CN115413196A - 冷却系统 - Google Patents

冷却系统 Download PDF

Info

Publication number
CN115413196A
CN115413196A CN202210999935.XA CN202210999935A CN115413196A CN 115413196 A CN115413196 A CN 115413196A CN 202210999935 A CN202210999935 A CN 202210999935A CN 115413196 A CN115413196 A CN 115413196A
Authority
CN
China
Prior art keywords
liquid
cooling
air
cooled
liquid outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210999935.XA
Other languages
English (en)
Inventor
田婷
郭晓亮
高兵
井汤博
王剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Youzhuju Network Technology Co Ltd
Original Assignee
Beijing Youzhuju Network Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Youzhuju Network Technology Co Ltd filed Critical Beijing Youzhuju Network Technology Co Ltd
Priority to CN202210999935.XA priority Critical patent/CN115413196A/zh
Publication of CN115413196A publication Critical patent/CN115413196A/zh
Priority to PCT/CN2023/111853 priority patent/WO2024037386A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20281Thermal management, e.g. liquid flow control

Abstract

本公开的实施例提供了一种冷却系统,其包括:冷源,被配置为提供冷却液;风冷部分,被配置为利用气体对电子设备进行冷却,所述风冷部分包括第一进液口和第一出液口,所述第一进液口经由第一管路连接至所述冷源以从所述冷源接收所述冷却液;以及液冷部分,被配置为利用液体对所述电子设备进行冷却,所述液冷部分包括第二进液口和第二出液口,所述第二进液口经由第二管路连接至所述第一出液口以从所述风冷部分接收所述冷却液,所述第二出液口经由第三管路连接至所述冷源以将所述冷却液返回到所述冷源中进行降温。

Description

冷却系统
技术领域
本公开的实施例总体上涉及电子设备冷却技术领域,并且更具体地,涉及一种冷却系统。
背景技术
伴随着5G、云计算、大数据、人工智能等新一代信息通信技术与实体经济融合发展,数据中心正在逐渐从服务部分企业拓展到服务整个社会,成为一种新的基础设施。
数据中心通常需要提前数月、甚至数年进行规划和设计,而数据中心的实际业务需求对算力和网络的要求则是逐渐迭代与清晰化的过程。因此数据中心在前期规划时,往往会遭遇数据中心功率密度的布局和规划与未来真正上线的服务器设备的功率密度不匹配的问题。尤其是在服务器设备的产品形态与数据中心基础设施建设耦合时,这种矛盾尤为明显。如果数据中心所规划的功率密度过低,则无法承载未来高功率密度的服务器设备,尤其是对于图形处理器(GPU)设备,每个机柜只能安装少量高功率密度服务器,这会造成机架位的巨大浪费。而如果数据中心所规划的功率密度过高,则会导致大量的暖通能力无法被有效利用,这对数据中心的初投资是一种巨大的浪费。
因此,存在对于改进的数据中心冷却方案的需要。
发明内容
本公开的目的是提供一种冷却系统,以至少部分地解决上述问题以及其他潜在的问题。
在本公开的一个方面,提供了一种冷却系统,包括:冷源,被配置为提供冷却液;风冷部分,被配置为利用气体对电子设备进行冷却,所述风冷部分包括第一进液口和第一出液口,所述第一进液口经由第一管路连接至所述冷源以从所述冷源接收所述冷却液;以及液冷部分,被配置为利用液体对所述电子设备进行冷却,所述液冷部分包括第二进液口和第二出液口,所述第二进液口经由第二管路连接至所述第一出液口以从所述风冷部分接收所述冷却液,所述第二出液口经由第三管路连接至所述冷源以将所述冷却液返回到所述冷源中进行降温。
在一些实施例中,所述冷却系统还包括:第一旁通支路,连接在所述第二管路与所述第三管路之间,并且被配置为将所述第二管路中的所述冷却液的一部分直接引导到所述第三管路中。
在一些实施例中,所述第一旁通支路包括能够在开启状态和关闭状态之间切换的至少一个第一阀。
在一些实施例中,所述冷源包括:冷却塔,所述冷却塔包括冷却塔出液口和冷却塔回液口,所述冷却塔出液口经由所述第一管路连接至所述第一进液口;以及干冷器,所述干冷器包括干冷器出液口和干冷器回液口,所述干冷器回液口经由所述第三管路连接至所述第二出液口,所述干冷器出液口经由第四管路连接至所述冷却塔回液口。
在一些实施例中,所述的冷却系统还包括:第二旁通支路,连接在所述第四管路与所述第一管路之间,并且被配置为将所述第四管路中的所述冷却液的至少一部分直接引导到所述第一管路中。
在一些实施例中,所述第二旁通支路包括能够在开启状态和关闭状态之间切换的至少一个第二阀。
在一些实施例中,所述第一出液口还经由管路连接至所述冷却塔回液口,所述第二进液口还经由管路连接至所述干冷器出液口,所述第二管路中设置有能够在开启状态和关闭状态之间切换的至少一个第三阀,并且所述第四管路中设置有能够在开启状态和关闭状态之间切换的至少一个第四阀。
在一些实施例中,所述冷源包括冷却塔,所述冷却塔包括冷却塔出液口和冷却塔回液口,所述冷却塔出液口经由所述第一管路连接至所述第一进液口,所述冷却塔回液口经由所述第三管路连接至所述第二出液口。
在一些实施例中,所述风冷部分包括:第一风冷部分,被配置为对所述电子设备的第一部分进行冷却,所述第一风冷部分设置有所述第一进液口和所述第一出液口;以及第二风冷部分,被配置为对所述电子设备的第二部分进行冷却,所述第二风冷部分设置有所述第一进液口和所述第一出液口,其中所述电子设备的第二部分还由所述液冷部分冷却。
在一些实施例中,所述第一风冷部分包括被配置为从所述电子设备的第一部分抽吸气体的第一风墙,并且所述第二风冷部分包括被配置为从所述电子设备的第二部分抽吸气体的第二风墙。
在一些实施例中,所述液冷部分还包括:冷量分配单元,所述冷量分配单元包括彼此进行热交换的第一冷却液循环路径和第二冷却液循环路径,所述第一冷却液循环路径连接至所述第二进液口和所述第二出液口以使所述冷却液在所述第一冷却液循环路径中流动,所述第二冷却液循环路径通过循环管路连接至所述电子设备以将所述第二冷却液循环路径中的另一冷却液提供给所述电子设备。
在一些实施例中,所述冷源还包括水冷式螺杆冷水机组和冰水机中的至少一项。
根据本公开的实施例,通过利用温度阶梯和冷源整合等方式,可以在同一个数据中心基础设施架构下,实现风冷向液冷切换、甚至风冷和液冷混布的高适应型数据中心方案。这种方案能够显著降低数据中心在前期规划过程中的不确定性,同时由于利用温度梯度以及将外部冷源整合等方式,这种高适应型方案使数据中心在各种形态下在节能、节水方面具有良好表现。此外,本公开的实施例在具有灵活部署和高适应性等优点的同时,还可以显著降低数据中心的PUE和WUE。将液冷技术与风冷解决方案有机组合,能够将液冷的优势发挥到极致,以适应数据中心的快速部署。
应当理解,该内容部分中所描述的内容并非旨在限定本公开的实施例的关键特征或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的描述而变得容易理解。
附图说明
结合附图并参考以下详细说明,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标记表示相同或相似的元素,其中:
图1至图3示出了常规冷却系统的结构示意图;
图4至图8示出了根据本公开的一些实施例的冷却系统的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的优选实施例。虽然附图中显示了本公开的优选实施例,然而应该理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了使本公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。
在本文中使用的术语“包括”及其变形表示开放性包括,即“包括但不限于”。除非特别申明,术语“或”表示“和/或”。术语“基于”表示“至少部分地基于”。术语“一个示例实施例”和“一个实施例”表示“至少一个示例实施例”。术语“另一实施例”表示“至少一个另外的实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。
随着芯片功率密度的不断升高,通用服务器的单机柜功率密度还会继续提升。当单机柜功率密度超过一定的限度,例如超过10kW-15kW时,数据中心的房间级空调系统的制冷能力将会面临挑战,此时往往采用近端制冷的方式或者一些特殊的方式来满足服务器设备的散热需求,这就直接影响到机房的规划与设计。
风冷散热方案是由空调系统提供冷量,服务器内置风扇吸入冷风,换热之后将热风排出,使热风散发到数据中心室内,由房间级空调系统带走。传统的风冷散热方案由于散热效率低且需要消耗大量的能源,因此在冷却能力和经济可行性上越来越无法满足数据中心的需求。液冷散热方案由于在提升数据中心的功率密度和降耗节能这两方面的优势,而逐渐成为数据中心建设的一个重要技术方向。在液冷散热方案中,高功率密度的IT设备往往应用冷板液冷技术来降低数据中心的电源使用效率(PUE)和水资源利用率(WUE),同时降低数据中心风冷侧的负担。
图1示出了一种常规冷却系统的结构示意图。如图1所示,该冷却系统采用风冷散热方案来对机柜90中的电子设备(例如服务器设备)进行冷却。该冷却系统包括设置在房间冷池80之外的冷源81和设置在房间冷池80之内的多个列间空调91。列间空调91与机柜90并排设置,用于为机柜90提供冷量。列间空调91需要针对机柜90的功率密度提供足够的冷量,多少个机柜90之间需要间隔设置一个列间空调91是由机柜90所需的冷量决定的。冷源81通过出液管811和回液管812连接至各个列间空调91。冷源81可以经由出液管811将冷却液提供给各个列间空调91,冷却液在列间空调91中吸热升温后可以经由回液管812返回到冷源81中进行降温。以此方式,冷却液可以在冷源81与列间空调91之间循环。
在一些实施例中,如图1所示,可以在房间冷池80中形成封闭冷通道71,从而防止冷风和热风混合造成冷量损失。列间空调91在运行时可以抽取房间冷池80中的空气,并对抽取的空气进行降温而形成冷风,冷风可以沿着第一箭头921所示的方向排放到封闭冷通道71中。封闭冷通道71中的冷风可以沿着第二箭头922所示的方向吹向各个机柜90,从而对机柜90中的服务器设备进行冷却。这种风冷方案的优点是列间空调91与机柜90的距离近,为近端制冷,因而制冷效率较高。在一些情况下,列间空调91与服务器设备甚至可以做到柜级融合,有效提高了风冷制冷效率。
应当理解,在一些实施例中,替代图1中所示的封闭冷通道71,可以房间冷池80中形成封闭热通道,以防止冷风和热风混合造成冷量损失。此外,在一些实施例中,列间空调91可以相对于机柜90布置在其他位置处,例如设置在机柜顶部或者机房底部等。
在一些实施例中,冷源81可以包括冷却塔、干冷器、水冷式螺杆冷水机组、冰水机中的至少一项。
图2示出了一种常规冷却系统的结构示意图。如图2所示,该冷却系统也采用风冷散热方案来对机柜90中的电子设备(例如服务器设备)进行冷却。该冷却系统包括设置在房间冷池80之外的冷源81和设置在房间冷池80之内的两个风墙23。冷源81经由出液管811和回液管812连接至各个风墙23。各个风墙23中可以设置有与出液管811和回液管812连通的散热管,使得冷却液可以从出液管811流入散热管,并且从散热管流入回液管812。风墙23中还可以设置有风扇,风扇用于驱动机柜9中的空气沿第三箭头923所示的方向流向风墙23,使得来自机柜9的热空气被风墙23中的散热管冷却,并且将冷却后的空气沿第四箭头924所示的方向排放到房间冷池80中。在此过程中,风墙23的散热管中的冷却液由于吸热而升温,升温后的冷却液可以经由回液管812流回到冷源81,在冷源81中再次被外部冷却水冷却,进行下一次循环。这种风冷方案的优点是风墙23与机柜90的距离近,为近端制冷,因而制冷效率较高。
在一些实施例中,如图2所示,冷源81包括冷却塔82。冷却塔82可以利用喷淋的冷却水来对其内部的冷却液进行降温。替代地或者备选地,冷源81可以包括干冷器、水冷式螺杆冷水机组、冰水机中的至少一项。
在一些实施例中,如图2所示,为了促进风墙23中的风扇对机柜90中的气体的驱动,可以在机柜90与风墙23之间形成封闭热通道72,使得来自机柜90的气体可以经由封闭热通道72被引导到风墙23中,并且防止冷风和热风混合造成冷量损失。
在一些实施例中,如图2所示,根据天气和地域等情况,该冷却系统还包括补冷装置24。补冷装置24设置在出液管811中,用于将附加的冷量提供给风墙23的散热管。利用补冷装置24可以进一步提高风墙23的冷却能力。
应当理解,在一些实施例中,替代图2中所示的封闭热通道72,可以房间冷池80中形成封闭冷通道,以防止冷风和热风混合造成冷量损失。
图3示出了一种常规冷却系统的结构示意图。如图3所示,该冷却系统总体上包括冷源81、风冷部分2和液冷部分3。液冷部分3用于带走机柜90中的诸如中央处理器(CPU)和图形处理器(GPU)之类的关键器件的热量,风冷部分2用于带走机柜90中的其他器件的热量。
在一些实施例中,如图3所示,冷源81包括冷却塔82和干冷器83。冷却塔82可以利用喷淋的冷却水来对其内部的冷却液进行降温。冷却塔82可以经由第一出液管221和第一回液管222连接至风冷部分2。冷却塔82中的被外部冷却水冷却过的冷却液可以经由第一出液管221流到风冷部分2中,而在风冷部分2中循环的已经升温的冷却液可以经由第一回液管222返回到冷却塔82,再次由冷却塔82冷却。干冷器83可以利用外部空气对其内部的冷却液进行降温。干冷器82可以经由第二出液管321和第二回液管322连接至液冷部分3。干冷器83中的被外部气体冷却过的冷却液可以经由第二出液管321流到液冷部分3中,而在液冷部分3中循环的已经升温的冷却液可以经由第二回液管322返回到干冷器83,再次由干冷器83冷却。
在一些实施例中,如图3所示,风冷部分2包括设置在房间冷池80中的风墙23。风墙23中可以设置有与第一出液管221和第一回液管222连通的散热管,使得冷却液可以从第一出液管221流入散热管,并且从散热管流入第一回液管222。风墙23中还可以设置有风扇,风扇用于驱动机柜90中的空气沿第三箭头923所示的方向流向风墙23,使得来自机柜90的热空气被风墙23中的散热管冷却,并且将冷却后的空气沿第四箭头924所示的方向排放到房间冷池80中。在此过程中,风墙23的散热管中的冷却液由于吸热而升温,升温后的冷却液可以经由第一回液管222流回到冷却塔82,在冷却塔82中再次被外部冷却水冷却,进行下一次循环。
在一些实施例中,如图3所示,为了促进风墙23中的风扇对机柜90中的气体的驱动,可以在机柜90与风墙23之间形成封闭热通道72,使得来自机柜90的气体可以经由封闭热通道72被引导到风墙23中,并且防止冷风和热风混合造成冷量损失。
应当理解,在根据本公开的实施例中,风墙23仅仅是示例性的,其他类型的气体驱动装置或布置是可行的。例如,在一些实施例中,风冷部分2可以包括布置在每个机柜90旁边的列间空调,列间空调连接至第一出液管221和第一回液管222。列间空调可以侧向地向机柜90内部吹风,从而从机柜90内部的器件带走热量。
在一些实施例中,如图3所示,根据天气和地域等情况,第一出液管221中还可以设置有补冷装置24,用于将附加的冷量提供给风冷部分2的循环管路。利用补冷装置24可以进一步提高风冷部分2的冷却能力。
在一些实施例中,如图3所示,液冷部分3包括冷量分配单元(CDU)33。冷量分配单元33通过第二出液管321和第二回液管322连接至干冷器83,并且通过第三出液管341和第三回液管342连接至机柜90,以用于对提供给机柜90的冷量进行分配和管理。第三出液管341和第三回液管342连接到设置在机柜90中的冷板,以用于对诸如CPU和GPU之类的关键器件进行冷却。冷板的供水温度可以高达45~50℃,而回水温度可以高达60℃,因此在大部分地区可以做到全年自然冷却。冷量分配单元33可以将冷却液经由第三出液管341提供给冷板,而在冷板中被加热后的冷却液可以经由第三回液管342返回到冷量分配单元33中。冷量分配单元33可以包括板式换热器,板式换热器连接至第二出液管321和第二回液管322可以形成第一冷却液循环路径,板式换热器连接至第三出液管341和第三回液管342可以形成第二冷却液循环路径。两个循环路径中的冷却液可以经由板式换热器进行换热。
在一些实施例中,第二循环管路32可以直接连接至机柜90中的冷板,以将冷却液直接提供给诸如CPU和GPU之类的关键器件,而无需通过冷量分配单元33对两个循环路径中的冷却液进行换热。在另一些实施例中,液冷部分3可以包括多个冷量分配单元33和多个冷却液循环路径,从而进行更多次换热,本公开的实施例对此不做限制。
如图1和图2所示的风冷式冷却系统容易对高功率密度机柜进行冷却,然而由于风冷散热方案的换热效率较低,因此风冷式冷却系统所需要的冷却介质的温度通常较低。为了制取这些低温冷却介质,所需的能耗较高,使得室外机的耗水量较大。另外,数据中心在前期设计规划时,需要考虑近端制冷的形式、功率密度的布局等。然而,在供电和暖通方案确定下来之后,后期调整和修改往往相对较难。
如图3所示的冷却系统可以直接将冷却介质通入服务器设备表面进行散热,其散热效率高,因而可以采用较高温度的冷却介质。室外冷源设备可以采用干冷器等较为节能的设备。然而,如果数据中心按传统冷板液冷数据中心方案来规划,则需要设计两套冷源系统,且与冷板配套的风冷散热方案调整的灵活度也较小。而如果数据中心按冷板液冷架构去规划,则只能承载冷板服务器设备,若后期需要切换成风冷散热方案,容易出现风冷侧的暖通冷量不足的问题。
在高功率密度服务器设备尚处于开发过程中时,服务器设备散热架构可以采用风冷散热方案,也可以采用液冷散热方案,甚至同一个机型在一定时期内可以采用风冷和液冷共存的散热方案,这会增加数据中心前期规划设计的不确定性。因此,如何设计具有高度适应性的基础架构散热方案,对于数据中心而言至关重要。
本公开的实施例旨在至少部分地解决上述问题,利用温度阶梯和冷源整合等方式,可以在同一个数据中心基础设施架构下,实现风冷向液冷切换、甚至风冷和液冷混布的高适应型数据中心方案。这种方案能够显著降低数据中心在前期规划过程中的不确定性,同时由于利用温度梯度以及将外部冷源整合等方式,这种高适应型方案使数据中心在各种形态下在节能、节水方面具有良好表现。此外,本公开的实施例在具有灵活部署和高适应性等优点的同时,还可以显著降低数据中心的PUE和WUE。将液冷技术与风冷解决方案有机组合,能够将液冷的优势发挥到极致,以适应数据中心的快速部署。
图4至图8示出了根据本公开的一些实施例的冷却系统的结构示意图。下面将结合图4至图8对本公开的原理进行详细说明。
在一些实施例中,如图4所示,冷却系统包括冷源81、风冷部分2和液冷部分3。冷源81可以向风冷部分2和液冷部分3提供冷却液,例如冷却水或其他类型的冷却液。风冷部分2可以利用气体对机柜90中的电子设备(例如服务器设备)进行冷却。液冷部分3可以利用液体对对机柜90中的关键电子设备(例如CPU和GPU)进行冷却。风冷部分2包括第一进液口211和第一出液口212。第一进液口211经由第一管路911连接至冷源81以从冷源81接收冷却液。液冷部分3包括第二进液口311和第二出液口312。第二进液口311经由第二管路912连接至第一出液口212以从风冷部分2接收冷却液。第二出液口312经由第三管路913连接至冷源81以将冷却液返回到冷源81中进行降温。
利用上述布置,冷源81中的冷却液可以经由第一管路911和第一进液口211被提供给风冷部分2。在风冷部分2中升温后的冷却液可以从第一出液口212流出,经由第二管路912和第二进液口311进入液冷部分3。在液冷部分3中进一步升温后的冷却液可以从第二出液口312流出,经由第三管路913流回到冷源81中进行降温。以此方式,可以将冷却液在冷源81与风冷部分2以及液冷部分3之间循环。
数据中心的室内温度一般需要控制到较低的温度,例如典型的数据中心一般要求室内温度在25℃至27℃的范围内。风冷部分2由于在室内热空气与由冷源81提供的冷却液之间进行热交换,因此散热效率较低。为此,风冷部分2需要较低的冷却液温度,根据风冷部分2的设计不同,冷却液的进液温度一般要求在25℃以下。液冷部分3可以将冷却液直接传送到电子设备表面,例如芯片表面,而芯片表面温度一般会达到70℃以上,所以液冷部分3的进液温度可达到40℃以上甚至高达50℃。因此,液冷部分3的进液温度通常远高于风冷部分2的进液温度。根据本公开的实施例充分利用了风冷部分2的进液温度与液冷部分3的进液温度之间所存在的温度梯度,将风冷部分2和液冷部分3的管路进行串联,使得在风冷部分2中升温后的冷却液可以被注入到液冷部分3中再次进行升温。以此方式,采用纯风冷散热方案的数据中心可以兼容设计为风冷和液冷混布的数据中心。另外,使用这种混布方案之后,可以采用小流量、大温差的设计,使得冷却液经过风冷部分2和液冷部分3之后,冷却液的温度显著提升,从而提高了冷源81的散热效率,降低了PUE和WUE。
在一个实施例中,如图4所示,冷源81包括冷却塔82。冷却塔82可以利用喷淋的冷却水来对其内部的冷却液进行降温。冷却塔82包括冷却塔出液口821和冷却塔回液口822。冷却塔出液口821经由第一管路911连接至第一进液口211,以将冷却液提供给风冷部分2。冷却塔回液口822经由第三管路913连接至第二出液口312,以从液冷部分3接收返回的冷却液。替代地或者备选地,冷源81可以具有其他类型,例如可以包括干冷器、水冷式螺杆冷水机组、冰水机中的至少一项。
在一个实施例中,如图4所示,风冷部分2包括设置在房间冷池80中的风墙23。风墙23中可以设置有与第一管路911和第二管路912连通的散热管,使得来自冷源81的冷却液可以从第一管路911流入散热管,并且从散热管流入第二管路912。风墙23中还可以设置有风扇,风扇用于驱动机柜90中的空气沿第三箭头923所示的方向流向风墙23,使得来自机柜90的热空气被风墙23中的散热管冷却,并且将冷却后的空气沿第四箭头924所示的方向排放到房间冷池80中。在此过程中,风墙23的散热管中的冷却液由于吸热而升温,升温后的冷却液可以经由第二管路912流入液冷部分3。
在一些实施例中,如图4所示,为了促进风墙23中的风扇对机柜90中的气体的驱动,可以在机柜90与风墙23之间形成封闭热通道72,使得来自机柜90的气体可以经由封闭热通道72被引导到风墙23中,并且防止冷风和热风混合造成冷量损失。
应当理解,在根据本公开的实施例中,风墙23仅仅是示例性的,其他类型的气体驱动装置或布置是可行的。例如,在一些实施例中,风冷部分2可以包括布置在每个机柜90旁边的列间空调(例如图1中所示的列间空调91),列间空调连接至第一管路911和第二管路912。列间空调可以侧向地向机柜90内部吹风,从而从机柜90内部的器件带走热量。
在一些实施例中,如图4所示,根据天气和地域等情况,第一管路911中还可以设置有补冷装置24,用于将附加的冷量提供给风冷部分2的循环管路。利用补冷装置24可以进一步提高风冷部分2的冷却能力。
在一些实施例中,如图4所示,液冷部分3包括冷量分配单元33,冷量分配单元33上设置有如上所述的第二进液口311和第二出液口312。冷量分配单元33连接至第二管路912和第三管路913,并且通过循环管路34连接至机柜90,以用于对提供给机柜90的冷量进行分配和管理。循环管路34包括第三出液管341和第三回液管342,第三出液管341和第三回液管342连接到设置在机柜90中的冷板,以用于对诸如CPU和GPU之类的关键器件进行冷却。
冷量分配单元33可以将另一冷却液经由第三出液管341提供给冷板,而在冷板中被加热后的冷却液可以经由第三回液管342返回到冷量分配单元33中。冷量分配单元33可以包括板式换热器,板式换热器连接至第二管路912和第三管路913可以形成第一冷却液循环路径,板式换热器连接至第三出液管341和第三回液管342可以形成第二冷却液循环路径。两个循环路径中的冷却液可以经由板式换热器进行换热。
在一些实施例中,第二管路912和第三管路913可以直接连接至机柜90中的冷板,以将冷却液直接提供给诸如CPU和GPU之类的关键器件,而无需通过冷量分配单元33对两个循环路径中的冷却液进行换热。在另一些实施例中,液冷部分3可以包括多个冷量分配单元33和多个冷却液循环路径,从而进行更多次换热,本公开的实施例对此不做限制。
在一些实施例中,替代冷板冷却方案,液冷部分3还可以采用浸没式冷却方案或者其他类型的液冷方案,本公开的实施例对此不作严格限制。
图5所示的冷却系统与图4所示的冷却系统具有类似的结构,在本文中将仅详细描述二者之间的区别,而对于相同的部分将不再赘述。
在一些实施例中,如图5所示,房间冷池80中设置有两排机柜90。相应地,风冷部分2包括第一风冷部分和第二风冷部分。第一风冷部分包括第一风墙231,用于对两排机柜90中的一排机柜90(例如图5中所示的上排机柜90)进行冷却。第一风冷部分上设置有如上所述的第一进液口211和第一出液口212。第一风冷部分的第一进液口211连接至第一管路911。第一风冷部分的第一出液口212连接至第二管路912。第二风冷部分包括第二风墙231,用于对两排机柜90中的另一排机柜90(例如图5中所示的下排机柜90)进行冷却。第二风冷部分上也设置有如上所述的第一进液口211和第一出液口212。第二风冷部分的第一进液口211连接至第一管路911。第二风冷部分的第一出液口212连接至第二管路912。
如图5所示,在上排机柜90与第一风墙231之间形成有封闭热通道72,使得来自上排机柜90的气体可以经由封闭热通道72被引导到第一风墙231中。类似地,在下排机柜90与第二风墙232之间也形成有封闭热通道72,使得来自下排机柜90的气体可以经由封闭热通道72被引导到第二风墙232中。第一风墙231和第二风墙232中还可以设置有风扇,用于驱动相应机柜90中的空气沿第三箭头923所示的方向流向第一风墙231和第二风墙232,使得来自机柜90的热空气被第一风墙231和第二风墙232中的散热管冷却,并且将冷却后的空气沿第四箭头924所示的方向排放到房间冷池80中。
利用图5中所示的示例性布置,上排机柜90中的服务器设备可以仅通过风冷散热方案进行冷却,其冷量全部由第一风墙231提供;而下排机柜90中的服务器设备可以同时进行风冷散热和液冷散热,其冷量可以通过第二风墙232和液冷部分3共同提供。
图6所示的冷却系统与图5所示的冷却系统具有类似的结构,在本文中将仅详细描述二者之间的区别,而对于相同的部分将不再赘述。
在一些情况下,风冷部分2和液冷部分3可能存在冷却液流量不匹配的问题。例如,风冷部分2由于换热效率低而往往采用大流量小温差设计,而液冷部分3往往不需要太大的冷却液流量。为此,在一些实施例中,可以在冷却系统中设置第一旁通支路4来调整风冷部分2与液冷部分3之间的流量分配,如图6所示。第一旁通支路4连接在第二管路912与第三管路913之间。第一旁通支路4用于将第二管路912中的冷却液的一部分直接引导到第三管路913中。利用这种布置,来自风冷部分2的冷却液的一部分可以直接流到第三管路913中,继而流回到冷源81,而来自风冷部分2的冷却液的另一部分可以流到液冷部分3中。以此方式,能够灵活调整风冷部分2与液冷部分3之间的流量分配。
在一些实施例中,如图6所示,第一旁通支路4包括能够在开启状态和关闭状态之间切换的至少一个第一阀41。在第一阀41处于开启状态的情况下,第二管路912中的冷却液的一部分可以流动到第三管路913中。在第一阀41处于关闭状态的情况下,第二管路912中的冷却液均流动到液冷部分3中。应当理解,第一阀41可以是仅具有开启状态和关闭状态这两个状态的阀门,也可以是能够在开启状态和关闭状态之间连续调节的阀门。
图7所示的冷却系统与图5所示的冷却系统具有类似的结构,在本文中将仅详细描述二者之间的区别,而对于相同的部分将不再赘述。
在一些实施例中,如图7所示,冷源81包括冷却塔82和干冷器83。冷却塔82包括冷却塔出液口821和冷却塔回液口822。冷却塔出液口821经由第一管路911连接至第一进液口211。干冷器83包括干冷器出液口831和干冷器回液口832。干冷器回液口832经由第三管路913连接至第二出液口312。干冷器出液口831经由第四管路914连接至冷却塔回液口822。利用这种布置,从液冷部分3返回的温度较高的冷却液可以首先经由第三管路913流入到干冷器83中,干冷器83能够对冷却液进行预冷。随后,冷却液可以从干冷器83中流出,并且流入冷却塔82中进一步降温,从而降低至风冷部分2所需的温度。以此方式,冷源81也可以根据温度梯度进行高效散热,充分发挥干冷器83和冷却塔82各自的优势,从而能够进一步提高冷却系统的散热效率,其效率远高于传统数据中心中风冷系统和液冷系统拥有完全独立的外部冷源系统的设计。
图8所示的冷却系统与图7所示的冷却系统具有类似的结构,在本文中将仅详细描述二者之间的区别,而对于相同的部分将不再赘述。
如图8所示,在冷却系统中设置有第一旁通支路4,以用于调整风冷部分2与液冷部分3之间的流量分配。第一旁通支路4连接在第二管路912与第三管路913之间。第一旁通支路4用于将第二管路912中的冷却液的一部分直接引导到第三管路913中。利用这种布置,来自风冷部分2的冷却液的一部分可以直接流到第三管路913中,继而流回到冷源81,而来自风冷部分2的冷却液的另一部分可以流到液冷部分3中。以此方式,能够灵活调整风冷部分2与液冷部分3之间的流量分配。
在一些实施例中,如图8所示,第一旁通支路4包括能够在开启状态和关闭状态之间切换的至少一个第一阀41。在第一阀41处于开启状态的情况下,第二管路912中的冷却液的一部分可以流动到第三管路913中。在第一阀41处于关闭状态的情况下,第二管路912中的冷却液均流动到液冷部分3中。应当理解,第一阀41可以是仅具有开启状态和关闭状态这两个状态的阀门,也可以是能够在开启状态和关闭状态之间连续调节的阀门。
另外,如图8所示,为了进一步提升冷却系统的节能效果,在第四管路914与第一管路911之间设置有第二旁通支路5。第二旁通支路5用于将第四管路914中的冷却液的至少一部分直接引导到第一管路911中。利用这种布置,来自干冷器83的冷却液的至少一部分可以直接流到第一管路911中,而其余部分可以流到冷却塔821中进行进一步冷却。
例如,在低温季节(诸如冬季、春季和秋季)时,可以开启第二旁通支路5,使得来自干冷器83的冷却液的一部分、甚至全部直接流到第一管路911中。当来自干冷器83的冷却液全部直接流到第一管路911中而不流到冷却塔82中时,风冷部分2和液冷部分3可以仅靠干冷器83冷却,进一步提升了整个冷却系统的自然冷却时间,最大限度利用冷源81,充分利用了内部热源以及外部冷源的温度梯度,达到优良的节能效果,获得极低的PUE和WUE。
在一些实施例中,如图8所示,第二旁通支路5包括能够在开启状态和关闭状态之间切换的至少一个第二阀51。在第二阀51处于开启状态的情况下,来自干冷器83的冷却液的至少一部分可以经由第二旁通支路5直接流到第一管路911中。在第二阀51处于关闭状态的情况下,来自干冷器83的冷却液将全部流动到冷却塔82中。应当理解,第二阀51可以是仅具有开启状态和关闭状态这两个状态的阀门,也可以是能够在开启状态和关闭状态之间连续调节的阀门。
此外,在这样的实施例中,通过将风冷部分2和液冷部分3的外冷设备整合设计,可以在室外温度较低时,提升外冷设备的冗余度,从而提升数据中心的可靠性和可用性。干冷器83和冷却塔82可以互为冗余,这种布置方式比风冷部分2和液冷部分3分别设计冗余要经济得多,大大减少了数据中心初投资。
在一些实施例中,除了冷却塔82和干冷器83之外,冷源81还可以包括水冷式螺杆冷水机组和冰水机中的至少一项。
在一些实施例中,第一出液口212还经由管路(未示出)连接至冷却塔回液口822,第二进液口311还经由管路(未示出)连接至干冷器出液口831,第二管路912中设置有能够在开启状态和关闭状态之间切换的至少一个第三阀,并且第四管路914中设置有能够在开启状态和关闭状态之间切换的至少一个第四阀。利用这种布置,在一些情况下,可以利用冷却塔82单独为风冷部分2提供冷却液,并且利用干冷器83单独为液冷部分3提供冷却液。例如,在第三阀和第四阀关闭的情况下,第二管路912和第四管路914可以被切断。以此方式,可以切断风冷部分2和液冷部分3之间的冷却液循环路径,并且也可以切断干冷器83与冷却塔82之间的冷却液循环路径,从而利用冷却塔82单独为风冷部分2提供冷却液,并且利用干冷器83单独为液冷部分3提供冷却液。
通过布置根据本公开的实施例的冷却系统,数据中心可以灵活部署,提高数据中心前期规划的灵活性。利用温度阶梯和冷源整合等方式,可以在同一个数据中心基础设施架构下,实现风冷向液冷切换、甚至风冷和液冷混布的高适应型数据中心方案。此外,本公开的实施例在具有灵活部署和高适应性等优点的同时,还可以充分利用内部热源以及外部冷源的温度梯度,达到优良的节能效果,获得极低的PUE和WUE。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其他普通技术人员能理解本文披露的各实施例。

Claims (12)

1.一种冷却系统,包括:
冷源(81),被配置为提供冷却液;
风冷部分(2),被配置为利用气体对电子设备进行冷却,所述风冷部分(2)包括第一进液口(211)和第一出液口(212),所述第一进液口(211)经由第一管路(911)连接至所述冷源(81)以从所述冷源(81)接收所述冷却液;以及
液冷部分(3),被配置为利用液体对所述电子设备进行冷却,所述液冷部分(3)包括第二进液口(311)和第二出液口(312),所述第二进液口(311)经由第二管路(912)连接至所述第一出液口(212)以从所述风冷部分(2)接收所述冷却液,所述第二出液口(312)经由第三管路(913)连接至所述冷源(81)以将所述冷却液返回到所述冷源(81)中进行降温。
2.根据权利要求1所述的冷却系统,还包括:
第一旁通支路(4),连接在所述第二管路(912)与所述第三管路(913)之间,并且被配置为将所述第二管路(912)中的所述冷却液的一部分直接引导到所述第三管路(913)中。
3.根据权利要求2所述的冷却系统,其中所述第一旁通支路(4)包括能够在开启状态和关闭状态之间切换的至少一个第一阀(41)。
4.根据权利要求1所述的冷却系统,其中所述冷源(81)包括:
冷却塔(82),所述冷却塔(82)包括冷却塔出液口(821)和冷却塔回液口(822),所述冷却塔出液口(821)经由所述第一管路(911)连接至所述第一进液口(211);以及
干冷器(83),所述干冷器(83)包括干冷器出液口(831)和干冷器回液口(832),所述干冷器回液口(832)经由所述第三管路(913)连接至所述第二出液口(312),所述干冷器出液口(831)经由第四管路(914)连接至所述冷却塔回液口(822)。
5.根据权利要求4所述的冷却系统,还包括:
第二旁通支路(5),连接在所述第四管路(914)与所述第一管路(911)之间,并且被配置为将所述第四管路(914)中的所述冷却液的至少一部分直接引导到所述第一管路(911)中。
6.根据权利要求5所述的冷却系统,其中所述第二旁通支路(5)包括能够在开启状态和关闭状态之间切换的至少一个第二阀(51)。
7.根据权利要求4所述的冷却系统,其中所述第一出液口(212)还经由管路连接至所述冷却塔回液口(822),所述第二进液口(311)还经由管路连接至所述干冷器出液口(831),所述第二管路(912)中设置有能够在开启状态和关闭状态之间切换的至少一个第三阀,并且所述第四管路(914)中设置有能够在开启状态和关闭状态之间切换的至少一个第四阀。
8.根据权利要求1所述的冷却系统,其中所述冷源(81)包括冷却塔(82),所述冷却塔(82)包括冷却塔出液口(821)和冷却塔回液口(822),所述冷却塔出液口(821)经由所述第一管路(911)连接至所述第一进液口(211),所述冷却塔回液口(822)经由所述第三管路(913)连接至所述第二出液口(312)。
9.根据权利要求1所述的冷却系统,其中所述风冷部分(2)包括:
第一风冷部分,被配置为对所述电子设备的第一部分进行冷却,所述第一风冷部分设置有所述第一进液口(211)和所述第一出液口(212);以及
第二风冷部分,被配置为对所述电子设备的第二部分进行冷却,所述第二风冷部分设置有所述第一进液口(211)和所述第一出液口(212),其中所述电子设备的第二部分还由所述液冷部分(3)冷却。
10.根据权利要求9所述的冷却系统,其中所述第一风冷部分包括被配置为从所述电子设备的第一部分抽吸气体的第一风墙(231),并且所述第二风冷部分包括被配置为从所述电子设备的第二部分抽吸气体的第二风墙(232)。
11.根据权利要求1至10中任意一项所述的冷却系统,其中所述液冷部分(3)还包括:
冷量分配单元(33),所述冷量分配单元(33)包括彼此进行热交换的第一冷却液循环路径和第二冷却液循环路径,所述第一冷却液循环路径连接至所述第二进液口(311)和所述第二出液口(312)以使所述冷却液在所述第一冷却液循环路径中流动,所述第二冷却液循环路径通过循环管路(34)连接至所述电子设备以将所述第二冷却液循环路径中的另一冷却液提供给所述电子设备。
12.根据权利要求1至10中任意一项所述的冷却系统,其中所述冷源(81)还包括水冷式螺杆冷水机组和冰水机中的至少一项。
CN202210999935.XA 2022-08-19 2022-08-19 冷却系统 Pending CN115413196A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210999935.XA CN115413196A (zh) 2022-08-19 2022-08-19 冷却系统
PCT/CN2023/111853 WO2024037386A1 (zh) 2022-08-19 2023-08-08 冷却系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210999935.XA CN115413196A (zh) 2022-08-19 2022-08-19 冷却系统

Publications (1)

Publication Number Publication Date
CN115413196A true CN115413196A (zh) 2022-11-29

Family

ID=84160878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210999935.XA Pending CN115413196A (zh) 2022-08-19 2022-08-19 冷却系统

Country Status (2)

Country Link
CN (1) CN115413196A (zh)
WO (1) WO2024037386A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116997151A (zh) * 2023-08-04 2023-11-03 北京有竹居网络技术有限公司 用于数据中心的应急供冷设备
WO2024037386A1 (zh) * 2022-08-19 2024-02-22 北京有竹居网络技术有限公司 冷却系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5821235B2 (ja) * 2011-03-30 2015-11-24 三浦工業株式会社 液冷システム
CN106647983B (zh) * 2016-11-15 2020-11-06 曙光节能技术(北京)股份有限公司 冷却系统
CN111988973A (zh) * 2020-10-09 2020-11-24 北京百度网讯科技有限公司 气冷散热设备和冷却系统
CN213877263U (zh) * 2020-12-15 2021-08-03 武汉一控自动化科技有限公司 一种混合冷却数据中心模拟试验装置
CN114710931A (zh) * 2022-03-28 2022-07-05 北京百度网讯科技有限公司 一种数据中心的制冷系统及液冷机柜
CN115413196A (zh) * 2022-08-19 2022-11-29 北京有竹居网络技术有限公司 冷却系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024037386A1 (zh) * 2022-08-19 2024-02-22 北京有竹居网络技术有限公司 冷却系统
CN116997151A (zh) * 2023-08-04 2023-11-03 北京有竹居网络技术有限公司 用于数据中心的应急供冷设备

Also Published As

Publication number Publication date
WO2024037386A1 (zh) 2024-02-22

Similar Documents

Publication Publication Date Title
CN110446396B (zh) 用于数据中心的液体冷却系统
WO2023124976A1 (zh) 数据中心冷却系统及数据中心
CN115413196A (zh) 冷却系统
CN101902897B (zh) 通讯机房冷却系统
US9101078B2 (en) Data center cooling with an air-side economizer and liquid-cooled electronics rack(s)
WO2016155081A1 (zh) 液冷装置和辅助散热装置结合的服务器机柜散热系统
CN205878451U (zh) 数据中心的制冷系统及机房
CN109588016B (zh) 数据中心的散热系统和数据中心
CN108012513B (zh) 一种无需行间空调的数据中心及其散热系统
CN104735959A (zh) 机柜的散热系统
CN110351986B (zh) 具有复合冷源的分区内冷型机柜散热系统
CN115103565A (zh) 一种数据中心的散热系统
CN212393134U (zh) 支持中温供水的高效、节能、低pue的冷却系统
WO2024012215A1 (zh) 冷却系统
CN112492841A (zh) 一种低能耗数据中心水冷系统
WO2023125009A1 (zh) 数据中心
WO2024055604A1 (zh) 单层服务器级的全液冷散热装置
TWI487473B (zh) 資料中心之冷卻系統
CN102467202A (zh) 服务器的冷却系统及电子装置的冷却方法
CN111526694B (zh) 用于服务器机柜的液冷系统和服务器机柜
CN213586803U (zh) 用于数据中心的冷却系统
CN115734556A (zh) 基于双冷却通路的液冷散热结构
CN220674184U (zh) 一种风液融合的模块化数据中心
CN110602930A (zh) 一种数据中心机房系统
CN214046451U (zh) 一种低能耗数据中心水冷系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination