细孔。由此,燃料气体更有效地流入膜电极接合体10。
另外,在膜电极接合体10中,氧电极侧电极催化剂层12C可以具有5μm以上30μm以下的范围内的厚度。
另外,在膜电极接合体10中,燃料电极侧电极催化剂层12A可以具有5μm以上20μm以下的范围内的厚度。
根据上述各构成,通过使各电极催化剂层12具有上限值以下的厚度,可以抑制在电极催化剂层12中产生裂纹。另外,在将电极催化剂层12用于固体高分子型燃料电池30的情况下,可以抑制气体和所产生的水的扩散性、以及导电性降低,进而可以抑制固体高分子型燃料电池30的输出降低。另外,通过使电极催化剂层12具有下限值以上的厚度,从而在电极催化剂层12中难以产生厚度的不均匀,可以抑制电极催化剂层12中所含的催化剂物质21、高分子电解质23的分布变得不均匀。
另外,如上所述,本实施方式的固体高分子型燃料电池30具备膜电极接合体10。
根据上述各构成,可以在催化剂物质21的周边确保足够的细孔(空间)。由此,可以在电极催化剂层12内维持三相界面的同时提高电极催化剂层12中的气体的扩散性和所产生的水的排出性。
[实施例]
参照图4和图5,对膜电极接合体的实施例进行说明。
[实施例1]
将铂负载碳催化剂(TEC10E30E、田中贵金属工业(株)制)、水、1-丙醇、高分子电解质(Nafion(注册商标)分散液、和光纯药工业(株)制)、以及碳纳米纤维(VGCF(注册商标)-H、昭和电工(株)制)混合,从而得到了混合物。需要说明的是,在铂负载碳催化剂中,铂催化剂负载在碳颗粒上。将碳颗粒的质量与高分子电解质的质量之比设定为1:1。然后,使用行星式球磨机以300rpm对该混合物进行分散处理60分钟。此时,将直径为5mm的氧化锆球添加至氧化锆容器的三分之一左右。由此,制备了燃料电极用催化剂油墨。需要说明的是,对燃料电极用催化剂油墨进行调整,以使得高分子电解质的质量相对于碳颗粒的质量为100质量%,纤维状物质的质量相对于碳颗粒的质量为100质量%,分散介质中的水的比例为50质量%,催化剂油墨中的固体成分含量为10质量%。
另外,将铂负载碳催化剂(TEC10E50E、田中贵金属工业(株)制)、水、1-丙醇、高分子电解质(Nafion(注册商标)分散液、和光纯药工业(株)制)、以及碳纳米纤维(VGCF(注册商标)-H、昭和电工(株)制)混合,从而得到了混合物。需要说明的是,在铂负载碳催化剂中,铂催化剂负载在碳颗粒上。将碳颗粒的质量与高分子电解质的质量之比设定为1:1。然后,使用行星式球磨机以300rpm对该混合物进行分散处理60分钟。此时,将直径为5mm的氧化锆球添加至氧化锆容器的三分之一左右。由此,制备了氧电极用催化剂油墨。需要说明的是,对氧电极用催化剂油墨进行调整,以使得高分子电解质的质量相对于碳颗粒的质量为100质量%,纤维状物质的质量相对于碳颗粒的质量为100质量%,分散介质中的水的比例为50质量%,催化剂油墨中的固体成分含量为10质量%。
使用狭缝模涂布将各催化剂油墨涂布到高分子电解质膜(Nafion(注册商标)211、Dupont公司制)的两个面上,从而形成了涂膜。需要说明的是,将各催化剂油墨涂布在高分子电解质膜上,以使得氧电极用催化剂油墨在高分子电解质膜的阴极面上的涂膜厚度为150μm,并且燃料电极用催化剂油墨在阳极面上的涂膜厚度为100μm。接着,将形成有涂膜的高分子电解质膜配置于80度的暖风烘箱中,使涂膜干燥直到涂膜不发粘。由此,得到了实施例1的膜电极接合体。
[实施例2]
在制备氧电极用催化剂油墨时,使用了多层碳纳米管(直径60nm~100nm、东京化成工业(株)制)以代替碳纳米纤维(VGCF(注册商标)-H、昭和电工(株)制),除此以外,通过与实施例1相同的方法得到了实施例2的膜电极接合体。
[实施例3]
通过与实施例1相同的方法,制备了各催化剂油墨。使用狭缝模涂布将各催化剂油墨涂布在PTFE膜的表面,从而形成了涂膜。接着,配置于80度的暖风烘箱中,使涂膜干燥直到涂膜不发粘。由此,得到了带有催化剂层的基材。准备了包含氧电极侧电极催化剂层的基材、和包含燃料电极侧电极催化剂层的基材。需要说明的是,将各催化剂油墨涂布在高分子电解质膜上,以使得氧电极用催化剂油墨在高分子电解质膜的阴极面上的涂膜厚度为150μm,并且燃料电极用催化剂油墨在阳极面上的涂膜厚度为60μm。然后,将各个带有催化剂层的基材以各表面相对的方式配置在高分子电解质膜(Nafion(注册商标)211、Dupont公司制)的一对面上,从而形成了层叠体。通过在120℃、5MPa的条件下对层叠体进行热压,从而将2个电极催化剂层接合于高分子电解质膜。接着,通过将PTFE膜从各电极催化剂层上剥离,从而得到了实施例3的膜电极接合体。
[实施例4]
在制备氧电极用催化剂油墨时,将碳纳米纤维(VGCF(注册商标)-H、昭和电工(株)制)的添加量设为实施例1的四分之一。除此以外,通过与实施例1相同的方法,得到了实施例4的膜电极接合体。
[实施例5]
在制备氧电极用催化剂油墨时,将多层碳纳米管(直径60nm~100nm、东京化成工业(株)制)的添加量设为实施例2的二分之一,除此以外,通过与实施例2相同的方法得到了实施例5的膜电极接合体。
[实施例6]
在制备氧电极用催化剂油墨时,将多层碳纳米管(直径60nm~100nm、东京化成工业(株)制)的添加量设为实施例2的四分之一,除此以外,通过与实施例2相同的方法得到了实施例6的膜电极接合体。
[比较例1]
在形成氧电极侧电极催化剂层时,将氧电极用催化剂油墨的涂布量设为实施例1的3倍,除此以外,通过与实施例1相同的方法得到了比较例1的膜电极接合体。
[比较例2]
在制备氧电极用催化剂油墨时,将固体成分比率设为实施例1的二分之一,除此以外,通过与实施例1相同的方法得到了比较例2的膜电极接合体。
[比较例3]
在制备氧电极用催化剂油墨时,不添加碳纳米纤维,除此以外,通过与实施例1相同的方法得到了比较例3的膜电极接合体。
[比较例4]
在制备氧电极用催化剂油墨时,将碳纳米纤维的量设为实施例1的2倍,除此以外,通过与实施例1相同的方法得到了比较例4的膜电极接合体。
[比较例5]
在制备氧电极用催化剂油墨时,将碳纳米纤维的量设为实施例1的3倍,除此以外,通过与实施例1相同的方法得到了比较例5的膜电极接合体。
[基于细孔容积Vp的数值计算]
细孔容积Vp的分布通过压汞法测定。具体而言,使用通过在高分子电解质膜上仅形成氧电极侧电极催化剂层而得的膜电极接合体,并且使用自动孔隙率计(Micromeritics公司制,Autopore IV9510),测定了细孔容积Vp。测定池的容积为约5cm3,水银压入的压力从3kPa增加至400MPa。由此,得到了水银在各压力下的压入量,即细孔容积Vp。使用Washburn方程将压入水银的压力换算为细孔直径D,并制作了细孔容积Vp相对于细孔直径D的分布函数dVp/dlogD的曲线图。需要说明的是,表面张力γ设为0.48N/m,并且接触角θ设为130°。然后,将与该曲线图的峰相对应的细孔直径D读取为细孔直径Dp。
接着,对细孔直径D为3nm以上5.5μm以下的全部细孔的容积进行积分以计算出第1积分容积。另外,对细孔直径D为90nm以上的细孔的容积进行积分以计算出第3积分容积。然后,通过将第3积分容积除以第1积分容积且将所得商乘以100,从而计算出第3积分容积相对于第1积分容积的百分比R(L)。另外,对细孔直径D为50nm以下的细孔的细孔容积进行积分以计算出第2积分容积。然后,通过将第2积分容积除以第1积分容积且将所得商乘以100,从而计算出第2积分容积相对于第1积分容积的百分比R(S)。
[积分细孔容积相对于氧电极侧电极催化剂层的几何体积的计算]
接下来,对细孔直径D为3nm以上5.5μm以下的全部细孔的容积进行积分,从而计算出积分细孔容积V。另外,将利用自动孔隙率计测定时所使用的膜电极接合体的面积乘以厚度,从而计算出膜电极接合体的几何体积。此外,将利用自动孔隙率计测定时所使用的膜电极接合体的面积乘以高分子电解质膜的厚度,从而计算出高分子电解质膜的体积。通过从膜电极接合体的体积减去高分子电解质膜的体积,从而计算出氧电极侧电极催化剂层的几何体积V0。然后,计算出积分细孔容积V相对于氧电极侧电极催化剂层的几何体积V0的百分比(V/V0)。
[电极催化剂层的厚度测量]
通过利用扫描电子显微镜(SEM)观察电极催化剂层的剖面,从而测量电极催化剂层的厚度。具体而言,利用扫描电子显微镜(Hitachi High-Technologies,Ltd.制,FE-SEMS-4800)以1000倍的倍率观察电极催化剂层的剖面。在电极催化剂层的剖面中的30个观测点处测量电极催化剂层的厚度。将30个观测点处的厚度的平均值设为电极催化剂层的厚度。
[发电性能的测定]
在发电性能的测定中,使用了依照新能源和工业技术综合开发机构(NEDO)出版的小册子即“电池评价分析方案”的方法。使用了通过将气体扩散层、垫片以及隔板配置在膜电极接合体的各个面上、并夹紧以具有预定表面压力而得的JARI标准电池作为评价用单电池。然后,依照“电池评价分析方案”中所记载的方法进行了I-V测定。将此时的条件设定为标准条件。另外,将阳极的相对湿度和阴极的相对湿度设为RH100%并进行了I-V测定。将此时的条件设定为高湿条件。
[耐久性的测定]
在耐久性的测定中,将与在发电性能的测定中使用的评价用单电池相同的单电池用作评价用单电池。然后,根据上述“电池评价分析方案”中所记载的湿度循环试验来测定耐久性。
[比较结果]
对于实施例1至实施例6的膜电极接合体所具备的电极催化剂层、以及比较例1至比较例5的膜电极接合体所具备的电极催化剂层中的每一个,以下项目的结果如表1所示。即,在各电极催化剂层中,与细孔容积Vp的分布曲线中的峰对应的细孔直径Dp、第3积分容积相对于第1积分容积的百分比R(L)(%)、以及第2积分容积相对于第1积分容积的百分比R(S)(%)如表1所示。另外,在各电极催化剂层中,第1积分容积V相对于电极催化剂层的体积V0的百分比V/V0(%)、以及电极催化剂层的厚度T(μm)如表1所示。另外,对于具备实施例1至实施例6的膜电极接合体的固体高分子型燃料电池、以及具备比较例1至比较例5的膜电极接合体的固体高分子型燃料电池中的每一个,发电性能和耐久性的测定结果如表1所示。
在发电性能的结果中,在标准条件下,在单电池中,将电压为0.6V时的电流为25A以上的情况设定为“○”,将小于25A的情况设定为“×”。另外,在高湿条件下,在单电池中,将电压为0.6V时的电流为31A以上的情况设定为“○”,将30A以上的情况设定为“△”,将小于30A的情况设定为“×”。关于耐久性,将8000次循环后的氢交叉漏电流小于初始值的8倍的情况设定为“○”,将氢交叉漏电流小于初始值的10倍的情况设定为“△”,将10倍以上的情况设定为“×”。
在实施例1至实施例3的电极催化剂层、以及比较例1至比较例5的电极催化剂层的每一个中,细孔容积Vp的分布曲线如图4所示。另外,在实施例1至实施例3的电极催化剂层、以及比较例1至比较例5的电极催化剂层的每一个中,表示积分细孔容积率与细孔直径D的关系的曲线图如图5所示。
[表1]
Figure BDA0003860778580000211
如表1所示,在实施例1至实施例3的任一者中都可以确认:与细孔容积Vp的分布曲线中的峰对应的细孔直径Dp包含在0.06μm以上0.11μm以下的范围内。在实施例1至实施例3的任一者中都可以确认第3积分容积相对于第1积分容积的百分比R(L)的值包含在15%以上35%以下的范围内,并且可以确认第2积分容积相对于第1积分容积的百分比R(S)的值包含在25%以上45%以下的范围内。
在实施例1至实施例3的任一者中都可以确认,电极催化剂层的厚度T包含在5μm以上30μm以下的范围内。此外,在实施例1至实施例6的任一者中都可以确认:无论测定时的条件如何,发电性能都为“○”或“△”,并且耐久性都为“○”或“△”。即,可以确认,实施例1至实施例6的膜电极接合体是能够构成发电性能和耐久性优异的燃料电池的膜电极接合体。
另一方面,在比较例1至比较例5的任一者中都可以确认,与细孔容积Vp的分布曲线中的峰对应的细孔直径Dp不包含在0.06μm以上0.11μm以下的范围内。在比较例1至比较例5的任一者中都可以确认,第3积分容积相对于第1积分容积的百分比R(L)的值不包含在15%以上35%以下的范围内。在比较例1至比较例5的任一者中都可以确认,第2积分容积相对于第1积分容积的百分比R(S)的值不包含在25%以上45%以下的范围内。
在比较例1中可以确认,电极催化剂层的厚度T超过30μm,另一方面,在比较例2至比较例5中可以确认,电极催化剂层的厚度T包含在5μm以上30μm以下的范围内。
在比较例1至比较例5中可以确认,在标准条件和高湿条件中的至少任意一者中,发电性能为“×”。另外,对于比较例2、3和5,可以确认耐久性均为“×”。这样可以确认,与上述各实施例相比,比较例1至比较例5至少存在发电性能降低、耐久性降低的情况。
如上所述,根据电极催化剂层、膜电极接合体以及燃料电池的第1实施方式,可以得到以下所列举的效果。
(1)在表示细孔容积Vp相对于细孔直径D的分布的分布曲线的峰中在细孔直径Dp在0.06μm以上0.11μm以下的范围内的情况下,电极催化剂层12包含足以具备充分的气体扩散性和排水性的空隙,能够提高发电性能。
(2)在第2积分容积相对于第1积分容积的百分比的值在25%以上45%以下的范围内的情况下,能够在电极催化剂层12中维持三相界面同时提高气体的扩散性和所产生的水的排出性,由此能够提高发电性能。
(3)在第3积分容积相对于第1积分容积的百分比的值在15%以上35%以下的范围内的情况下,能够维持三相界面同时提高气体的扩散性和所产生的水的排出性,由此能够提高发电性能。
(4)在膜电极接合体中,将全部细孔的细孔容积进行积分而得的积分容积V相对于电极催化剂层的体积V0的百分比的值在65%以上90%以下的范围内的情况下,电极催化剂层可以具有更充分的气体扩散性和排水性。
[第2实施方式]
参照图6,对膜电极接合体和固体高分子型燃料电池的第2实施方式进行说明。在第2实施方式中,膜电极结合体的构成与第1实施方式不同。因此,以下,对于这种不同点进行详细地说明,另一方面,对于与第1实施方式共同的构成,使用与第1实施方式相同的符号,并省略该构成的详细说明。
[膜电极接合体]
参照图6,对膜电极接合体10的构成进行说明。需要说明的是,在本实施方式中,氧电极侧电极催化剂层12C包含纤维状物质24,另一方面,燃料电极侧电极催化剂层12A可以包含纤维状物质24,也可以不包含纤维状物质24。需要说明的是,燃料电极侧电极催化剂层12A包含第1催化剂物质、第1导电性载体、以及第1高分子电解质。另外,氧电极侧电极催化剂层12C包含第2催化剂物质、第2导电性载体、第2高分子电解质、以及纤维状物质。第1催化剂物质可以与第2催化剂物质相同,也可以不同。第1导电性载体可以与第2导电性载体相同,也可以不同。第1高分子电解质可以与第2高分子电解质相同,也可以不同。
在各电极催化剂层12当中,即,在燃料电极侧电极催化剂层12A和氧电极侧电极催化剂层12C的每一个中,不存在催化剂物质21、导电性载体22、高分子电解质23、以及纤维状物质24的部分为空隙。在本实施方式中,在空隙当中,将具有3nm以上5.5μm以下的直径的空隙定义为“细孔”。即,膜电极接合体10包含空隙,空隙包含直径为3nm以上5.5μm以下的细孔。
在本实施方式中,细孔直径D即细孔的细孔容积Vp的计算方法等与在第1实施方式中所说明的细孔直径D即细孔的细孔容积Vp的计算方法相同。
即,在膜电极接合体10中,计算出通过压汞法测定的细孔直径D即细孔的细孔容积Vp。需要说明的是,细孔直径D被定义为通过压汞法得到的圆筒模型化后的细孔的直径D。
这里,对于上述细孔容积Vp的分布进行说明。细孔容积Vp的分布通过细孔容积Vp相对于细孔直径D(3nm≤D≤5.5μm)的分布函数(=dVp/dlogD)(Log微分细孔容积分布)来表示。细孔容积Vp的分布通过压汞法得到。细孔容积Vp是细孔当中具有某种细孔直径D的细孔的容积的合计值。
由于水银具有高的表面张力,因此在使水银进入到细孔中时需要施加预定的压力P。可以根据为了使水银进入到细孔中而施加的压力P和压入到细孔中的水银量来求出细孔容积Vp的分布和比表面积。所施加的压力P与在该压力P下水银能够进入的细孔直径D的关系可以通过被称为Washburn方程的式(1)来表示。需要说明的是,在下式(1)中,γ是水银的表面张力,θ是水银与细孔壁面的接触角。在本实施方式中,将表面张力γ设为0.48N/m,并且将接触角θ设为130°,计算细孔直径D。
D=-4γcosθ/P…式(1)
需要说明的是,当使用压汞法实际进行测定时,通过施加彼此不同的压力P来分别记录所压入的水银的容积。然后,基于上述式(1),将各压力P换算为细孔直径D。另外,假设所压入的水银的容积与细孔容积Vp相等,则将细孔直径从D增加至D+dD时细孔容积Vp的增加量即细孔容积增加量dV相对于细孔直径D作图。该曲线的峰为细孔容积Vp的分布的峰。
在膜电极接合体10中,发电性能的提高所需要的功能为(例如)膜电极接合体10所具备的电极催化剂层12内的三相界面的维持、气体在电极催化剂层12中的扩散、电极催化剂层12中所产生的水的排出。为了提高上述功能,电极催化剂层12内需要足够的空隙,该空隙的需要量不是相对于电极催化剂层12的体积而是相对于电极催化剂层12内的催化剂物质量、即电极催化剂层12所含的催化剂物质的质量来确定的。另外,适于维持三相界面的细孔直径D、适于气体扩散的细孔直径D、适于所产生的水的排出的细孔直径D彼此不同。或者,适于维持三相界面的细孔直径D、适于气体扩散的细孔直径D、适于所产生的水的排出的细孔直径D不必相同,而是包括彼此不同的范围。此外,在氧电极侧电极催化剂层12C和燃料电极侧电极催化剂层12A中,适合于各自的气体扩散的细孔直径D也不同。适于发电性能的提高的细孔直径D需要包括这些各细孔直径D。需要说明的是,三相界面是指由高分子电解质、催化剂以及气体所形成的界面。
从上述观点来看,在膜电极接合体10中,具体而言,燃料电极侧电极催化剂层12A和氧电极侧电极催化剂层12C的至少一者满足下述条件4至下述条件7中的至少一者。更优选的是,燃料电极侧电极催化剂层12A和氧电极侧电极催化剂层12C这两者满足下述条件7,并且燃料电极侧电极催化剂层12A和氧电极侧电极催化剂层12C的至少一者满足下述条件4至下述条件6中的至少一者。
[条件4]
表示细孔容积Vp相对于细孔直径D的分布的分布曲线的峰包含在细孔直径D为0.06μm以上0.11μm以下(0.06μm≤D≤0.11μm)的范围内。通过使分布曲线的峰包含在细孔直径D为0.06μm以上0.11μm以下的范围内,对于电极催化剂层12来说,可以使电极催化剂层12包含足以具备充分的气体扩散性和排水性的空隙。
图6示出了表示细孔容积Vp相对于细孔直径D的分布的分布曲线的一个例子。
如图6所示,分布曲线B的峰和分布曲线C的峰包含在细孔直径D为0.06μm以上0.11μm以下的范围内。另一方面,分布曲线A的峰和分布曲线D的峰不包含在细孔直径D为0.06μm以上0.11μm以下的范围内。更详细而言,分布曲线A的峰包含在细孔直径D小于0.06μm的范围内。与此相对,分布曲线D的峰包含在细孔直径D大于0.11μm的范围内。
[条件5]
在膜电极结合体10中,对细孔直径D的整个范围内的细孔的细孔容积Vp进行积分而得的值为第1积分容积(ΣVp1)。对细孔直径D在50nm以下的范围内的细孔的细孔容积Vp进行积分而得的值为第2积分容积(ΣVp2)。在条件5中,第2积分容积相对于第1积分容积的百分比(ΣVp2/ΣVp1×100)的值在25%以上45%以下的范围内。
[条件6]
在膜电极结合体10中,对细孔直径D在100nm以上的范围内的细孔的细孔容积Vp进行积分而得的值为第3积分容积(ΣVp3)。在条件6中,第3积分容积相对于第1积分容积的百分比(ΣVp3/ΣVp1×100)的值在30%以上50%以下的范围内。
如满足条件6的情况那样,在膜电极结合体10所包含的细孔当中,通过以上述比例包含直径相对较大的细孔,从而可以在膜电极结合体10所具备的电极催化剂层12内维持三相界面同时提高电极催化剂层12中的气体扩散性和所产生的水的排出性。另外,如满足条件5的情况那样,在电极催化剂层12所包含的细孔当中,通过以上述范围包含直径相对较小的细孔,从而可以在电极催化剂层12中维持三相界面同时提高电极催化剂层12中的气体扩散性和所产生的水的排出性。
[条件7]
在膜电极接合体10中,对细孔直径D的整个范围内的细孔的细孔容积Vp进行积分而得的值为第1积分容积(ΣVp1)。在条件7中,第1积分容积相对于电极催化剂层12所含的催化剂物质的质量即催化剂物质质量M(ΣVp1/M)在2.8以上4.5以下的范围内。
需要说明的是,在氧电极侧电极催化剂层12C和燃料电极侧电极催化剂层12A这两者都包含纤维状物质24的情况下,燃料电极侧电极催化剂层12A中的每单位体积的纤维状物质(第1纤维状物质)24的质量优选大于氧电极侧电极催化剂层12C中的每单位体积的纤维状物质(第2纤维状物质)24的质量。通过使燃料电极侧电极催化剂层12A中的每单位体积的纤维状物质24的质量大于氧电极侧电极催化剂层12C中的每单位体积的纤维状物质24的质量,从而燃料电极侧电极催化剂层12A比氧电极侧电极催化剂层12C更容易包含具有更大的细孔直径D的细孔。由此,燃料气体更有效地流入膜电极接合体10。需要说明的是,氧电极侧电极催化剂层12C所含的纤维状物质24和燃料电极侧电极催化剂层12A所含的纤维状物质24可以是相同的纤维状物质,也可以是不同的纤维状物质。
需要说明的是,通过利用扫描电子显微镜(SEM)观察膜电极接合体10的剖面,从而能够比较氧电极侧电极催化剂层12C中的纤维状物质24的含量和燃料电极侧电极催化剂层12A中的纤维状物质24的含量。具体而言,利用扫描电子显微镜(Hitachi High-Technologies,Ltd.制、FE-SEM S-4800)以1000倍的倍率观察膜电极接合体10的剖面,由此,从氧电极侧电极催化剂层12C和燃料电极侧电极催化剂层12A的剖面中随机地各抽取30个观测点。然后,从各电极催化剂层12中的30个观测点中随机地抽取1个观测点,依次对比氧电极侧电极催化剂层12C的观测点和燃料电极侧电极催化剂层12A的观测点。通过目视观察各观测点,判定氧电极侧电极催化剂层12C的观测点处的纤维状物质24的含量和燃料电极侧电极催化剂层12A的观测点处的纤维状物质24的含量哪个较大。基于在30个观测点处判定的含量大小的结果,通过多数确定,能够比较氧电极侧电极催化剂层12C中的纤维状物质24的含量和燃料电极侧电极催化剂层12A中的纤维状物质的含量的大小。
例如,在过半数的观测点中,判定燃料电极侧电极催化剂层12A中的纤维状物质24的含量大于氧电极侧电极催化剂层12C中的纤维状物质24的含量。在这种情况下,能够判定燃料电极侧电极催化剂层12A中的每单位体积的纤维状物质24的质量大于氧电极侧电极催化剂层12C中的每单位体积的纤维状物质24的质量。
需要说明的是,氧电极侧电极催化剂层12C优选具有5μm以上30μm以下的范围内的厚度。通过使氧电极侧电极催化剂层12C具有30μm以下的厚度,可以抑制在氧电极侧电极催化剂层12C中产生裂纹。另外,在将氧电极侧电极催化剂层12C用于固体高分子型燃料电池30的情况下,可以抑制气体、所产生的水的扩散性、以及导电性降低,进而可以抑制固体高分子型燃料电池30的输出降低。另外,通过使氧电极侧电极催化剂层12C具有5μm以上的厚度,使得在氧电极侧电极催化剂层12C中难以产生厚度的不均匀,从而可以抑制氧电极侧电极催化剂层12C中所含的催化剂物质21、高分子电解质23的分布变得不均匀。需要说明的是,氧电极侧电极催化剂层12C的表面的裂纹或厚度不均匀是不优选的,这是因为在将氧电极侧电极催化剂层12C用作固体高分子型燃料电池30的一部分并且长时间运行(使用)固体高分子型燃料电池30的情况下,固体高分子型燃料电池30的耐久性极有可能受到不利影响。
另外,燃料电极侧电极催化剂层12A优选具有5μm以上20μm以下的范围内的厚度。通过使燃料电极侧电极催化剂层12A具有20μm以下的厚度,可以抑制在燃料电极侧电极催化剂层12A中产生裂纹。另外,在将燃料电极侧电极催化剂层12A用于固体高分子型燃料电池30的情况下,可以抑制气体的扩散性和导电性降低,进而可以抑制固体高分子型燃料电池30的输出降低。另外,通过使燃料电极侧电极催化剂层12A具有5μm以上的厚度,使得在燃料电极侧电极催化剂层12A中难以产生厚度的不均匀,可以抑制燃料电极侧电极催化剂层12A中所含的催化剂物质21、高分子电解质23的分布变得不均匀。需要说明的是,燃料电极侧电极催化剂层12A的表面的裂纹或厚度不均匀是不优选的,这是因为在将燃料电极侧电极催化剂层12A用作固体高分子型燃料电池30的一部分并且长时间运行(使用)固体高分子型燃料电池30的情况下,固体高分子型燃料电池30的耐久性极有可能受到不利影响。
需要说明的是,各电极催化剂层12的细孔的大小和分布可以通过调节加热催化剂油墨涂膜的温度、加热涂膜的速度、直到催化剂油墨干燥的加压条件、纤维状物质24的混合比例、高分子电解质23的混合比例、催化剂油墨的溶剂组成、调节催化剂油墨时的分散强度等来进行调节。例如,纤维状物质24的混合比例越高,则对应于分布曲线的峰的细孔直径D越大,高分子电解质23的混合比例越小,细孔容积Vp越大。
[第2实施方式的效果]
如上所述,对于本实施方式的燃料电极侧电极催化剂层12A和氧电极侧电极催化剂层12C的每一个,在第1积分容积相对于催化剂物质质量的值在2.8以上4.5以下的范围内的情况下,通过以该范围包含直径相对较大的细孔,可以在电极催化剂层12内维持三相界面同时提高电极催化剂层12中的气体的扩散性和所产生的水的排出性。
另外,在膜电极接合体10中,对于燃料电极侧电极催化剂层12A和氧电极侧电极催化剂层12C的至少一者,在电极催化剂层12所含的空隙当中,当将直径在3nm以上5.5μm以下的范围内的空隙设为细孔时,由通过压汞法测定的细孔容积计算出的细孔的直径为细孔直径D,在将全部细孔的细孔容积Vp进行积分而得的值为第1积分容积(ΣVp1)、将细孔直径D为50nm以下的细孔的细孔容积Vp进行积分而得的值为第2积分容积(ΣVp2)的情况下,第2积分容积(ΣVp2)相对于第1积分容积(ΣVp1)的百分比的值可以在25%以上55%以下的范围内、进一步可以在25%以上45%以下的范围内。
另外,在膜电极接合体10中,对于燃料电极侧电极催化剂层12A和氧电极侧电极催化剂层12C的至少一者,在电极催化剂层12所含的空隙当中,当将直径在3nm以上5.5μm以下的范围内的空隙设为细孔时,由通过压汞法测定的细孔容积计算出的细孔的直径为细孔直径D,在将全部细孔的细孔容积Vp进行积分而得的值为第1积分容积(ΣVp1)、将细孔直径D为90nm以上的细孔的细孔容积Vp进行积分而得的值为第3积分容积(ΣVp3)的情况下,第3积分容积(ΣVp3)相对于第1积分容积(ΣVp1)的百分比的值可以在10%以上35%以下的范围内、进一步可以在15%以上35%以下的范围内。
根据上述各构成,能够在维持三相界面的同时提高气体的扩散性和所产生的水的排出性,由此能够提高发电性能。
另外,在膜电极接合体10中,将全部细孔的细孔容积Vp进行积分而得的积分容积V相对于电极催化剂层12的体积Vo的百分比的值可以在65%以上90%以下的范围内。根据上述构成,电极催化剂层12可以具有更充分的气体扩散性和排水性。
另外,在膜电极接合体10中,纤维状物质24可以包含选自电子传导性纤维和质子传导性纤维中的一种或两种以上的纤维状物质,电子传导性纤维可以包含选自由碳纳米纤维、碳纳米管、以及含过渡金属的纤维构成的组中的至少一种。
另外,在膜电极接合体10中,在将燃料电极侧电极催化剂层12A中所含的纤维状物质24设为第1纤维状物质、将氧电极侧电极催化剂层12C中所含的纤维状物质24设为第2纤维状物质的情况下,燃料电极侧电极催化剂层12A的每单位体积的第1纤维状物质的质量可以大于氧电极侧电极催化剂层12C的每单位体积的第2纤维状物质的质量。
根据上述构成,通过使燃料电极侧电极催化剂层12A的每单位体积的纤维状物质24的质量大于氧电极侧电极催化剂层12C的每单位体积的第2纤维状物质的质量,从而燃料电极侧电极催化剂层12A比氧电极侧电极催化剂层12C更容易包含具有更大的细孔直径D的细孔。由此,燃料气体更有效地流入膜电极接合体10。
另外,在膜电极接合体10中,氧电极侧电极催化剂层12C可以具有5μm以上30μm以下的范围内的厚度。
另外,在膜电极接合体10中,燃料电极侧电极催化剂层12A可以具有5μm以上20μm以下的范围内的厚度。
根据上述各构成,通过使各电极催化剂层12具有上限值以下的厚度,可以抑制在电极催化剂层12中产生裂纹。另外,在将电极催化剂层12用于固体高分子型燃料电池30的情况下,可以抑制气体、所产生的水的扩散性、以及导电性降低,进而可以抑制固体高分子型燃料电池30的输出降低。另外,通过使电极催化剂层12具有下限值以上的厚度,在电极催化剂层12中难以产生厚度的不均匀,从而可以抑制电极催化剂层12中所含的催化剂物质21、高分子电解质23的分布变得不均匀。
另外,如上所述,本实施方式的固体高分子型燃料电池30具备膜电极接合体10。
根据上述各构成,在催化剂物质21的周边可以确保足够的细孔(空间)。由此,可以在电极催化剂层12内维持三相界面同时提高电极催化剂层12中的气体的扩散性和所产生的水的排出性。
[实施例]
参照图6、表2,对膜电极接合体的实施例进行说明。
[实施例7]
将铂负载碳催化剂(TEC10E50E、田中贵金属工业(株)制)、水、1-丙醇、高分子电解质(Nafion(注册商标)分散液、和光纯药工业(株)制)、以及碳纳米纤维(VGCF(注册商标)-H、昭和电工(株)制)混合,从而得到了混合物。需要说明的是,在铂负载碳催化剂中,铂催化剂负载在碳颗粒上。使用行星式球磨机以300rpm对该混合物进行分散处理30分钟。此时,将直径为5mm的氧化锆球添加至氧化锆容器的三分之一左右。需要说明的是,对氧电极用催化剂油墨进行调整,以使得高分子电解质的质量相对于碳颗粒的质量为100质量%,碳纳米纤维的质量相对于碳颗粒的质量为100质量%,分散介质中的水的比例为50质量%,固体成分浓度为10质量%。
另外,将铂负载碳催化剂(TEC10E30E、田中贵金属工业(株)制)、水、1-丙醇、高分子电解质(Nafion(注册商标)分散液、和光纯药工业(株)制)、以及碳纳米纤维(VGCF(注册商标)-H、昭和电工(株)制)混合,从而得到了混合物。需要说明的是,在铂负载碳催化剂中,铂催化剂负载在碳颗粒上。使用行星式球磨机以300rpm对该混合物进行分散处理30分钟。此时,将直径为5mm的氧化锆球添加至氧化锆容器的三分之一左右。需要说明的是,以使高分子电解质的质量相对于碳颗粒的质量为100质量%、碳纳米纤维的质量相对于碳颗粒的质量为100质量%、分散介质中的水的比例为50质量%、固体成分浓度为10质量%的方式制作了燃料电极用催化剂油墨。
使用狭缝模涂布将氧电极用催化剂油墨涂布到高分子电解质膜(Nafion(注册商标)211、Dupont公司制)的一个面上,从而形成了厚度150μm的涂膜。接着,将形成有涂膜的高分子电解质膜配置于80度的暖风烘箱中,使涂膜干燥直到涂膜不发粘,从而形成了氧电极侧电极催化剂层。接着,使用狭缝模涂布将燃料电极用催化剂油墨涂布在高分子电解质膜的另一个面上,从而形成了厚度为100μm的涂膜。接着,将形成有涂膜的高分子电解质膜配置于80度的暖风烘箱中,使涂膜干燥直到涂膜不发粘,从而形成了燃料电极侧电极催化剂层。由此,得到了实施例7的膜电极接合体。
[实施例8]
在实施例7中,在制备氧电极用催化剂油墨时,使用了多层碳纳米管(直径60nm~100nm、东京化成工业(株)制)以代替碳纳米纤维(VGCF(注册商标)-H、昭和电工(株)制),除此以外,通过与实施例7相同的方法得到了实施例8的膜电极接合体。
[实施例9]
在实施例7中,在制备氧电极用催化剂油墨时,将碳纳米纤维的量设为实施例7的二分之一,除此以外,通过与实施例7相同的方法得到了实施例9的膜电极接合体。
[实施例10]
在实施例7中,在制备氧电极用催化剂油墨时,将碳纳米纤维的量设为实施例7的五分之一,除此以外,通过与实施例7相同的方法得到了实施例10的膜电极接合体。
[实施例11]
在实施例7中,在制备氧电极用催化剂油墨时,将高分子电解质的量设为实施例7的三分之二,除此以外,通过与实施例7相同的方法得到了实施例11的膜电极接合体。
[实施例12]
通过与实施例7相同的方法制备了各催化剂油墨。使用狭缝模涂布将氧电极用催化剂油墨涂布在PTFE膜的表面,从而形成了厚度150μm的涂膜。接着,将形成有涂膜的PTFE膜配置于80度的暖风烘箱中,使涂膜干燥直到涂膜不发粘,从而得到了带有氧电极侧电极催化剂层的转印用基材。接着,使用狭缝模涂布将燃料电极用催化剂油墨涂布在另一个PTFE膜的表面,从而形成了厚度为100μm的涂膜。接着,将形成有涂膜的PTFE膜配置于80度的暖风烘箱中,使涂膜干燥直到涂膜不发粘,从而得到了带有燃料电极侧电极催化剂层的转印用基材。
准备高分子电解质膜(Nafion(注册商标)211、Dupont公司制),通过使带有氧电极侧电极催化剂层的转印用基材与高分子电解质膜的一个面相对、并且使带有燃料电极侧电极催化剂层的转印用基材与高分子电解质膜的另一个面相对,从而形成了层叠体。将加热温度设定为120℃,将压力设定为1MPa,对层叠体进行热压。由此,将2个电极催化剂层接合于高分子电解质膜。接着,通过将PTFE膜从各电极催化剂层上剥离,从而得到了实施例12的膜电极接合体。
[比较例6]
在实施例7中,在制备氧电极用催化剂油墨时,将碳纳米纤维的量设为实施例7的2倍,除此以外,通过与实施例7相同的方法得到了比较例6的膜电极接合体。
[比较例7]
在实施例7中,在制备氧电极用催化剂油墨时,将高分子电解质的量设为实施例7的2倍,除此以外,通过与实施例7相同的方法得到了比较例7的膜电极接合体。
[比较例8]
在实施例7中,在制备氧电极用催化剂油墨时,使用了碳纳米管(NC7000、Nanocyl公司制)以代替碳纳米纤维(VGCF(注册商标)-H、昭和电工(株)制),除此以外,通过与实施例7相同的方法得到了比较例8的膜电极接合体。
[比较例9]
在实施例7中,在制备燃料电极用催化剂油墨时,将碳纳米纤维的量设为实施例7的2倍,除此以外,通过与实施例7相同的方法得到了比较例9的膜电极接合体。
[比较例10]
在实施例7中,在制备各催化剂油墨时不添加碳纳米纤维,除此以外,通过与实施例7相同的方法得到了比较例10的膜电极接合体。
[基于细孔容积Vp的数值计算]
细孔容积Vp的分布通过压汞法进行测定。具体而言,准备大致25平方厘米的膜电极接合体,使用自动孔隙率计(Micromeritics公司制,Autopore IV9510),测定了细孔容积Vp。测定池的容积为约5cm3,水银压入的压力从3kPa增加至400MPa。由此,得到了在各压力下水银的压入量,即细孔容积Vp。使用Washburn方程将压入水银的压力换算为细孔直径D,并制作了细孔容积Vp相对于细孔直径D的分布函数dVp/dlogD(Log微分细孔容积分布)的曲线图。需要说明的是,表面张力γ设为0.48N/m,并且接触角θ设为130°。然后,将与该曲线图的峰相对应的细孔直径D读取为细孔直径Dp。
对细孔直径D为3nm以上5.5μm以下的全部细孔的容积进行积分以计算出第1积分容积。对细孔容积为50nm以下的细孔的容积进行积分以计算出第2积分容积,并且对细孔容积为100nm以上的细孔的容积进行积分以算出第3积分容积。然后,通过将第2积分容积除以第1积分容积并且将所得的商乘以100,从而计算出第2积分容积相对于第1积分容积的百分比R(S)。另外,通过将第3积分容积除以第1积分容积并且将所得的商乘以100,从而计算出第3积分容积相对于第1积分容积的百分比R(L)。
[第1积分容积相对于催化剂物质质量的计算]
对由压汞法测量的细孔直径D为3nm以上5.5μm以下的全部细孔的容积进行积分以计算出第1积分容积,将其除以催化剂物质质量而求出。催化剂物质质量采用由催化剂层用浆料涂布量求出的质量或干燥质量。在由涂布量求出催化剂物质质量的情况下,预先求出催化剂层用浆料的固体成分(质量%),根据规定的涂布量和固体成分质量求出。另外,在由干燥质量求出催化剂物质质量的情况下,将电极催化剂层加工为预定的尺寸,对其质量进行称量而求出。
[积分细孔容积相对于电极催化剂层的几何体积的计算]
接下来,对细孔直径D为3nm以上5.5μm以下的全部细孔的容积进行积分,从而计算出积分细孔容积V。另外,将利用自动孔隙率计测定时所使用的膜电极接合体的面积乘以厚度,从而计算出膜电极接合体的几何体积。此外,将利用自动孔隙率计测定时所使用的膜电极接合体的面积乘以高分子电解质膜的厚度,从而计算出高分子电解质膜的体积。通过从膜电极接合体的体积减去高分子电解质膜的体积,从而计算出电极催化剂层的几何体积V0。然后,计算出积分细孔容积V相对于电极催化剂层的几何体积V0的百分比(V/V0)。
[电极催化剂层的厚度测量]
通过利用扫描电子显微镜(SEM)观察膜电极接合体的剖面,从而测量膜电极接合体、阴极侧电极催化剂层、阳极侧电极催化剂层、以及高分子电解质膜的厚度。具体而言,利用扫描电子显微镜(Hitachi High-Technologies,Ltd.制,FE-SEM S-4800)以1000倍的倍率观察膜电极接合体的剖面。在电极催化剂层的剖面中的30个观测点处测量各层的厚度。将30个观测点处的厚度的平均值设为各层的厚度。
[发电性能的测定]
在发电性能的测定中,使用了依照新能源和工业技术综合开发机构(NEDO)出版的小册子即“电池评价分析方案”的方法。使用了通过将气体扩散层、垫片以及隔板配置在膜电极接合体的各个面上、并夹紧以具有预定表面压力而得的JARI标准电池作为评价用单电池。然后,依照“电池评价分析方案”中所记载的方法进行了I-V测定。将此时的条件设定为标准条件。另外,将阳极的相对湿度和阴极的相对湿度设为RH100%并进行了I-V测定。将此时的条件设定为高湿条件。
[耐久性的测定]
在耐久性的测定中,将与在发电性能的测定中使用的评价用单电池相同的单电池用作评价用单电池。然后,根据上述“电池评价分析方案”中所记载的湿度循环试验来测定耐久性。
[比较结果]
对于实施例7至实施例12的膜电极接合体、以及比较例6至比较例10的膜电极接合体中的每一个,各评价项目的结果如表2所示。即,在各膜电极接合体中,第1积分容积相对于构成膜电极接合体的催化剂物质质量M(ΣVp1/M)、以及电极催化剂层的厚度T(μm)如表2所示。另外,在各膜电极接合体中,与细孔容积Vp的分布曲线中的峰相对应的细孔直径Dp、第3积分容积相对于第1积分容积的百分比R(L)(%)、以及第2积分容积相对于第1积分容积的百分比R(S)(%)如表2所示。另外,在各膜电极接合体中,第1积分容积V相对于电极催化剂层的体积V0的百分比V/V0(%)如表2所示。
另外,对于具备实施例7至实施例12的膜电极接合体的固体高分子型燃料电池、以及具备比较例6至比较例10的膜电极接合体的固体高分子型燃料电池中的每一个,发电性能和耐久性的测定结果如表2所示。
在发电性能的结果中,在标准条件下,在单电池中,将电压为0.6V时的电流为25A以上的情况设定为“○”,将小于25A的情况设定为“×”。另外,在高湿条件下,在单电池中,将电压为0.6V时的电流为30A以上的情况设定为“○”,将小于30A的情况设定为“×”。在耐久性中,将10000次循环后的氢交叉漏电流小于初始值的10倍的情况设定为“○”,将10倍以上的情况设定为“×”。
[表2]
Figure BDA0003860778580000371
如表2所示,在实施例7至实施例12的任一者中都可以确认,第1积分容积相对于催化剂物质质量M(ΣVp1/M)在2.8以上4.5以下的范围内。
在实施例7至实施例12的任一者中都可以确认,无论测定时的条件如何,发电性能都为“○”,并且耐久性都为“○”。即,可以确认,实施例7至实施例12的膜电极接合体是能够形成发电性能和耐久性优异的固体高分子型燃料电池的膜电极接合体。
另一方面,在比较例6至比较例10的任一者中都可以确认,第1积分容积相对于催化剂物质质量M(ΣVp1/M)不包含在2.8以上4.5以下的范围内。
在比较例6至比较例10中可以确认,在标准条件和高湿条件中的至少任意一者中,发电性能为“×”。另外,对于比较例7、8、10,可以确认耐久性均为“×”。这样可以确认,与上述各实施例相比,比较例6至比较例10至少存在发电性能降低、耐久性降低的情况。
如上所述,根据膜电极接合体和燃料电池的第2实施方式,可以得到以下所列举的效果。
(5)对于燃料电极侧电极催化剂层12A和氧电极侧电极催化剂层12C中的每一个,在第1积分容积相对于催化剂物质质量的值在2.8以上4.5以下的范围内的情况下,通过以该范围包含直径相对较大的细孔,可以在电极催化剂层12内维持三相界面同时提高电极催化剂层12中的气体的扩散性和所产生的水的排出性。
符号的说明
10…膜电极接合体、11…高分子电解质膜、12…电极催化剂层、12A…燃料电极侧电极催化剂层、12C…氧电极侧电极催化剂层、13A…燃料电极侧垫片、13C…氧电极侧垫片、21…催化剂物质、22…导电性载体、23…高分子电解质、24…纤维状物质、30…固体高分子型燃料电池、30A…燃料电极、30C…氧电极、31A…燃料电极侧气体扩散层、31C…氧电极侧气体扩散层、32A…燃料电极侧隔板、32Ag、32Cg…气体流路、32Aw、32Cw…冷却水流路、32C…氧电极侧隔板

Claims (11)

1.一种膜电极接合体,其用于固体高分子型燃料电池,具备:
包含第1面、和与所述第1面相反一侧的面即第2面的固体高分子电解质膜;
包含第1催化剂物质、负载所述第1催化剂物质的第1导电性载体、以及第1高分子电解质,且与所述第1面接合的燃料电极侧电极催化剂层;
包含第2催化剂物质、负载所述第2催化剂物质的第2导电性载体、第2高分子电解质、以及纤维状物质,且与所述第2面接合的氧电极侧电极催化剂层,
所述燃料电极侧电极催化剂层和所述氧电极侧电极催化剂层各自包含空隙,所述空隙包括直径在3nm以上5.5μm以下范围内的细孔,
所述细孔的直径即细孔直径是由通过压汞法测定的细孔容积计算出的值,
将对所述燃料电极侧电极催化剂层和所述氧电极侧电极催化剂层中的全部的所述细孔的所述细孔容积进行积分而得的值设为第1积分容积时,
所述第1积分容积除以所述两个电极催化剂层中所含的所述催化剂物质的质量即催化剂物质质量而得的值在2.8以上4.5以下的范围内。
2.根据权利要求1所述的膜电极接合体,其中,
在所述燃料电极侧电极催化剂层和所述氧电极侧电极催化剂层的至少一者中,
将对所述细孔直径为50nm以下的所述细孔的所述细孔容积进行积分而得的值设为第2积分容积时,
所述第2积分容积相对于所述第1积分容积的百分比的值在25%以上45%以下的范围内。
3.根据权利要求1或权利要求2所述的膜电极结合体,其中,
在所述燃料电极侧电极催化剂层和所述氧电极侧电极催化剂层的至少一者中,
将对所述细孔直径为90nm以上的所述细孔的所述细孔容积进行积分而得的值设为第3积分容积时,
所述第3积分容积相对于所述第1积分容积的百分比的值在15%以上35%以下的范围内。
4.根据权利要求1至权利要求3中任一项所述的膜电极接合体,其中,
在所述燃料电极侧电极催化剂层和所述氧电极侧电极催化剂层的至少一者中,
表示所述细孔容积相对于所述细孔直径的分布的分布曲线的峰包含在所述细孔直径为0.06μm以上0.11μm以下的范围内。
5.根据权利要求1至权利要求4中任一项所述的膜电极接合体,其中,
所述纤维状物质包含选自电子传导性纤维和质子传导性纤维中的一种或两种以上,
所述电子传导性纤维包含选自由碳纳米纤维、碳纳米管、以及含过渡金属的纤维构成的组中的至少一种。
6.根据权利要求1至权利要求5中任一项所述的膜电极接合体,其中,
所述燃料电极侧电极催化剂层进一步包含纤维状物质,
将所述燃料电极侧电极催化剂层中所含的所述纤维状物质设为第1纤维状物质、并且将所述氧电极侧电极催化剂层中所含的所述纤维状物质设为第2纤维状物质时,
所述燃料电极侧电极催化剂层的每单位体积的所述第1纤维状物质的质量大于所述氧电极侧电极催化剂层的每单位体积的所述第2纤维状物质的质量。
7.根据权利要求1至权利要求6中任一项所述的膜电极接合体,其中,所述氧电极侧电极催化剂层具有5μm以上30μm以下的范围内的厚度。
8.根据权利要求1至权利要求7中任一项所述的膜电极接合体,其中,所述燃料电极侧电极催化剂层具有5μm以上20μm以下的范围内的厚度。
9.根据权利要求1所述的膜电极接合体,其中,
在所述燃料电极侧电极催化剂层和所述氧电极侧电极催化剂层的至少一者中,
将对所述细孔直径为50nm以下的所述细孔的所述细孔容积进行积分而得的值设为第2积分容积时,
所述第2积分容积相对于所述第1积分容积的百分比的值在25%以上55%以下的范围内。
10.根据权利要求1或权利要求9所述的膜电极接合体,其中,
在所述燃料电极侧电极催化剂层和所述氧电极侧电极催化剂层的至少一者中,
将对所述细孔直径为90nm以上的所述细孔的所述细孔容积进行积分而得的值设为第3积分容积时,
所述第3积分容积相对于所述第1积分容积的百分比的值在10%以上35%以下的范围内。
11.一种固体高分子型燃料电池,具备权利要求1至权利要求10中任一项所述的膜电极接合体。
CN202180024275.7A 2020-04-09 2021-04-09 膜电极接合体及固体高分子型燃料电池 Pending CN115428198A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020-070590 2020-04-09
JP2020070590A JP7409207B2 (ja) 2020-04-09 2020-04-09 膜電極接合体、および、固体高分子形燃料電池
PCT/JP2021/015062 WO2021206171A1 (ja) 2020-04-09 2021-04-09 膜電極接合体、および、固体高分子形燃料電池

Publications (1)

Publication Number Publication Date
CN115428198A true CN115428198A (zh) 2022-12-02

Family

ID=78023531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180024275.7A Pending CN115428198A (zh) 2020-04-09 2021-04-09 膜电极接合体及固体高分子型燃料电池

Country Status (5)

Country Link
US (1) US20230052473A1 (zh)
EP (1) EP4135076A4 (zh)
JP (1) JP7409207B2 (zh)
CN (1) CN115428198A (zh)
WO (1) WO2021206171A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153454A1 (ja) * 2022-02-10 2023-08-17 凸版印刷株式会社 膜電極接合体、および、固体高分子形燃料電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5309842B2 (ja) 2008-09-29 2013-10-09 凸版印刷株式会社 膜電極接合体とその製造方法、および固体高分子形燃料電池
JP7275765B2 (ja) 2018-03-30 2023-05-18 凸版印刷株式会社 電極触媒層、膜電極接合体、および、固体高分子形燃料電池
JP7029420B2 (ja) 2019-02-21 2022-03-03 株式会社東芝 二酸化炭素電解セル用電極触媒層、ならびにそれを具備する、電解セルおよび二酸化炭素電解用電解装置

Also Published As

Publication number Publication date
JP2021168244A (ja) 2021-10-21
US20230052473A1 (en) 2023-02-16
EP4135076A4 (en) 2024-05-15
WO2021206171A1 (ja) 2021-10-14
JP7409207B2 (ja) 2024-01-09
EP4135076A1 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
JP2023126365A (ja) 電極触媒層、膜電極接合体及び固体高分子形燃料電池
JP2022087296A (ja) 電極触媒層、膜電極接合体及び固体高分子形燃料電池
US20230317968A1 (en) Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
US20230052473A1 (en) Membrane electrode assembly and polymer electrolyte fuel
US11677081B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP7275765B2 (ja) 電極触媒層、膜電極接合体、および、固体高分子形燃料電池
US11581546B2 (en) Catalyst layer, membrane electrode assembly, and polyelectrolyte fuel cell
JP7205363B2 (ja) 膜電極接合体、および、固体高分子形燃料電池
JP2012212661A (ja) 燃料電池用の電極触媒層、当該電極触媒層の製造方法、燃料電池用の膜電極接合体、および固体高分子形燃料電池
JP2017069056A (ja) 電極触媒層、膜電極接合体および固体高分子形燃料電池
JP6521166B1 (ja) 電極触媒層、膜電極接合体、および、固体高分子形燃料電池
JP6521167B1 (ja) 電極触媒層、膜電極接合体、および、固体高分子形燃料電池
JP7326816B2 (ja) 電極触媒層、膜電極接合体、および、固体高分子形燃料電池
JP6521168B1 (ja) 触媒層、膜電極接合体、固体高分子形燃料電池
JP7205364B2 (ja) 膜電極接合体、および、固体高分子形燃料電池
CN116508179A (zh) 电极催化剂层、膜电极接合体以及固体高分子型燃料电池
CN115803921A (zh) 电极催化剂层、膜电极接合体以及固体高分子型燃料电池
JP2020177828A (ja) 膜電極接合体、および、固体高分子形燃料電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination