WO2024055604A1 - 单层服务器级的全液冷散热装置 - Google Patents

单层服务器级的全液冷散热装置 Download PDF

Info

Publication number
WO2024055604A1
WO2024055604A1 PCT/CN2023/092446 CN2023092446W WO2024055604A1 WO 2024055604 A1 WO2024055604 A1 WO 2024055604A1 CN 2023092446 W CN2023092446 W CN 2023092446W WO 2024055604 A1 WO2024055604 A1 WO 2024055604A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
cooling
channel
fan
air
Prior art date
Application number
PCT/CN2023/092446
Other languages
English (en)
French (fr)
Inventor
何为
郭瑞
刘圣春
王雅博
王誉霖
李雪强
Original Assignee
天津商业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津商业大学 filed Critical 天津商业大学
Publication of WO2024055604A1 publication Critical patent/WO2024055604A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid

Definitions

  • the present invention relates to the technical field of server cooling, specifically a single-layer server-level full liquid cooling heat dissipation device.
  • Immersion liquid cooling completely immerses the server in the coolant and relies on liquid flow circulation to take away heat; spray liquid cooling changes the top plate of the server chassis. It is a spray plate, used to spray coolant to heating devices.
  • Immersion liquid cooling and spray liquid cooling are typical direct contact liquid cooling. They have high requirements for the insulation of the coolant and the sealing of the cabinet.
  • the cold plate liquid cooling has a simple structure and does not come into direct contact with the chip. It is an indirect cooling. Compared with immersion cooling and spray cooling, it is safer and therefore more widely used.
  • the traditional cold plate liquid cooling is only used for chip cooling. , the heat dissipation of the remaining electronic components in the server uses air cooling, and the cooling of hot air requires an additional inter-row air conditioning system to cool the hot air blown out of the cabinet.
  • the traditional cold plate system is complex and requires a cold water system and a cold air air conditioning system, and the energy consumption is still large; the traditional cold plate system requires terminal air conditioning, hot and cold air channel sealing, etc., which has high investment costs and difficult maintenance;
  • the traditional cold plate type has two cooling systems , the cold air air conditioning system is cabinet-level cooling, which occupies a large area of the computer room; the water-cooled panels in the traditional cold-plate cabinet are separately welded and assembled, and there is still the risk of leakage points, and electronic devices have safety hazards;
  • the traditional cold-plate computer room requires a high-power cabinet level Inter-row air conditioners, cabinet air conditioners The cold air delivered by the fan is noisy. Therefore, a single-layer server-level full liquid cooling device is proposed to solve the above problems.
  • the purpose of the present invention is to provide a single-layer server-level full liquid cooling device to solve the problems raised in the above background technology.
  • a single-layer server-level full liquid-cooling heat dissipation device including a circuit board with a memory stick and a chip installed on the surface of the circuit board.
  • the memory stick and chip are installed at different positions on the circuit board to correspond to four heat dissipation conditions.
  • Full liquid-cooling heat dissipation The device adjusts the cooling water conditions inside the radiator to absorb all the heat dissipated inside the single-layer server and no longer dissipates heat to the outside of the server.
  • one of the heat dissipation processing conditions is that the chip, memory bar, and fan are not arranged in a straight line, so that the single-core chip and memory
  • the original traditional fan is cancelled, and a grooved water-cooling plate radiator is covered on the chip for liquid cooling of the chip.
  • the back side of the grooved water-cooling plate radiator is fixedly connected to the circuit board; it is arranged on one side of the memory module. Air-fluid metal radiator with fan channel for cooling memory modules.
  • the grooved water-cooled plate radiator includes a liquid cooling water inlet, a liquid cooling water outlet, and an internal microchannel groove.
  • the microchannel groove is located in the center of the radiator bottom plate, and the total area is consistent with the chip area, and the groove direction is consistent with the chip area.
  • the internal water flow direction is consistent, and the height of the groove reaches the top wall of the channel.
  • the traditional fan is replaced by a fan-channel type wind-fluid metal radiator with a built-in fan for cooling the memory module.
  • the rear side of the fan-channel type wind-fluid metal radiator is fixedly connected to the circuit board, so The slot direction of the above-mentioned memory module is perpendicular to the long side of the metal radiator with fan channel.
  • the height of the metal radiator with fan channel is the same as the memory and the width is the same as the memory.
  • An air guide cover is installed.
  • the memory module and the air-fluid metal radiator with fan channel are covered in an air duct.
  • the air-liquid metal radiator with fan channel includes a liquid cooling water inlet, a liquid cooling water outlet, an internal water cooling channel and an internal air cooling channel.
  • the internal air cooling The inside of the channel is filled with fans.
  • server-level full liquid-cooling transformation is carried out.
  • the chip and the memory module fan are installed in a straight line on the surface of the circuit board, maintaining the original The fan is not moving, and the top of the chip is covered with a grooved channel-type air-fluid metal heat sink.
  • the rear side of the grooved channel type wind liquid metal radiator is fixedly connected to the circuit board.
  • the total height of the grooved channel type wind liquid metal radiator is consistent with the height of the memory module, and the width is the same as the memory module.
  • the width is consistent and the length is consistent with the chip length.
  • the grooved channel type air-liquid metal radiator includes a liquid cooling water inlet, a liquid cooling water outlet, an internal water cooling channel and an internal air cooling channel.
  • the upper part of the bottom plate of the internal water channel is provided with a groove, and the groove is located on the bottom plate of the grooved channel.
  • the bottom plate of the grooved channel type wind liquid metal radiator is in the center, and the groove area is consistent with the chip area, the groove direction is consistent with the internal water flow direction, and the height of the groove reaches the top wall of the channel.
  • the memory bar and the chip are installed in a straight line on the surface of the circuit board, and the chip is placed close to one end side of the circuit board.
  • the upper cover is a grooved single-channel air-liquid integrated liquid-cooling radiator with a fan.
  • the grooved single-channel air-liquid integrated liquid-cooling radiator with a fan includes a liquid cooling water inlet, a liquid cooling water outlet, an internal water cooling channel and an internal air cooling radiator.
  • the height is consistent with the height of the memory stick
  • the width is consistent with the total width of the memory stick group
  • the length is consistent with the chip length.
  • a microchannel trench is arranged in the center of the bottom plate of the internal water-cooling channel.
  • the total area covered by the trench is consistent with the chip area.
  • the groove on the inside of the bottom plate The position is consistent with the position of the chip on the outside of the bottom plate.
  • the groove arrangement direction is consistent with the direction of the internal water flow.
  • the height of the groove reaches the top of the wall.
  • the outside of the fan is integrated with the groove with a single-channel air-liquid
  • the liquid-cooling radiator is fixedly connected, and the top two ends of the grooved single-channel air-liquid integrated liquid-cooling radiator with fan are connected to a liquid-cooling outlet and a liquid-cooling inlet respectively.
  • the fourth heat dissipation treatment situation Taking the quad-core as an example, four sets of memory sticks and four chips are arranged side by side and installed in a straight line on the surface of the circuit board. The four chips are placed close to one end side of the circuit board. Each chip is arranged at equal intervals. On the four chips They are jointly covered with a grooved multi-channel air-liquid integrated liquid cooling radiator with a fan.
  • the grooved multi-channel air-liquid integrated liquid cooling radiator with a fan includes a liquid cooling water inlet, a liquid cooling water outlet, an internal water cooling channel and Multiple sets of internal air-cooling channels, grooved multi-channel air-fluid integrated liquid-cooling radiator with fans are placed perpendicular to the direction of the memory module slot, the height is consistent with the height of the memory module, and the width is the same as the total space occupied by the four memory module groups. The width is consistent and the length is consistent with the length of the chip. Multiple sets of micro-channel trenches are arranged in the center of the bottom plate of the internal water-cooling channel. The number of groups of trenches and air channels is consistent with the number of memory bars.
  • each group of trenches The total area covered by each group of trenches is consistent with the area of a single chip. And the position of each groove is consistent with the position of the corresponding single chip on the outside of the bottom plate.
  • the layout direction of the groove is consistent with the direction of the internal water flow.
  • the height of the groove reaches the top of the wall.
  • Each group of air-cooling channels is equipped with a full row of fans inside. The outside of the fan is fixedly connected to the grooved multi-channel air-liquid integrated liquid-cooling radiator with fan. The top two ends of the grooved fan-equipped multi-channel air-liquid integrated liquid-cooling radiator are respectively connected with a liquid-cooling outlet and a liquid-cooling outlet. water intake.
  • the cooling liquid parameters at the liquid cooling water inlet can be adjusted individually.
  • the cooling parameter adjustment of each layer of servers does not affect each other and can be adjusted according to The actual workload of each layer is freely controlled for cooling.
  • the liquid cooling outlet and liquid cooling inlet, as well as all liquid cooling radiators inside the server, are all fully 3D printed in aluminum or copper.
  • the liquid cooling outlet and liquid cooling inlet are On the outside of the cabinet, since the pipe connection points are outside the server, leakage of liquid inside the server is avoided.
  • a brand-new server liquid cooling solution is provided, which is not only compatible with the transformation of traditional air-cooled servers, but also can be used to develop new energy-saving liquid-cooled server products. It integrates the functions of fan air cooling and convection liquid cooling, and only needs to set up a
  • a water cooling system can achieve simultaneous cooling of chips and memory in a single-layer server.
  • Each layer of servers is independent of each other.
  • the cooling can be freely controlled according to the actual workload of each layer to achieve free cooling, maximum energy saving, small footprint, and low investment. , no big fan system, low noise, single layer service
  • the device is easy to maintain, and the device pipelines adopt 3D printing technology, so there is no risk of liquid leakage.
  • Figure 1 is a schematic diagram of the location and structure of a memory module, a chip, and a fan in Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of the liquid cooling heat dissipation solution in Embodiment 1 of the present invention.
  • Figure 3 is a schematic structural diagram of a fan channel type air-liquid metal radiator in Embodiment 1 of the present invention.
  • Figure 4 is a schematic structural diagram of a grooved water-cooled plate radiator in Embodiment 1 of the present invention.
  • Figure 5 is a schematic structural diagram of a microchannel trench in Embodiment 1 of the present invention.
  • Figure 6 is a schematic diagram of the location and structure of the memory module, chip, and fan in Embodiment 2 of the present invention.
  • Figure 7 is a schematic structural diagram of the liquid cooling heat dissipation solution in Embodiment 2 of the present invention.
  • Figure 8 is a side view of the grooved channel type air-liquid metal radiator in Embodiment 2 of the present invention.
  • Figure 9 is a schematic structural diagram of the liquid cooling solution in Embodiment 3 of the present invention.
  • Figure 10 is a side view of the grooved single-channel air-liquid integrated liquid-cooling radiator with fan in Embodiment 3 of the present invention.
  • FIG 11 is a schematic structural diagram of the liquid cooling solution in Embodiment 4 of the present invention.
  • Figure 12 is a schematic side structural view of a grooved multi-channel air-liquid integrated liquid-cooling radiator with a fan in Embodiment 4 of the present invention.
  • a single-layer server-level full liquid-cooled heat dissipation device including a circuit board 1.
  • the above-mentioned circuit board 1 has a memory stick 2 and a chip 3 installed on the surface, and the memory stick 2 and the chip 3 are installed at different positions on the circuit board 1.
  • the full liquid cooling device adjusts the cooling water conditions inside the radiator to absorb all the heat dissipated inside the single-layer server and no longer dissipates heat to the outside of the server.
  • the original fan 5 is cancelled, and the chip 3 is covered with a grooved water-cooling plate radiator 4 for liquid cooling of the chip to ensure that the temperature of the chip 3 is not higher than the safe operating temperature, and a fan channel type air-liquid metal heat dissipation with a built-in fan 5 is used.
  • the radiator 6 replaces the traditional fan 5 and is used to cool the above-mentioned memory module 2.
  • the rear side of the fan channel type air-fluid metal radiator 6 is fixedly connected to the circuit board 1.
  • An original air guide cover is provided or used to cool the memory module. 2 and fan channel type air-liquid metal radiator 6 are covered in an air duct for cooling the memory module.
  • the grooved water-cooling plate radiator 4 includes a liquid cooling water inlet 12, a liquid cooling water outlet 13, and an internal microchannel groove 9.
  • the microchannel groove 9 is located in the center of the radiator bottom plate, and the total area is consistent with the chip area. The direction is consistent with the direction of the internal water flow, and the height of the groove reaches the top wall of the channel.
  • the height of the metal heat sink 6 with a fan channel is the same as that of the memory module 2, the width is the same as the width of the memory module 2, and the length is about 2-5cm.
  • the slot direction of the memory module 2 is the same as that of the metal heat sink with a fan channel.
  • the long sides of 6 are perpendicular to each other, and an air guide cover is provided to cover the memory module 2 and the metal radiator with fan channel type wind liquid 6 in an air duct.
  • the metal heat sink 6 with fan channel type wind liquid includes a liquid cooling water inlet 12, liquid The cold water outlet 13, the internal water cooling channel 14 and the internal air cooling channel 11 are filled with fans 5 inside.
  • the fan 5 inhales the external ambient air, and first blows through the channel-type wind-fluid metal radiator 6 in the air duct. When the wind blows through the inner channel of the channel-type wind-fluid metal radiator 6, it is blown inside the channel-type wind-fluid metal radiator 6.
  • the water cools, the wind cools down, and then blows through the memory strip 2 to cool the memory strip 2, the wind heats up, and passes Adjust the flow of low-temperature water to control the temperature of the air blowing through the 6 air ducts of the channel-type air-fluid metal radiator and the temperature of the memory stick 2, ensuring that the temperature of the memory stick is not higher than its safe operating temperature, and at the same time ensuring the temperature of the air when blowing out of the server ⁇ The ambient air temperature at the inlet, that is, it does not bring heat load to the computer room environment.
  • the chip 3 and the memory are all cooled inside the server, achieving server-level cooling.
  • the fan channel type air-fluid metal radiator 6 and the chip 3 water-cooling plate radiator 4 share a water system, that is, It has the same inlet water temperature, but the flow rate in the two radiators can be adjusted independently to adapt to the respective cooling needs of chip 3 and memory.
  • the original fan 5 is kept unchanged, and the chip 3 is covered with a groove channel type wind liquid metal heat sink 7 to achieve simultaneous cooling of the memory 2 and the chip 3.
  • the rear side of the above-mentioned grooved channel-type wind-fluid metal radiator 7 is fixedly connected to the circuit board 1.
  • the above-mentioned grooved channel-type wind-fluid metal radiator 7 has a total height consistent with the height of the memory module 2, and a width consistent with the memory module 2.
  • the width is the same and the length is the same as the length of chip 3.
  • the above-mentioned grooved channel type air-liquid metal radiator 7 includes a liquid cooling water inlet 12, a liquid cooling water outlet 13, an internal water cooling channel 14 and an internal air cooling channel 11.
  • the upper part of the bottom plate of the internal water channel is provided with a groove, and the groove is located at
  • the bottom plate of the grooved channel type wind liquid metal radiator 7 is in the center, and the groove area is consistent with the area of the chip 3, the groove direction is consistent with the internal water flow direction, and the height of the groove reaches the top wall of the channel.
  • the two radiators used to cool the chip 3 and the memory are combined to develop a grooved channel type wind liquid metal radiator 7, which is the original channel type wind liquid metal radiator.
  • a groove structure is added to the inner flat bottom plate, and the grooved channel type Fengliu metal heat dissipation 7 is placed on the chip 3; the groove structure on the inner bottom plate of the grooved channel type Fengliu metal heat dissipation 7 is located outside the chip 3, and The total area is consistent with the area of chip 3, the groove direction is consistent with the internal water flow direction, and the groove height to the top wall of the channel; set or use the original air guide cover to cover the fan 5, the memory module 2 and the grooved channel type wind liquid metal radiator 7 in an air duct, which can achieve simultaneous cooling of the chip 3 and the memory module 2.
  • the grooved channel type wind liquid metal radiator 7 is placed on the chip 3.
  • the external cooling water flows into the radiator to form forced convection heat exchange for cooling the bottom chip 3.
  • the groove structure is located directly above the chip. to enhance heat exchange; on the other hand, the grooved channel type wind-liquid metal radiator 7 is also used to cool the air flowing through the channel (that is, when the fan sucks in external ambient air, it blows through the memory first in the air guide hood, After the memory is cooled down, the wind heats up, and then blows through the grooved channel-type air-fluid metal radiator. It is cooled by the water inside the radiator and then cools down again), thereby cooling the memory and ensuring that the air is blown out of the server.
  • the above-mentioned memory bar 2 and chip 3 are installed in a straight line on the surface of the circuit board 1.
  • the above-mentioned chip 3 is placed close to one end side of the circuit board.
  • the chip 3 is covered with a grooved single-channel air-liquid integrated liquid cooling radiator with a fan.
  • the above-mentioned grooved fan single-channel air-liquid integrated liquid cooling radiator 8 includes a built-in fan 5, a liquid cooling water inlet 12, a liquid cooling water outlet 13, an internal water cooling channel 14 and an internal air cooling channel 11.
  • the grooved fan The single-channel air-fluid integrated liquid-cooling radiator 8 covers directly above the chip 3.
  • the placement direction is perpendicular to the direction of the memory module 2 slot.
  • the groove is the height of the single-channel air-fluid integrated liquid-cooling radiator 8 with a fan.
  • the height is consistent with the memory stick 2
  • the width is consistent with the total width of the memory stick group
  • the length is consistent with the length of the chip 3.
  • the microchannel trench 9 is arranged in the center of the bottom plate of the internal water cooling channel 14.
  • the total area covered by the trench is consistent with the chip area.
  • the bottom plate The position of the inner groove is consistent with the position of the chip on the outer side of the bottom plate.
  • the layout direction of the groove is consistent with the direction of the internal water flow.
  • the height of the groove reaches the top of the wall.
  • the above-mentioned groove has a single-channel air-liquid integration with a fan.
  • the liquid cooling water outlet 13 and the liquid cooling water inlet 12 are respectively connected at both ends of the top of the liquid cooling radiator 8 .
  • the groove structure on the bottom plate 10 with grooved water channels is located on the chip 3
  • the directly above position plays a role in enhancing heat exchange; at the same time, the fan 5 inhales the external ambient air, and cools it below the ambient temperature in the air cooling channel 11 of the grooved single-channel air-liquid integrated liquid cooling radiator 8 with a fan, and then cools it below the ambient temperature. After blowing through the memory to cool down the memory, the wind heats up to the same temperature as the ambient air and discharges out of the server. That is, a water system equipped with an internal small fan can simultaneously cool the chip 3 and the memory without bringing heat load to the computer room environment. Achieve server-grade liquid cooling.
  • the grooved single-channel air-fluid integrated liquid cooling radiator 8 with fan is placed directly above the high heat flow chip 3, and the placement direction is perpendicular to the direction of the memory slot.
  • Multiple micro-channels are arranged in the center of the grooved water channel bottom plate 10
  • the groove, the total area of the groove is consistent with the area of chip 3, the groove structure is located directly above chip 3, the groove layout direction is consistent with the internal water flow direction, the height of the groove reaches the top of the wall; small fan blades are filled with the groove and the fan unit Inside the air-cooling channel 11 of the channel-air-liquid integrated liquid-cooling radiator 8, the fan 5 and the liquid-cooling radiator are integrated into one body, which saves space, is integrated, and is easy to install.
  • the air inlet and outlet parameters of each layer of servers can be adjusted individually. Adjust the temperature and flow parameters of the cooling liquid in the liquid cooling water inlet 12 of the grooved single-channel air-liquid integrated liquid cooling radiator 8 with a fan, while realizing the heat dissipation needs of the chip 3 and the memory, and adjusting the cooling parameters of each layer of servers They do not affect each other and can be freely controlled according to the actual workload of each layer to achieve maximum energy saving.
  • the air-liquid integrated liquid cooling radiator has only one liquid cooling water inlet 12 and liquid cooling water outlet 13.
  • the fourth heat dissipation treatment situation taking the quad-core as an example, four sets of memory sticks 2 and four chips 3 are arranged side by side and installed in a straight line on the surface of the circuit board 1.
  • the above Four chips 3 are placed close to one end side of the circuit board, and the chips are arranged at equal intervals.
  • the four chips 3 are jointly covered with a grooved multi-channel air-liquid integrated liquid cooling radiator 15 with a fan.
  • the groove is equipped with a fan.
  • the multi-channel air-liquid integrated liquid-cooling radiator 15 includes a liquid-cooling water inlet 12, a liquid-cooling water outlet 13, an internal water-cooling channel 14 and multiple sets of internal air-cooling channels 11.
  • the groove is equipped with a fan and is a multi-channel air-liquid integrated liquid cooling radiator.
  • the placement direction of the device 15 is perpendicular to the direction of the slot of the memory stick 2, the height is consistent with the height of the memory stick 2, the width is consistent with the total width occupied by the four groups of memory sticks, and the length is consistent with the length of the chip 3.
  • the bottom plate of the internal water cooling channel 14 is in the correct position. Multiple groups of microchannel trenches 9 are arranged in the center. The number of groups of trenches and air channels is consistent with the number of memory bars 2. The total area covered by each group of trenches is consistent with the area of a single chip, and the position of each trench is consistent with the single chip outside the base plate.
  • each group of air-cooling channels 11 is equipped with a full row of fans 5 inside, the outside of the above-mentioned fans 5 and the groove with fan multi-channel air liquid
  • the integrated liquid-cooling radiator 15 is fixedly connected, and the two ends of the top of the grooved fan-mounted multi-channel air-liquid integrated liquid-cooling radiator 15 are respectively connected with a liquid-cooling outlet 13 and a liquid-cooling inlet 12.
  • the coolant parameters of the liquid cooling water inlet 12 can be adjusted individually. By adjusting the temperature and flow parameters of the coolant at the radiator inlet, the heat dissipation needs of the chip 3 and the memory can be achieved at the same time.
  • the cooling parameter adjustment of each layer of servers does not affect each other and can be adjusted according to actual conditions. Each layer of workload is freely controlled for cooling.
  • memory module 2 and the second heat dissipation component are placed in a fan shroud
  • the number of internal air cooling channels 11 is the same as the number of chip 3.
  • Fans 5 are arranged inside each air cooling channel 11.
  • the second heat dissipation The number of groove structures on the base plate at the bottom of the component is the same as the number of chips 3. Taking 4 cores as an example, the grooves are equipped with fans and multi-channel air-fluid integrated liquid cooling radiators are placed on the four chips 3 with grooved water channels. The four sets of groove structures on the bottom plate respectively correspond to the four chips 4.
  • the external cooling water flows into the inside of the radiator to form forced convection heat exchange for cooling the bottom chip 3, which enhances heat exchange.
  • the fan 5 inhales
  • the external ambient air is cooled in the air duct of the grooved fan multi-channel integrated liquid cooling radiator.
  • the air is lower than the ambient temperature and then blown through the memory. After cooling the memory, the air is heated to the same temperature as the ambient air and discharged
  • the server that is, a water system equipped with an internal small fan can cool the chip 3 and the memory 2 at the same time, without bringing heat load to the computer room environment, and achieving server-level liquid cooling.
  • Embodiments 1, 2, 3 and 4 are all fully 3D printed in aluminum or copper, and the radiator, liquid cooling water inlet 12 and liquid cooling water outlet 13 are all 3D printed until they extend out of the cabinet. , so the pipeline connection points are limited to the outside of the cabinet and will not cause liquid leakage inside the server.

Abstract

本发明涉及服务器冷却技术领域,尤其为单层服务器级的全液冷散热装置,服务器包括电路板,所述电路板表面安装有内存条和芯片,且内存条和芯片安装在电路板不同的位置对应四种散热处理情况;本发明中,提供全新的服务器液冷方案,既可兼容传统风冷服务器改造,也可用于开发新的节能型液冷服务器产品,集成风扇风冷和对流液冷的功能,只需设置一套水冷系统即可在单层服务器内部实现对芯片和内存的同时冷却,各层服务器彼此独立,可根据实际各层工作负荷进行冷却自由控制,实现自由冷却,获得最大节能,占地小,投资小,无大风机系统噪声小,单层服务器维护方便,且器件管路均采用3D打印技术,无液体泄露风险。

Description

单层服务器级的全液冷散热装置 技术领域
本发明涉及服务器冷却技术领域,具体为单层服务器级的全液冷散热装置。
背景技术
近年来,随着人工智能等技术的发展,数据中心冷却系统愈发重要,冷却系统的性能直接影响IT设备的稳定性及经济性,目前的冷却方式主要有风冷和液冷,空气的传热性能已无法满足如今IT设备高热流密度的发热情况,同时由于液体具有较高的传热系数,使得液冷散热技术成为近年来高性能数据中心芯片散热领域的主要研究方向,针对已经投产使用的风冷数据中心的液冷改造也很受人们关注。服务器液冷主要有浸没式、喷淋式和冷板式三种,浸没式液冷是将服务器完全的浸没在冷却液中,依靠液体流动循环带走热量;喷淋式液冷将服务器机箱顶板改为喷淋板,用于向发热器件喷洒冷却液,浸没式液冷和喷淋式液冷是典型的直接接触型液冷,对于冷却液的绝缘性和机柜的密封性都有很高的要求,冷板式液冷结构简单,不与芯片直接接触,属于间接冷却,相比于浸没式冷却和喷淋式冷却安全性较高,因而应用较为广泛,传统的冷板式液冷只用于芯片冷却,服务器内其余电子元器件的散热采用风冷却的方式,而对热风的冷却需要额外设置列间空调系统,用来冷却机柜吹出来的热风。
上述三种服务器液冷缺点如下:
传统冷板式系统复杂,需要冷水系统和冷风空调系统,能耗依然较大;传统冷板式需要末端空调,需设置冷热风通道封闭等,投资成本高,维护不易;传统冷板式两套冷却系统,冷风空调系统为机柜级冷却,占用机房面积大;传统冷板式机柜内水冷板为分体焊接装配,仍存在泄露点风险,电子器件有安全隐患;传统冷板式机房内需要设置大功率机柜级行间空调,柜内风 扇输送冷风噪音大,因此,针对上述问题提出单层服务器级的全液冷散热装置。
发明内容
本发明的目的在于提供单层服务器级的全液冷散热装置,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
单层服务器级的全液冷散热装置,包括电路板,所述电路板表面安装有内存条和芯片,且内存条和芯片安装在电路板不同的位置对应四种散热处理情况,全液冷散热装置通过调整散热器内部冷却水工况,用于吸收单层服务器内部所有散热量,不再向服务器外面散热。
优选的,对于投入使用中的传统风冷式服务器进行服务器级全液冷改造,其中一种散热处理情况是所述芯片、内存条、风扇三者布置不在一条直线上,以单核芯片和内存为例,取消原来的传统风扇,在芯片上覆盖沟槽式水冷板散热器,用于芯片液冷,沟槽式水冷板散热器后侧与电路板呈固定连接;在内存条的一侧布置带风扇通道型风液金属散热器,用于内存条冷却。
优选的,沟槽式水冷板散热器包括液冷进水口、液冷出水口、内部微通道沟槽,微通道沟槽位于散热器底板正中心,且总面积与芯片面积一致,沟槽方向与内部水流方向一致,沟槽高度至通道顶壁。
优选的,以带内置风扇的带风扇通道型风液金属散热器代替传统风扇,用于对所述内存条进行冷却,带风扇通道型风液金属散热器后侧与电路板呈固定连接,所述内存条的插槽方向与带风扇通道型风液金属散热器长边相垂直,带风扇通道型风液金属散热器的高度与内存同高,宽度与内存同宽,设导风罩,将内存条和带风扇通道型风液金属散热器罩在一个风道中,带风扇通道型风液金属散热器包括液冷进水口、液冷出水口、内部水冷通道和内部风冷通道,内部风冷通道内部排满风扇。
优选的,对于投入使用中的传统风冷式服务器进行服务器级全液冷改造,其中另一种散热处理情况,所述芯片、内存条风扇三者呈直线安装在电路板表面,保持原有的风扇不动,所述芯片的上面覆盖带沟槽通道型风液金属散热器。
优选的,所述带沟槽通道型风液金属散热器后侧与电路板呈固定连接,所述带沟槽通道型风液金属散热器,其总高度与内存条高度一致,宽度与内存条宽度一致,长度与芯片长度一致。
优选的,所述带沟槽通道型风液金属散热器包括液冷进水口、液冷出水口、内部水冷通道和内部风冷通道,内部水通道的底板上部开设有沟槽,沟槽位于带沟槽通道型风液金属散热器的底板正中心,并且沟槽面积与芯片面积一致,沟槽方向与内部水流方向一致,沟槽高度至通道顶壁。
优选的,对于新生产的单核液冷式刀片服务器,第三种散热处理情况,所述内存条和芯片呈直线安装在电路板表面,所述芯片置于靠近电路板的一个端侧,芯片上覆盖沟槽带风扇单通道风液集成式液冷散热器,所述沟槽带风扇单通道风液集成式液冷散热器包括液冷进水口、液冷出水口、内部水冷通道和内部风冷通道,沟槽带风扇单通道风液集成式液冷散热器,覆盖于芯片正上方,放置方向与内存条插槽方向相垂直,沟槽带风扇单通道风液集成式液冷散热器的高度与内存条高度一致,宽度与内存条组的总宽度一致,长度与芯片长度一致,内部水冷通道的底板正中心布置微通道沟槽,沟槽覆盖总面积与芯片面积一致,底板内侧沟槽位置与底板外侧芯片的位置相一致,沟槽布置方向与内部水流方向一致,沟槽高度至壁顶,风冷通道内部设有风扇,所述风扇外侧与沟槽带风扇单通道风液集成式液冷散热器呈固定连接,所述沟槽带风扇单通道风液集成式液冷散热器顶部两端分别连通有液冷出水口和液冷进水口。
优选的,对于新生产的多核液冷式刀片服务器,第四种散热处理情况, 以四核为例,四组内存条与四个芯片并列排放且呈直线安装在电路板表面,所述四个芯片置于靠近电路板的一个端侧,各芯片等间距布置,四个芯片上共同覆盖有一个沟槽带风扇多通道风液集成式液冷散热器,所述沟槽带风扇多通道风液集成式液冷散热器包括液冷进水口、液冷出水口、内部水冷通道和多组内部风冷通道,沟槽带风扇多通道风液集成式液冷散热器放置方向与内存条插槽方向相垂直,高度与内存条高度一致,宽度与四组内存条组所占的总宽度一致,长度与芯片长度一致,内部水冷通道的底板正中心布置多组微通道沟槽,沟槽和风通道的组数与内存条数量一致,每组沟槽覆盖总面积与单个芯片面积一致,且每个沟槽位置与底板外侧相应的单个芯片的位置相一致,沟槽布置方向与内部水流方向一致,沟槽高度至壁顶,每组风冷通道内部设有满排的风扇,所述风扇外侧与沟槽带风扇多通道风液集成式液冷散热器呈固定连接,所述沟槽带风扇多通道风液集成式液冷散热器顶部两端分别连通有液冷出水口和液冷进水口。
优选的,液冷进水口冷却液参数可单独调控,通过调节散热器进口冷却液的温度和流量参数,同时实现对芯片和内存的散热需要,各层服务器的冷却参数调节互不影响,可根据实际各层工作负荷进行冷却自由控制,液冷出水口和液冷进水口以及服务器内部所有液冷散热器,全部采用铝质或铜质的全3D打印,液冷出水口和液冷进水口至机柜外侧,由于管路连接点在服务器外,避免服务器内部液体泄露。
与现有技术相比,本发明的有益效果是:
本发明中,提供全新的服务器液冷方案,既可兼容传统风冷服务器改造,也可用于开发新的节能型液冷服务器产品,集成了风扇风冷和对流液冷的功能,只需设置一套水冷系统即可实现对单层服务器内芯片和内存的同时冷却,各层服务器彼此独立,可根据实际各层工作负荷进行冷却自由控制,实现自由冷却,获得最大节能,占地小,投资小,无大风机系统噪声小,单层服务 器维护方便,且器件管路均采用3D打印技术,无液体泄露风险。
附图说明
图1为本发明实施例一中内存条、芯片、风扇的位置结构示意图;
图2为本发明实施例一中液冷散热方案的结构示意图;
图3为本发明实施例一中带风扇通道型风液金属散热器结构示意图;
图4为本发明实施例一中沟槽式水冷板散热器结构示意图;
图5为本发明实施例一中微通道沟槽的结构示意图;
图6为本发明实施例二中内存条、芯片、风扇的位置结构示意图;
图7为本发明实施例二中液冷散热方案的结构示意图;
图8为本发明实施例二中带沟槽通道型风液金属散热器的侧视图;
图9为本发明实施例三中的液冷散热方案的结构示意图;
图10为本发明实施例三中的沟槽带风扇单通道风液集成式液冷散热器侧视图;
图11为本发明实施例四中的液冷散热方案的结构示意图;
图12为本发明实施例四中沟槽带风扇多通道风液集成式液冷散热器的侧面结构示意图。
图中:1、电路板;2、内存条;3、芯片;4、沟槽式水冷板散热器;5、风扇;6、带风扇通道型风液金属散热器;7、带沟槽通道型风液金属散热器;8、沟槽带风扇单通道风液集成式液冷散热器;9、微通道沟槽;10、带沟槽水通道底板;11、风冷通道;12、液冷进水口;13、液冷出水口;14、内部水冷通道;15、沟槽带风扇多通道风液集成式液冷散热器;16、沟槽式水冷板散热器底板。
具体实施方式
单层服务器级的全液冷散热装置,包括电路板1,上述电路板1表面安装有内存条2和芯片3,且内存条2和芯片3安装在电路板1不同的位置所对应 四种散热处理情况,全液冷散热装置通过调整散热器内部冷却水工况,用于吸收单层服务器内部所有散热量,不再向服务器外面散热。
实施例一:
对于投入使用中的传统风冷式服务器进行服务器级全液冷改造,其中一种散热处理情况是上述芯片3、内存条2、风扇5布置不在一条直线上,以单核芯片和内存为例,本发明提供一种技术方案,请参阅图1、图2、图3、图4和图5。
取消原风扇5,在芯片3上覆盖沟槽式水冷板散热器4,用于芯片液冷,保证芯片3温度不高于安全工作温度,以带内置风扇5的带风扇通道型风液金属散热器6代替传统风扇5,用于对上述内存条2进行冷却,带风扇通道型风液金属散热器6后侧与电路板1呈固定连接,设置或利用原有的导风罩,将内存条2和带风扇通道型风液金属散热器6罩在一个风道中,用于内存条冷却。
沟槽式水冷板散热器4包括液冷进水口12、液冷出水口13、内部微通道沟槽9,微通道沟槽9位于散热器底板正中心,且总面积与芯片面积一致,沟槽方向与内部水流方向一致,沟槽高度至通道顶壁。
带风扇通道型风液金属散热器6的高度与内存条2同高,宽度与内存条2同宽,长度约2-5cm,内存条2的插槽方向与带风扇通道型风液金属散热器6长边相垂直,设导风罩,将内存条2和带风扇通道型风液金属散热器6罩在一个风道中,带风扇通道型风液金属散热器6包括液冷进水口12、液冷出水口13、内部水冷通道14和内部风冷通道11,内部风冷通道11内部排满风扇5。
工作流程:风扇5吸入外部环境空气,在风道中先吹过通道型风液金属散热器6,风吹过通道型风液金属散热器6内通道时,被通道型风液金属散热器6内部水冷却,风降温,再吹过内存条2将内存条2冷却,风升温,通过 调节低温水的流量来控制吹过通道型风液金属散热器6风道的空气温度和存条2的温度,保证内存条温度不高于其安全工作温度,且同时保证吹出服务器时的空气温度≤进口处的环境空气温度,即不为机房环境带去热负荷。
由此,芯片3和内存均在服务器内部全部冷却,实现服务器级冷却,无需再单独设置机柜空调,带风扇通道型风液金属散热器6与芯片3水冷板散热器4共用一个水系统,即拥有相同的进口水温,但两个散热器内的流量可进行单独调控,以适应芯片3和内存各自的散热需求。
实施例二
对于投入使用中的传统风冷式服务器进行服务器级全液冷改造,其中另一种散热处理情况,内存条2和芯片3呈直线安装在电路板1表面,以单核芯片和内存为例,本发明提供一种技术方案,请参阅图6、图7和图8。
具体的,保持原有的风扇5不动,上述芯片3的上面覆盖带沟槽通道型风液金属散热器7,实现内存2和芯片3同时冷却。
上述带沟槽通道型风液金属散热器7后侧与电路板1呈固定连接,上述带沟槽通道型风液金属散热器7,其总高度与内存条2高度一致,宽度与内存条2宽度一致,长度与芯片3长度一致。
上述带沟槽通道型风液金属散热器7包括液冷进水口12、液冷出水口13、内部水冷通道14和内部风冷通道11,内部水通道的底板上部开设有沟槽,沟槽位于带沟槽通道型风液金属散热器7的底板正中心,并且沟槽面积与芯片3面积一致,沟槽方向与内部水流方向一致,沟槽高度至通道顶壁。
由于芯片3和内存条2在一条直线上,将用于上述冷却芯片3和内存的两种散热器结合,开发带沟槽通道型风液金属散热器7,即将原通道型风液金属散热器的内部平底板上添加沟槽结构,带沟槽通道型风液金属散热7,置于芯片3之上;带沟槽通道型风液金属散热7内部底板上沟槽结构位于芯片3外侧,且总面积与芯片3面积一致,沟槽方向与内部水流方向一致,沟槽高 度至通道顶壁;设置或利用原有的导风罩,将风扇5、内存条2和带沟槽通道型风液金属散热器7罩在一个风道中,可实现同时冷却芯片3和内存条2。
工作流程:带沟槽通道型风液金属散热器7置于芯片3之上,外部冷却水流入散热器内部形成强制对流换热用于冷却底部芯片3,沟槽结构位于芯片正上方位置,起到强化换热的作用;另一方面,沟槽通道型风液金属散热器7还用于冷却流经通道的空气(即,当风扇吸入外部环境空气,在导风罩中先吹过内存,将内存降温冷却后,风升温,之后再吹过带沟槽通道型风液金属散热器,被散热器内部水冷却后风再降温),由此实现对内存冷却,且保证吹出服务器时的空气温度≤进口处的环境空气温度,即不为机房环境带去热负荷,通过调节带沟槽通道型风液金属散热7内部低温水的流量,保证芯片3和内存条2温度均不高于安全工作温度,且使吹出服务器的空气温度≤进口时的环境空气温度,即不为机房环境带去热负荷,在服务器内部实现全部冷却,无需再单独设置机柜空调,实现服务器级全液冷,由于服务器内只安装有一个散热器,只有一个进水口和一个出水口,因此只需一套水管路系统即可实现服务器所有电子器件的冷却,同时不给外界带来热负荷,实现单通道服务器级液冷,简易节能。
实施例三
对于新生产的单核液冷式刀片服务器,第三种散热处理情况,请参阅图9和图10。
具体的,上述内存条2和芯片3呈直线安装在电路板1表面,上述芯片3置于靠近电路板的一个端侧,芯片3上覆盖沟槽带风扇单通道风液集成式液冷散热器8,上述沟槽带风扇单通道风液集成式液冷散热器8包括内置风扇5、液冷进水口12、液冷出水口13、内部水冷通道14和内部风冷通道11,沟槽带风扇单通道风液集成式液冷散热器8,覆盖于芯片3正上方,放置方向与内存条2插槽方向相垂直,沟槽带风扇单通道风液集成式液冷散热器8的高度 与内存条2高度一致,宽度与内存条组的总宽度一致,长度与芯片3长度一致,内部水冷通道14的底板正中心布置微通道沟槽9,沟槽覆盖总面积与芯片面积一致,底板内侧沟槽位置与底板外侧芯片的位置相一致,沟槽布置方向与内部水流方向一致,沟槽高度至壁顶,风冷通道11内部设有风扇5,上述沟槽带风扇单通道风液集成式液冷散热器8顶部两端分别连通有液冷出水口13和液冷进水口12。
这里提供单通道服务器级全液冷布置方案,对单核芯片冷却,内存条2和沟槽带风扇单通道风液集成式液冷散热器8放在一个风罩中,沟槽带风扇单通道风液集成式液冷散热器8置于芯片3之上,外部冷却水流入散热器内部形成强制对流换热用于冷却底部芯片3,带沟槽水通道底板10上的沟槽结构位于芯片3正上方位置,起到强化换热的作用;同时,风扇5吸入外部环境空气,在沟槽带风扇单通道风液集成式液冷散热器8的风冷通道11中冷却低于环境温度,再吹过内存,将内存降温冷却后,风升温至环境空气温度一致,排出服务器,即一套水系统配置内部小风扇即可同时实现芯片3和内存的冷却,不为机房环境带去热负荷,实现服务器级液冷。
沟槽带风扇单通道风液集成式液冷散热器8置于高热流芯片3正上方,放置方向与内存条插槽方向相垂直,带沟槽水通道底板10的正中心布置多个微通道沟槽,沟槽总面积与芯片3面积一致,沟槽结构位于芯片3的正上方,沟槽布置方向与内部水流方向一致,沟槽高度至壁顶;小风扇叶片排满沟槽带风扇单通道风液集成式液冷散热器8的风冷通道11内部,实现风扇5与液冷散热器结合为一体,省地,一体式,易安装。通过风扇5和沟槽带风扇单通道风液集成式液冷散热器8双重控制,保证吹出服务器的空气温度不能高于进口时的环境空气温度,各层服务器的进出水参数可单独调控,通过调节沟槽带风扇单通道风液集成式液冷散热器8的液冷进水口12冷液的温度和流量参数,同时实现对芯片3和内存的散热需要,各层服务器的冷却参数调节 互不影响,可根据实际各层工作负荷进行冷却自由控制,获得最大节能,风液集成式液冷散热器,只有一个液冷进水口12和液冷出水口13。
实施例四
基于超算和大规模计算的需求,服务器核数越来越多,热流密度也越来越大,新开发产品也越来越多,本实施例是对实施三例所做出的改进,针对新开发的多核服务器,请参阅图11和图12。
具体的,对于新生产的多核液冷式刀片服务器,第四种散热处理情况,以四核为例,四组内存条2与四个芯片3并列排放且呈直线安装在电路板1表面,上述四个芯片3置于靠近电路板的一个端侧,各芯片等间距布置,四个芯片3上共同覆盖有一个沟槽带风扇多通道风液集成式液冷散热器15,上述沟槽带风扇多通道风液集成式液冷散热器15包括液冷进水口12、液冷出水口13、内部水冷通道14和多组内部风冷通道11,沟槽带风扇多通道风液集成式液冷散热器15放置方向与内存条2插槽方向相垂直,高度与内存条2高度一致,宽度与四组内存条组所占的总宽度一致,长度与芯片3长度一致,内部水冷通道14的底板正中心布置多组微通道沟槽9,沟槽和风通道的组数与内存条2数量一致,每组沟槽覆盖总面积与单个芯片面积一致,且每个沟槽位置与底板外侧相应的单个芯片的位置相一致,沟槽布置方向与内部水流方向一致,沟槽高度至壁顶,每组风冷通道11内部设有满排的风扇5,上述风扇5外侧与沟槽带风扇多通道风液集成式液冷散热器15呈固定连接,上述沟槽带风扇多通道风液集成式液冷散热器15顶部两端分别连通有液冷出水口13和液冷进水口12。
液冷进水口12冷却液参数可单独调控,通过调节散热器进口冷却液的温度和流量参数,同时实现对芯片3和内存的散热需要,各层服务器的冷却参数调节互不影响,可根据实际各层工作负荷进行冷却自由控制。
对多核芯片冷却(以4核为例),内存条2和第二散热组件放在一个风罩 中,第二散热组件内的沟槽带风扇多通道风液集成式液冷散热器内部风冷通道11个数与芯片3个数相同,每个风冷通道11内部布置风扇5,第二散热组件底部的底板的沟槽结构数量与芯片3个数相同,以4核为例,沟槽带风扇多通道风液集成式液冷散热器置于四个芯片3之上,带沟槽水通道底板上的四组沟槽结构分别对应于四个芯片4正上方,外部冷却水流入散热器内部形成强制对流换热用于冷却底部芯片3,起到强化换热的作用,同时,风扇5吸入外部环境空气,在沟槽带风扇多通道风液集成式液冷散热器的风道中冷却,空气低于环境温度,再吹过内存,将内存降温冷却后,风升温至环境空气温度一致,排出服务器,即一套水系统配置内部小风扇即可同时实现芯片3和内存2的冷却,不为机房环境带去热负荷,实现服务器级液冷。
实施例一、二、三和四种的散热器全部采用铝质或铜质的全3D打印,且散热器、液冷进水口12和液冷出水口13均采用3D打印,并且直至伸出机柜,因此管路连接点只限于柜外,不会在服务器内部造成液体泄露。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实例的说明只是用于帮助理解本发明的方法及其核心思想。以上所述仅是本发明的优选实施方式,应当指出,由于文字表达的有限性,而客观上存在无限的具体结构,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进、润饰或变化,也可以将上述技术特征以适当的方式进行组合;这些改进润饰、变化或组合,或未经改进将发明的构思和技术方案直接应用于其它场合的,均应视为本发明的保护范围。

Claims (10)

  1. 单层服务器级的全液冷散热装置,包括电路板(1),其特征在于:所述电路板(1)表面安装有内存条(2)和芯片(3),且内存条(2)和芯片(3)安装在电路板(1)不同的位置所对应四种散热处理情况,全液冷散热装置通过调整散热器内部冷却水工况,用于吸收单层服务器内部所有散热量,不再向服务器外面散热。
  2. 根据权利要求1所述的单层服务器级的全液冷散热装置,其特征在于:对于投入使用中的传统风冷式服务器进行服务器级全液冷改造,其中一种散热处理情况是所述芯片(3)内存条(2)、风扇(5)三者布置不在一条直线上,以单核芯片和内存为例,取消原来传统风扇(5),在芯片上覆盖沟槽式水冷板散热器(4),用于芯片液冷,沟槽式水冷板散热器(4)后侧与电路板(1)呈固定连接;在内存条(2)的一侧布置带风扇通道型风液金属散热器(6),用于内存条(2)冷却。
  3. 根据权利要求2所述的单层服务器级的全液冷散热装置,其特征在于:沟槽式水冷板散热器(4)包括液冷进水口(12)、液冷出水口(13)、内部微通道沟槽(9),微通道沟槽(9)位于散热器底板正中心,且总面积与芯片面积一致,沟槽方向与内部水流方向一致,沟槽高度至通道顶壁。
  4. 根据权利要求2所述的单层服务器级的全液冷散热装置,其特征在于:以带内置风扇(5)的带风扇通道型风液金属散热器(6)代替传统风扇(5),用于对所述内存条(2)进行冷却,带风扇通道型风液金属散热器(6)后侧与电路板(1)呈固定连接,所述内存条(2)的插槽方向与带风扇通道型风液金属散热器(6)长边相垂直,带风扇通道型风液金属散热器(6)的高度与内存同高,宽度与内存同宽,设导风罩,将内存条(2)和带风扇通道型风液金属散热器(6)罩在一个风道中,带风扇通道型风液金属散热器(6)包括液冷进水口(12)、液冷出水口(13)、内部水冷通道(14)和内部风冷通道(11),内部风冷通道(11)内部排满风扇(5)。
  5. 根据权利要求1所述的单层服务器级的全液冷散热装置,其特征在于:对于投入使用中的传统风冷式服务器进行服务器级全液冷改造,其中另一种散热处理情况,所述芯片(3)、内存条(2)、风扇(5)三者呈直线安装在电路板(1)表面,保持原有的风扇(5)不动,所述芯片(3)的上面覆盖带沟槽通道型风液金属散热器(7)。
  6. 根据权利要求5所述的单层服务器级的全液冷散热装置,其特征在于:所述带沟槽通道型风液金属散热器(7)后侧与电路板(1)呈固定连接,所述带沟槽通道型风液金属散热器(7),其总高度与内存条(2)高度一致,宽度与内存条(2)宽度一致,长度与芯片(3)长度一致。
  7. 根据权利要求6所述的带沟槽通道型风液金属散热器(7),其特征在于:所述带沟槽通道型风液金属散热器(7)包括液冷进水口(12)、液冷出水口(13)、内部水冷通道(14)和内部风冷通道(11),内部水通道的底板上部开设有沟槽,沟槽位于带沟槽通道型风液金属散热器(7)的底板正中心,并且沟槽面积与芯片(3)面积一致,沟槽方向与内部水流方向一致,沟槽高度至通道顶壁。
  8. 根据权利要求1所述的单层服务器级的全液冷散热装置,其特征在于:对于新生产的单核液冷式刀片服务器,第三种散热处理情况,所述内存条(2)和芯片(3)呈直线安装在电路板(1)表面,所述芯片(3)置于靠近电路板的一个端侧,芯片(3)上覆盖沟槽带风扇单通道风液集成式液冷散热器(8),所述沟槽带风扇单通道风液集成式液冷散热器(8)包括液冷进水口(12)、液冷出水口(13)、内部水冷通道(14)和内部风冷通道(11),沟槽带风扇单通道风液集成式液冷散热器(8),覆盖于芯片(3)正上方,放置方向与内存条(2)插槽方向相垂直,沟槽带风扇单通道风液集成式液冷散热器(8)的高度与内存条(2)高度一致,宽度与内存条组的总宽度一致,长度与芯片(3)长度一致,内部水冷通道(14)的底板正中心布置微通道沟槽(9),沟 槽覆盖总面积与芯片面积一致,底板内侧沟槽位置与底板外侧芯片的位置相一致,沟槽布置方向与内部水流方向一致,沟槽高度至壁顶,风冷通道(11)内部设有风扇(5),所述风扇(5)外侧与沟槽带风扇单通道风液集成式液冷散热器(8)呈固定连接,所述沟槽带风扇单通道风液集成式液冷散热器(8)顶部两端分别连通有液冷出水口(13)和液冷进水口(12)。
  9. 根据权利要求1所述的单层服务器级的全液冷散热装置,其特征在于:对于新生产的多核液冷式刀片服务器,第四种散热处理情况,以四核为例,四组内存条(2)与四个芯片(3)并列排放且呈直线安装在电路板(1)表面,所述四个芯片(3)置于靠近电路板的一个端侧,各芯片等间距布置,四个芯片(3)上共同覆盖有一个沟槽带风扇多通道风液集成式液冷散热器(15),所述沟槽带风扇多通道风液集成式液冷散热器(15)包括液冷进水口(12)、液冷出水口(13)、内部水冷通道(14)和多组内部风冷通道(11),沟槽带风扇多通道风液集成式液冷散热器(15)放置方向与内存条(2)插槽方向相垂直,高度与内存条(2)高度一致,宽度与四组内存条组所占的总宽度一致,长度与芯片(3)长度一致,内部水冷通道(14)的底板正中心布置多组微通道沟槽(9),沟槽和风通道的组数与内存条(2)数量一致,每组沟槽覆盖总面积与单个芯片面积一致,且每个沟槽位置与底板外侧相应的单个芯片的位置相一致,沟槽布置方向与内部水流方向一致,沟槽高度至壁顶,每组风冷通道(11)内部设有满排的风扇(5),所述风扇(5)外侧与沟槽带风扇多通道风液集成式液冷散热器(15)呈固定连接,所述沟槽带风扇多通道风液集成式液冷散热器(15)顶部两端分别连通有液冷出水口(13)和液冷进水口(12)。
  10. 根据权利要求1-9中任意一项所述的单层服务器级的全液冷散热装置,其特征在于:液冷进水口(12)冷却液参数可单独调控,通过调节散热器进口冷却液的温度和流量参数,同时实现对芯片(3)和内存的散热需要,各层服务器的冷却参数调节互不影响,可根据实际各层工作负荷进行冷却自由 控制,液冷出水口(13)和液冷进水口(12)以及服务器内部所有液冷散热器,全部采用铝质或铜质的全3D打印,液冷出水口(13)和液冷进水口(12)延伸至机柜外侧,由于管路连接点在服务器外,避免了服务器内部液体泄露。
PCT/CN2023/092446 2022-09-16 2023-05-06 单层服务器级的全液冷散热装置 WO2024055604A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211133237.8A CN115494923A (zh) 2022-09-16 2022-09-16 单层服务器级的全液冷散热装置
CN202211133237.8 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024055604A1 true WO2024055604A1 (zh) 2024-03-21

Family

ID=84470280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092446 WO2024055604A1 (zh) 2022-09-16 2023-05-06 单层服务器级的全液冷散热装置

Country Status (2)

Country Link
CN (1) CN115494923A (zh)
WO (1) WO2024055604A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115494923A (zh) * 2022-09-16 2022-12-20 天津商业大学 单层服务器级的全液冷散热装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038112A (ja) * 2003-07-18 2005-02-10 Hitachi Ltd 液冷システムおよびラジエーター
CN107515657A (zh) * 2017-10-24 2017-12-26 郑州云海信息技术有限公司 一种含前置液冷式空气冷却装置的液冷服务器
CN114138084A (zh) * 2021-10-29 2022-03-04 苏州浪潮智能科技有限公司 一种应用于服务器的浸没式负压液冷系统
CN114217678A (zh) * 2021-11-01 2022-03-22 浙江大华技术股份有限公司 一种服务器
CN216982389U (zh) * 2022-01-26 2022-07-15 珠海格莱克科技有限公司 散热装置和电气设备
CN114828577A (zh) * 2022-05-05 2022-07-29 天津商业大学 一种新型高效数据中心服务器液冷散热柜
CN115494923A (zh) * 2022-09-16 2022-12-20 天津商业大学 单层服务器级的全液冷散热装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038112A (ja) * 2003-07-18 2005-02-10 Hitachi Ltd 液冷システムおよびラジエーター
CN107515657A (zh) * 2017-10-24 2017-12-26 郑州云海信息技术有限公司 一种含前置液冷式空气冷却装置的液冷服务器
CN114138084A (zh) * 2021-10-29 2022-03-04 苏州浪潮智能科技有限公司 一种应用于服务器的浸没式负压液冷系统
CN114217678A (zh) * 2021-11-01 2022-03-22 浙江大华技术股份有限公司 一种服务器
CN216982389U (zh) * 2022-01-26 2022-07-15 珠海格莱克科技有限公司 散热装置和电气设备
CN114828577A (zh) * 2022-05-05 2022-07-29 天津商业大学 一种新型高效数据中心服务器液冷散热柜
CN115494923A (zh) * 2022-09-16 2022-12-20 天津商业大学 单层服务器级的全液冷散热装置

Also Published As

Publication number Publication date
CN115494923A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
US10136551B2 (en) Liquid cooling system for server
TWI693013B (zh) 一種噴淋式液冷伺服器
US9101078B2 (en) Data center cooling with an air-side economizer and liquid-cooled electronics rack(s)
US9261310B2 (en) Gas cooled condensers for loop heat pipe like enclosure cooling
US8687364B2 (en) Directly connected heat exchanger tube section and coolant-cooled structure
US7286351B2 (en) Apparatus and method for facilitating cooling of an electronics rack employing a closed loop heat exchange system
US7957132B2 (en) Efficiently cool data centers and electronic enclosures using loop heat pipes
WO2024055604A1 (zh) 单层服务器级的全液冷散热装置
TW201213212A (en) Container data center and heat dissipation apparatus thereof
US20120298335A1 (en) Air-cooling wall with slidable heat exchangers
CN111176389A (zh) 一种半导体除湿装置及液冷服务器
US20040085727A1 (en) Computer main body cooling system
CN115413196A (zh) 冷却系统
TWM545361U (zh) 氣冷液冷複合式散熱器
CN107124853A (zh) 液冷装置及其应用的电子设备
CN107949236B (zh) 一种基于传导的综合换热装置
TWI487473B (zh) 資料中心之冷卻系統
CN207166932U (zh) 液冷装置及其应用的电子设备
CN205946472U (zh) 液冷热交换器
CN220603976U (zh) 一种计算机辅助散热器
CN213659375U (zh) 浸没式液冷散热装置的余热利用系统
CN208400071U (zh) 电路主板散热装置
CN215675537U (zh) 散热装置及空调器
CN113465046A (zh) 散热装置及空调器及散热装置的控制方法
CN116113143A (zh) 一种冷却板