CN115386345A - 一种基于铜渣的复合壳层相变蓄热球及其制备方法 - Google Patents

一种基于铜渣的复合壳层相变蓄热球及其制备方法 Download PDF

Info

Publication number
CN115386345A
CN115386345A CN202210841134.0A CN202210841134A CN115386345A CN 115386345 A CN115386345 A CN 115386345A CN 202210841134 A CN202210841134 A CN 202210841134A CN 115386345 A CN115386345 A CN 115386345A
Authority
CN
China
Prior art keywords
copper slag
heat storage
change heat
preparation
storage ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210841134.0A
Other languages
English (en)
Other versions
CN115386345B (zh
Inventor
张美杰
叶成梁
顾华志
杨爽
黄奥
陈定
夏求林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202210841134.0A priority Critical patent/CN115386345B/zh
Publication of CN115386345A publication Critical patent/CN115386345A/zh
Application granted granted Critical
Publication of CN115386345B publication Critical patent/CN115386345B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了基于铜渣的复合壳层相变蓄热球及其制备方法。制备方法包括如下步骤:步骤一、制得有机烧失物包覆的金属球;步骤二、制得铝硅质复合相变蓄热球坯体;步骤三、将30~40wt%的铜渣‑耐火浆料混合物置于圆盘造粒机中,再将60~70wt%的步骤一中所述铝硅质复合相变蓄热球坯体加入所述圆盘造粒机中,制得基于铜渣的复合壳层相变蓄热球坯;步骤四、将所述基于铜渣的复合壳层相变蓄热球坯置于空气气氛中,煅烧,制得基于铜渣的复合壳层相变蓄热球;本发明所制备的基于铜渣的复合壳层相变蓄热球经检测:1000℃蓄热密度为337.5~680.8J/g;1000℃热震30~50次未出现裂纹。

Description

一种基于铜渣的复合壳层相变蓄热球及其制备方法
技术领域
本发明涉及蓄热材料技术领域,尤其涉及一种基于铜渣的复合壳层相变蓄热球及其制备方法。
背景技术
蓄热材料能够有效的回收利用工业余热,提高能源的利用效率。相变蓄热应用的关键在于相变蓄热材料的选择及封装。铝基合金是一种优异的金属基相变储热材料,其中含硅12%的铝硅共晶合金的相变温度为576℃,相变潜热为490~510kJ/kg,传热性能良好,过冷度小,资源丰富和性价比较好,在高温储热领域具有广泛的应用前景。然而,合金在相变过程中表现出较高的化学腐蚀、固体到液体的体积膨胀和氧化过程损失,限制了合金的应用。
近年来,关于铝或铝硅合金的复合相变蓄热材料已经有大量的研究如“一种大直径相变蓄热颗粒及其制备方法”(201910007853.0)专利技术,该技术以铝硅合金粉为原料,将其与酸和去离子水反复洗涤,经干燥和不同温度焙烧处理,制得一种大直径相变蓄热颗粒。“一种高温相变蓄热复合材料及其制备方法”(202011443646.9)专利技术,该技术以三元铝基合金粉为原料经过酸洗,水蒸气预处理,再将其分别置于铝溶胶、硅溶胶中真空浸渍,最后置于高温炉中,于1100~1400℃和空气气氛条件下烧成,冷却,制得高温相变蓄热复合材料。“一种双壳层相变蓄热球及其制备方法”(202011194508.1)专利技术,该技术将金属球依次包覆含烧失物的石蜡熔体,氧化铝质耐火浆料,莫来石质耐火浆料,高温烧成,制得双壳层相变蓄热球。上述技术虽有其优点,但存在成本高、产量低和不易于工业化生产的技术缺陷。
随着社会经济的快速发展,工业生产伴随着大量的副产品甚至是废弃物产生,造成环境污染和资源的浪费。铜渣是有色冶金行业中的一种主要固体废弃物,其组成复杂,由多种氧化物组成大量堆存的铜冶炼渣不仅占用土地资源,而且严重污染大气和水源。近年来,许多研究人员针对提高铜渣的利用已经有大量的研究,如“一种高强度水泥及其制备方法”(202210036890.6)专利技术,以铜渣等固废作为水泥的主要原料,加入助磨剂增强剂制备具有良好的安定性、减水率和高强度的水泥。“一种回收铜渣中铁和铜的方法”(202111563589.2)专利技术,提供了一种能高效分离和回收铜渣里铜和铁的方法。然而,建材中铜渣的消耗量有限,回收铁和铜后的尾渣依然无法处理,且回收过程中存在二次污染问题。
发明内容
本发明的目的在于,针对现有技术的上述不足,提出一种对环境友好、工艺简单、成本低易于工业化生产的复合壳层相变蓄热球的制备方法,且所制备的基于铜渣复合壳层相变蓄热球蓄热量高、热循环性能好、产品寿命长、使用温度高。
本发明的基于铜渣的复合壳层相变蓄热球的制备方法,包括如下步骤:
步骤一、将低熔点有机烧失物与高熔点有机烧失物按质量比1:0.8-1.2进行配料,在70~150℃条件下,将所述混合物置于烘箱,保持1~2h,得到有机烧失物;然后将金属球置于所述有机烧失物的熔体中浸渍10~20s,于通风橱中自然冷却,制得有机烧失物包覆的金属球;
步骤二、将10~30wt%的铝硅质耐火浆料置于圆盘造粒机中,再将70~90wt%的有机烧失物包覆的金属球加入所述圆盘造粒机中,以20~40r/min的转速转动0.5~1h,取出,制得铝硅质复合相变蓄热球坯体;
步骤三、将30~40wt%的铜渣-耐火浆料混合物置于圆盘造粒机中,再将60~70wt%的步骤一中所述铝硅质复合相变蓄热球坯体加入所述圆盘造粒机中,以10~30r/min的转速转动0.5~1h,取出,置于通风橱中6~12h,然后于90~200℃条件下保持6~12h,制得基于铜渣的复合壳层相变蓄热球坯;
步骤四、将所述基于铜渣的复合壳层相变蓄热球坯置于空气气氛中,以3~8℃/min的速率升温至1100~1400℃,保温2~5h,自然冷却至室温,制得基于铜渣的复合壳层相变蓄热球;
所述铝硅质耐火浆料的制备方法为:
以60~80wt%的矾土细粉、5~15wt%的α-氧化铝微粉、4~8wt%的广西泥、8~12wt%的硅微粉、1~2wt%的木钙和2~3wt%的糊精混合,得铝硅质耐火浆料预混料;然后向所述耐火料中外加5~10wt%的硅溶胶,搅拌均匀,制得铝硅质耐火浆料;
所述铜渣-耐火浆料混合物的制备方法为:
以20~60wt%的矾土细粉、30~80wt%的铜渣细粉、5~15wt%的α-氧化铝微粉、4~8wt%的广西泥、8~12wt%的硅微粉、1~2wt%的木钙和2~3wt%的糊精混合,得铜渣-耐火浆料混合物预混料;然后向所述耐火料中外加5~10wt%的硅溶胶,搅拌均匀,制得铜渣-耐火浆料混合物。
进一步的,铝硅质耐火浆料中,所述矾土细粉中Al2O3含量50~85wt%,SiO2含量5~30wt%,所述矾土细分粒径≤180μm。
进一步的,铜渣-耐火浆料中,所述矾土细粉中Al2O3含量50~89wt%,SiO2含量3~30wt%,细分粒径≤1mm。
进一步的,所述铜渣中Fe2O3含量5~15wt%,FeO含量35~60wt%,SiO2含量25~35wt%。
进一步的,所述铝硅质耐火浆料和铜渣-耐火浆料中,所述α-氧化铝微粉的Al2O3含量≥99wt%,所述α-氧化铝微粉的粒径≤8μm。
进一步的,所述铝硅质耐火浆料和铜渣-耐火浆料中,所述广西泥:Al2O3含量为33~36wt%,SiO2含量为46~49wt%,Fe2O3含量为1~1.3wt%;所述广西泥的粒径≤180μm。
进一步的,所述铝硅质耐火浆料和铜渣-耐火浆料中,所述硅微粉的SiO2≥92wt%,所述硅微粉的粒径≤0.6μm;所述硅溶胶的的固含量为5~30%,pH为8.5~10.5。
进一步的,所述低熔点有机烧失物为月桂酸、蜂蜡、石蜡等有机物中的一种或多种。
进一步的,所述高熔点有机烧失物为松香、沥青等有机物中的一种或多种。
一种采用上述的制备方法制备的基于铜渣的复合壳层相变蓄热球。
本发明制备的基于铜渣复合壳层相变蓄热球,壳层的制备原料主要是矾土细粉与铜渣细粉,原料廉价易得。因此,所制备的基于铜渣复合壳层相变蓄热球成本低。
本发明通过控制圆盘造粒机中的转速和时间,控制基于铜渣复合壳层相变蓄热球包覆层的厚度和均匀程度。因此,所制备的基于铜渣复合壳层相变蓄热球制备工艺简单,易于控制,壳层厚薄均匀,易于大规模生产。
本发明以金属球为核,依次包覆有机烧失物、矾土质耐火浆料和矾土铜渣质耐火浆料。烘烤过程中,铝硅质耐火浆料和铜渣-耐火浆料混合物中的水分排出形成贯通气孔通道。焙烧过程中,低熔点有机烧失物、高熔点有机烧失物依次熔化,通过贯通气孔逐渐排出。有机烧失物烧失和分解后在核内遗留孔隙,给金属球高温服役过程中熔融膨胀提供空间。继续升温,铜渣-耐火浆料混合物在烧结过程中逐渐致密化,气孔收缩并消失,并形成莫来石晶须如图1,同时铜渣中的FeO与O2反应,保护内部金属不被氧化。进一步升温,铝硅质耐火浆料在烧结过程中逐渐致密化,形成莫来石晶须在基质中相互交错,在气孔中形成网络结构,进一步阻止O2向内部扩散,如图2。原位形成结合良好的双壳层包覆壳层,将金属球充分包覆,避免金属泄露,同时保护金属球不被外部空气氧化。莫来石晶须具有优良的抗热震性能和弹性模量大等优点,铜渣具有比热容大,促进莫来石晶须生成、壳层烧结致密等优点。因此,所制备的基于铜渣复合壳层相变蓄热球抗热震性能好、强度高、耐磨、耐腐蚀、蓄热量高、能提高热量的利用率。
本发明制备的复合壳层相变蓄热球经1100~1400℃高温烧成,壳层致密壳层密度为2.48~2.68g/cm-3,气孔率为18%~27%,因此,使用温度高。
本发明所制备的基于铜渣复合壳层相变蓄热球经检测:1000℃蓄热密度为337.5~680.8J/g;1000℃热震30~50次未出现裂纹。
因此,本发明具有成本低、工艺简单、易于工业化生产、对环境友好等特点;所制备的基于铜渣复合壳层相变蓄热球热震稳定性好,蓄热量高、强度高、耐磨、耐腐蚀、热稳定性优良、能量的利用率高、壳层厚薄均匀、使用温度高和应用范围广。
附图说明
图1为实施例2中1300℃烧后外壳层中生成的莫来石晶须SEM照片;
图2为实施例2中1300℃烧后内壳层中生成的莫来石晶须SEM照片。
图3为实施例1制备的基于铜渣的复合壳层相变蓄热球的照片;
图4为实施例2制备的基于铜渣的复合壳层相变蓄热球的照片;
图5为实施例3制备的基于铜渣的复合壳层相变蓄热球的照片;
图6为实施例1制备的基于铜渣的复合壳层相变蓄热球的截面照片;
图7为实施例2制备的基于铜渣的复合壳层相变蓄热球的截面照片;
图8为实施例3制备的基于铜渣的复合壳层相变蓄热球的截面照片。
具体实施方式
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
一种基于铜渣复合相变蓄热球及其制备方法。本具体实施方式制备方法是:
基于铜渣复合壳层相变蓄热球制备分为三个部分,分别为铝硅质耐火浆料的制备、铜渣-耐火浆料混合物的制备、基于铜渣复合壳层相变蓄热球的制备。
1.铝硅质耐火浆料的制备:
铝硅质耐火浆料的制备方法为:
以60~80wt%的矾土细粉、5~15wt%的α-氧化铝微粉、4~8wt%的广西泥、8~12wt%的硅微粉、1~2wt%的木钙和2~3wt%的糊精混合,得铝硅质耐火浆料预混料;然后向耐火料中外加5~10wt%的硅溶胶,搅拌均匀,制得铝硅质耐火浆料;
矾土细粉中Al2O3含量50~85wt%,SiO2含量5~30wt%,矾土细分粒径≤1mm;
α-氧化铝微粉的Al2O3含量≥99wt%,α-氧化铝微粉的粒径≤8μm;
广西泥:Al2O3含量为33~36wt%,SiO2含量为46~49wt%,Fe2O3含量为1~1.3wt%;广西泥的粒径≤180μm;
硅微粉的SiO2≥92wt%,硅微粉的粒径≤0.6μm;
硅溶胶的的固含量为5~30%,pH为8.5~10.5。
2.铜渣-耐火浆料混合物的制备:
铜渣-耐火浆料混合物的制备方法为:
以10~60wt%的矾土细粉、30~70wt%的铜渣细粉、5~15wt%的α-氧化铝微粉、4~8wt%的广西泥、8~12wt%的硅微粉、1~2wt%的木钙和2~3wt%的糊精混合,得铜渣-耐火浆料混合物预混料;然后向耐火料中外加5~10wt%的硅溶胶,搅拌均匀,制得铜渣-耐火浆料混合物;
矾土细粉中Al2O3含量50~89wt%,SiO2含量3~30wt%,细分粒径≤1mm;
铜渣中Fe2O3含量5~15wt%,FeO含量35~60wt%,SiO2含量25~35wt%;
α-氧化铝微粉的Al2O3含量≥99wt%,α-氧化铝微粉的粒径≤8μm;
广西泥:Al2O3含量为33~36wt%,SiO2含量为46~49wt%,Fe2O3含量为1~1.3wt%;广西泥的粒径≤180μm;
硅微粉的SiO2≥92wt%,硅微粉的粒径≤0.6μm;
硅溶胶的的固含量为5~30%,pH为8.5~10.5。
3.基于铜渣复合壳层相变蓄热球的制备:
步骤一、将低熔点有机烧失物与高熔点有机烧失物按质量比1:0.8-1.2进行配料,在70~150℃条件下,将混合物置于烘箱,保持1~2h,得到有机烧失物;然后将金属球置于有机烧失物的熔体中浸渍10~20s,于通风橱中自然冷却,制得有机烧失物包覆的金属球。
步骤二、将10~30wt%的铝硅质耐火浆料置于圆盘造粒机中,再将70~90wt%的有机烧失物包覆的金属球加入圆盘造粒机中,以20~40r/min的转速转动0.5~1h,取出,制得铝硅质复合相变蓄热球坯体;
步骤三、将30~40wt%的铜渣-耐火浆料混合物置于圆盘造粒机中,再将60~70wt%的步骤一中铝硅质复合相变蓄热球坯体加入圆盘造粒机中,以10~30r/min的转速转动0.5~1h,取出,置于通风橱中6~12h,然后于90~200℃条件下保持6~12h,制得基于铜渣复合壳层相变蓄热球坯;
步骤四、将基于铜渣复合壳层相变蓄热球坯置于空气气氛中,以3~8℃/min的速率升温至1100~1400℃,保温2~5h,自然冷却至室温,制得基于铜渣复合壳层相变蓄热球。
低熔点有机烧失物为月桂酸、蜂蜡、石蜡等有机物中的一种或多种。
高熔点有机烧失物为松香、沥青等有机物中的一种或多种。
本实施例中不再赘述。
实施例1
一种基于铜渣复合相变蓄热球及其制备方法,分为三个部分,分别为铝硅质耐火浆料的制备、铜渣-耐火浆料混合物的制备、基于铜渣复合壳层相变蓄热球的制备:
(1)一种铝硅质耐火浆料的制备,按以下顺序的步骤制得:
以80wt%的矾土细粉、5wt%的α-氧化铝微粉、4wt%的广西泥、8wt%的硅微粉、1wt%的木钙和2wt%的糊精混合,得铝硅质耐火浆料预混料;然后向耐火料中外加5wt%的硅溶胶,搅拌均匀,制得铝硅质耐火浆料;
其中,矾土细粉中Al2O3含量85wt%,SiO2含量5wt%,矾土细分粒径≤200μm;
α-氧化铝微粉的Al2O3含量≥99wt%,α-氧化铝微粉的粒径≤8μm;
广西泥:Al2O3含量为36wt%,SiO2含量为46wt%,Fe2O3含量为1.3wt%;广西泥的粒径≤180μm;
硅微粉的SiO2含量为92wt%,硅微粉的粒径≤0.6μm;
硅溶胶的的固含量为7.5%,pH为8.5。
(2)一种铜渣-耐火浆料混合物的制备,按以下顺序的步骤制得:
以50wt%的矾土细粉、30wt%的铜渣细粉、5wt%的α-氧化铝微粉、4wt%的广西泥、8wt%的硅微粉、1wt%的木钙和2wt%的糊精混合,得铜渣-耐火浆料混合物预混料;然后向耐火料中外加10wt%的硅溶胶,搅拌均匀,制得铜渣-耐火浆料混合物;
其中,矾土细粉中Al2O3含量89wt%,SiO2含量3wt%,细分粒径≤500μm;
铜渣中Fe2O3含量5wt%,FeO含量35wt%,SiO2含量25wt%;
α-氧化铝微粉的Al2O3含量≥99wt%,α-氧化铝微粉的粒径≤8μm;
广西泥:Al2O3含量为36wt%,SiO2含量为46wt%,Fe2O3含量为1.3wt%;广西泥的粒径≤180μm;
硅微粉的SiO2含量为92wt%,硅微粉的粒径≤0.6μm;
硅溶胶的的固含量为7.5%,pH为8.5。
(3)一种基于铜渣复合壳层相变蓄热球的制备方法,按以下顺序的步骤制得:
步骤一、将低熔点有机烧失物与高熔点有机烧失物按质量比1:0.8进行配料,在70℃条件下,将混合物置于烘箱,保持1h,得到有机烧失物;然后将金属球置于有机烧失物的熔体中浸渍20s,于通风橱中自然冷却,制得有机烧失物包覆的金属球。
步骤二、将10wt%的铝硅质耐火浆料置于圆盘造粒机中,再将90wt%的有机烧失物包覆的金属球加入圆盘造粒机中,以20r/min的转速转动0.5h,取出,制得铝硅质复合相变蓄热球坯体;
步骤三、将40wt%的铜渣-耐火浆料混合物置于圆盘造粒机中,再将60wt%的步骤一中铝硅质复合相变蓄热球坯体加入圆盘造粒机中,以10r/min的转速转动0.5h,取出,置于通风橱中6h,然后于90℃条件下保持6h,制得基于铜渣复合壳层相变蓄热球坯;
步骤四、将基于铜渣复合壳层相变蓄热球坯置于空气气氛中,以8℃/min的速率升温至1100℃,保温2h,自然冷却至室温,制得基于铜渣复合壳层相变蓄热球,如图3、6所示。图6为实施例1制备的基于铜渣的复合壳层相变蓄热球的截面照片;图中,内壳层为铝硅质耐火层,外壳层为铜渣-耐火复合层。
低熔点有机烧失物为石蜡。
高熔点有机烧失物为松香。
实施例2
一种基于铜渣复合相变蓄热球及其制备方法,分为三个部分,分别为铝硅质耐火浆料的制备、铜渣-耐火浆料混合物的制备、基于铜渣复合壳层相变蓄热球的制备:
(1)一种铝硅质耐火浆料的制备,按以下顺序的步骤制得:
以72wt%的矾土细粉、8wt%的α-氧化铝微粉、8wt%的广西泥、8wt%的硅微粉、1wt%的木钙和3wt%的糊精混合,得铝硅质耐火浆料预混料;然后向耐火料中外加8wt%的硅溶胶,搅拌均匀,制得铝硅质耐火浆料;
其中,矾土细粉中Al2O3含量70wt%,SiO2含量15wt%,矾土细分粒径≤300μm;
α-氧化铝微粉的Al2O3含量≥99wt%,α-氧化铝微粉的粒径≤5μm;
广西泥:Al2O3含量为35wt%,SiO2含量为47wt%,Fe2O3含量为1.2wt%;广西泥的粒径≤100μm;
硅微粉的SiO2含量为92wt%,硅微粉的粒径≤0.6μm;
硅溶胶的的固含量为15%,pH为9.5。
(2)一种铜渣-耐火浆料混合物的制备,按以下顺序的步骤制得:
以20wt%的矾土细粉、60wt%的铜渣细粉、5wt%的α-氧化铝微粉、4wt%的广西泥、8wt%的硅微粉、1wt%的木钙和2wt%的糊精混合,得铜渣-耐火浆料混合物预混料;然后向耐火料中外加10wt%的硅溶胶,搅拌均匀,制得铜渣-耐火浆料混合物;
其中,矾土细粉中Al2O3含量89wt%,SiO2含量3wt%,细分粒径≤300μm;
铜渣中Fe2O3含量7wt%,FeO含量41wt%,SiO2含量35wt%;
α-氧化铝微粉的Al2O3含量≥99wt%,α-氧化铝微粉的粒径≤8μm;
广西泥:Al2O3含量为35wt%,SiO2含量为37wt%,Fe2O3含量为1.2wt%;广西泥的粒径≤180μm;
硅微粉的SiO2含量为92wt%,硅微粉的粒径≤0.6μm
硅溶胶的的固含量为15%,pH为9.5。
(3)一种基于铜渣复合壳层相变蓄热球的制备方法,按以下顺序的步骤制得:
步骤一、将低熔点有机烧失物与高熔点有机烧失物按质量比1:1进行配料,在100℃条件下,将混合物置于烘箱,保持1.5h,得到有机烧失物;然后将金属球置于有机烧失物的熔体中浸渍15s,于通风橱中自然冷却,制得有机烧失物包覆的金属球;
步骤二、将22wt%的铝硅质耐火浆料置于圆盘造粒机中,再将78wt%的有机烧失物包覆的金属球加入圆盘造粒机中,以28r/min的转速转动0.5h,取出,制得铝硅质复合相变蓄热球坯体;
步骤三、将35wt%的铜渣-耐火浆料混合物置于圆盘造粒机中,再将65wt%的步骤一中铝硅质复合相变蓄热球坯体加入圆盘造粒机中,以15r/min的转速转动0.5h,取出,置于通风橱中8h,然后于110℃条件下保持8h,制得基于铜渣复合壳层相变蓄热球坯;
步骤四、将基于铜渣复合壳层相变蓄热球坯置于空气气氛中,以6℃/min的速率升温至1300℃,保温3h,自然冷却至室温,制得基于铜渣复合壳层相变蓄热球,如图4、7所示。图7为实施例2制备的基于铜渣的复合壳层相变蓄热球的截面照片。图中,内壳层为铝硅质耐火层,外壳层为铜渣-耐火复合层。
低熔点有机烧失物为蜂蜡。
高熔点有机烧失物为松香。
图1为实施例2中1300℃烧后外壳层中生成的莫来石晶须SEM照片。
图2为实施例2中1300℃烧后内壳层中生成的莫来石晶须SEM照片。
实施例3
一种基于铜渣复合相变蓄热球及其制备方法,分为三个部分,分别为铝硅质耐火浆料的制备、铜渣-耐火浆料混合物的制备、基于铜渣复合壳层相变蓄热球的制备:
(1)一种铝硅质耐火浆料的制备,按以下顺序的步骤制得:
以79wt%的矾土细粉、5wt%的α-氧化铝微粉、4wt%的广西泥、8wt%的硅微粉、1wt%的木钙和3wt%的糊精混合,得铝硅质耐火浆料预混料;然后向耐火料中外加8wt%的硅溶胶,搅拌均匀,制得铝硅质耐火浆料;
其中,矾土细粉中Al2O3含量50wt%,SiO2含量30wt%,矾土细分粒径≤100μm;
α-氧化铝微粉的Al2O3含量≥99wt%,α-氧化铝微粉的粒径≤5μm;
广西泥:Al2O3含量为36wt%,SiO2含量为49wt%,Fe2O3含量为1.3wt%;广西泥的粒径≤160μm;
硅微粉的SiO2含量为92wt%,硅微粉的粒径≤0.6μm
硅溶胶的的固含量为30%,pH为10.5。
(2)一种铜渣-耐火浆料混合物的制备,按以下顺序的步骤制得:
以10wt%的矾土细粉、70wt%的铜渣细粉、5wt%的α-氧化铝微粉、4wt%的广西泥、8wt%的硅微粉、1wt%的木钙和2wt%的糊精混合,得铜渣-耐火浆料混合物预混料;然后向耐火料中外加9wt%的硅溶胶,搅拌均匀,制得铜渣-耐火浆料混合物;
其中,矾土细粉中Al2O3含量54wt%,SiO2含量37wt%,细分粒径≤300μm;
铜渣中Fe2O3含量15wt%,FeO含量45wt%,SiO2含量32wt%;
α-氧化铝微粉的Al2O3含量≥99wt%,α-氧化铝微粉的粒径≤8μm;
广西泥:Al2O3含量为35wt%,SiO2含量为37wt%,Fe2O3含量为1.2wt%;广西泥的粒径≤180μm;
硅微粉的SiO2含量为92wt%,硅微粉的粒径≤0.6μm
硅溶胶的的固含量为30%,pH为10.5。
(3)一种基于铜渣复合壳层相变蓄热球的制备方法,按以下顺序的步骤制得:
步骤一、将低熔点有机烧失物与高熔点有机烧失物按质量比1:1.2进行配料,在120℃条件下,将混合物置于烘箱,保持2h,得到有机烧失物;然后将金属球置于有机烧失物的熔体中浸渍10s,于通风橱中自然冷却,制得有机烧失物包覆的金属球;
步骤二、将22wt%的铝硅质耐火浆料置于圆盘造粒机中,再将78wt%的有机烧失物包覆的金属球加入圆盘造粒机中,以40r/min的转速转动1h,取出,制得铝硅质复合相变蓄热球坯体;
步骤三、将40wt%的铜渣-耐火浆料混合物置于圆盘造粒机中,再将70wt%的步骤一中铝硅质复合相变蓄热球坯体加入圆盘造粒机中,以30r/min的转速转动1h,取出,置于通风橱中12h,然后于200℃条件下保持12h,制得基于铜渣复合壳层相变蓄热球坯;
步骤四、将基于铜渣复合壳层相变蓄热球坯置于空气气氛中,以3℃/min的速率升温至1300℃,保温3h,自然冷却至室温,制得基于铜渣复合壳层相变蓄热球,如图5、8所示。图8为实施例3制备的基于铜渣的复合壳层相变蓄热球的截面照片。图中,内壳层为铝硅质耐火层,外壳层为铜渣-耐火复合层。
低熔点有机烧失物为石蜡。
高熔点有机烧失物为沥青。
以上未涉及之处,适用于现有技术。
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围,本发明所属技术领域的技术人员可以对所描述的具体实施例来做出各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的方向或者超越所附权利要求书所定义的范围。本领域的技术人员应该理解,凡是依据本发明的技术实质对以上实施方式所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围。

Claims (10)

1.基于铜渣的复合壳层相变蓄热球的制备方法,其特征在于:包括如下步骤:
步骤一、将低熔点有机烧失物与高熔点有机烧失物按质量比1:0.8-1.2进行配料,在70~150℃条件下,将所述混合物置于烘箱,保持1~2h,得到有机烧失物;然后将金属球置于所述有机烧失物的熔体中浸渍10~20s,于通风橱中自然冷却,制得有机烧失物包覆的金属球;
步骤二、将10~30wt%的铝硅质耐火浆料置于圆盘造粒机中,再将70~90wt%的有机烧失物包覆的金属球加入所述圆盘造粒机中,以20~40r/min的转速转动0.5~1h,取出,制得铝硅质复合相变蓄热球坯体;
步骤三、将30~40wt%的铜渣-耐火浆料混合物置于圆盘造粒机中,再将60~70wt%的步骤一中所述铝硅质复合相变蓄热球坯体加入所述圆盘造粒机中,以10~30r/min的转速转动0.5~1h,取出,置于通风橱中6~12h,然后于90~200℃条件下保持6~12h,制得基于铜渣的复合壳层相变蓄热球坯;
步骤四、将所述基于铜渣的复合壳层相变蓄热球坯置于空气气氛中,以3~8℃/min的速率升温至1100~1400℃,保温2~5h,自然冷却至室温,制得基于铜渣的复合壳层相变蓄热球;
所述铝硅质耐火浆料的制备方法为:
以60~80wt%的矾土细粉、5~15wt%的α-氧化铝微粉、4~8wt%的广西泥、8~12wt%的硅微粉、1~2wt%的木钙和2~3wt%的糊精混合,得铝硅质耐火浆料预混料;然后向所述耐火料中外加5~10wt%的硅溶胶,搅拌均匀,制得铝硅质耐火浆料;
所述铜渣-耐火浆料混合物的制备方法为:
以20~60wt%的矾土细粉、30~80wt%的铜渣细粉、5~15wt%的α-氧化铝微粉、4~8wt%的广西泥、8~12wt%的硅微粉、1~2wt%的木钙和2~3wt%的糊精混合,得铜渣-耐火浆料混合物预混料;然后向所述耐火料中外加5~10wt%的硅溶胶,搅拌均匀,制得铜渣-耐火浆料混合物。
2.如权利要求1所述的基于铜渣的复合壳层相变蓄热球的制备方法,其特征在于:铝硅质耐火浆料中,所述矾土细粉中Al2O3含量50~85wt%,SiO2含量5~30wt%,所述矾土细分粒径≤180μm。
3.如权利要求1所述的基于铜渣的复合壳层相变蓄热球的制备方法,其特征在于:铜渣-耐火浆料中,所述矾土细粉中Al2O3含量50~89wt%,SiO2含量3~30wt%,细分粒径≤1mm。
4.如权利要求1所述的基于铜渣的复合壳层相变蓄热球的制备方法,其特征在于:所述铜渣中Fe2O3含量5~15wt%,FeO含量35~60wt%,SiO2含量25~35wt%。
5.如权利要求1所述的基于铜渣的复合壳层相变蓄热球的制备方法,其特征在于:所述铝硅质耐火浆料和铜渣-耐火浆料中,所述α-氧化铝微粉的Al2O3含量≥99wt%,所述α-氧化铝微粉的粒径≤8μm。
6.如权利要求1所述的基于铜渣的复合壳层相变蓄热球的制备方法,其特征在于:所述铝硅质耐火浆料和铜渣-耐火浆料中,所述广西泥:Al2O3含量为33~36wt%,SiO2含量为46~49wt%,Fe2O3含量为1~1.3wt%;所述广西泥的粒径≤180μm。
7.如权利要求1所述的基于铜渣的复合壳层相变蓄热球的制备方法,其特征在于:所述铝硅质耐火浆料和铜渣-耐火浆料中,所述硅微粉的SiO2≥92wt%,所述硅微粉的粒径≤0.6μm;所述硅溶胶的的固含量为5~30%,pH为8.5~10.5。
8.如权利要求1所述的基于铜渣的复合壳层相变蓄热球的制备方法,其特征在于:所述低熔点有机烧失物为月桂酸、蜂蜡、石蜡等有机物中的一种或多种。
9.如权利要求1所述的基于铜渣的复合壳层相变蓄热球的制备方法,其特征在于:所述高熔点有机烧失物为松香、沥青等有机物中的一种或多种。
10.一种采用权利要求1-9任一项所述的制备方法制备的基于铜渣的复合壳层相变蓄热球。
CN202210841134.0A 2022-07-18 2022-07-18 一种基于铜渣的复合壳层相变蓄热球及其制备方法 Active CN115386345B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210841134.0A CN115386345B (zh) 2022-07-18 2022-07-18 一种基于铜渣的复合壳层相变蓄热球及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210841134.0A CN115386345B (zh) 2022-07-18 2022-07-18 一种基于铜渣的复合壳层相变蓄热球及其制备方法

Publications (2)

Publication Number Publication Date
CN115386345A true CN115386345A (zh) 2022-11-25
CN115386345B CN115386345B (zh) 2024-06-07

Family

ID=84116772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210841134.0A Active CN115386345B (zh) 2022-07-18 2022-07-18 一种基于铜渣的复合壳层相变蓄热球及其制备方法

Country Status (1)

Country Link
CN (1) CN115386345B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106518125A (zh) * 2016-12-08 2017-03-22 赵岩 耐火材料包覆的复合相变蓄热砖
CN107266035A (zh) * 2017-07-26 2017-10-20 武汉科技大学 一种以铜渣为原料的陶瓷基储热材料及其制备方法
CN109628070A (zh) * 2019-01-04 2019-04-16 武汉科技大学 一种具有复合壳层的相变蓄热颗粒及其制备方法
CN112250428A (zh) * 2020-10-30 2021-01-22 武汉科技大学 一种双壳层相变蓄热球及其制备方法
CN112280538A (zh) * 2020-10-28 2021-01-29 武汉科技大学 一种晶须增韧相变蓄热微胶囊及其制备方法
CN112480873A (zh) * 2020-11-30 2021-03-12 武汉科技大学 一种刚玉-莫来石复合壳层相变蓄热球及其制备方法
CN112521137A (zh) * 2020-12-04 2021-03-19 武汉科技大学 一种晶须增强复合相变蓄热球及其制备方法
CN112683095A (zh) * 2020-12-28 2021-04-20 武汉科技大学 一种复合晶须增强复合相变蓄热球及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106518125A (zh) * 2016-12-08 2017-03-22 赵岩 耐火材料包覆的复合相变蓄热砖
CN107266035A (zh) * 2017-07-26 2017-10-20 武汉科技大学 一种以铜渣为原料的陶瓷基储热材料及其制备方法
CN109628070A (zh) * 2019-01-04 2019-04-16 武汉科技大学 一种具有复合壳层的相变蓄热颗粒及其制备方法
CN112280538A (zh) * 2020-10-28 2021-01-29 武汉科技大学 一种晶须增韧相变蓄热微胶囊及其制备方法
CN112250428A (zh) * 2020-10-30 2021-01-22 武汉科技大学 一种双壳层相变蓄热球及其制备方法
CN112480873A (zh) * 2020-11-30 2021-03-12 武汉科技大学 一种刚玉-莫来石复合壳层相变蓄热球及其制备方法
CN112521137A (zh) * 2020-12-04 2021-03-19 武汉科技大学 一种晶须增强复合相变蓄热球及其制备方法
CN112683095A (zh) * 2020-12-28 2021-04-20 武汉科技大学 一种复合晶须增强复合相变蓄热球及其制备方法

Also Published As

Publication number Publication date
CN115386345B (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
CN112480873B (zh) 一种刚玉-莫来石复合壳层相变蓄热球及其制备方法
CN106800420B (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
CN112250428B (zh) 一种双壳层相变蓄热球及其制备方法
CN112683095B (zh) 一种复合晶须增强复合相变蓄热球及其制备方法
CN113292355A (zh) 一种利用污水处理厂污泥制备陶粒的方法
CN104073706B (zh) 一种制备耐高温铝熔液熔蚀-磨损铁基复合材料的方法
CN110922173A (zh) 一种添加氮化钛复合粉体转炉挡渣滑板砖及其制备方法
CN105967702B (zh) 一种滑板砖及其制备方法
CN101210121A (zh) 一种利用凹凸棒石粘土制备高温防氧化保护涂料的方法
CN117700233B (zh) 一种用于阳极炉氧化还原风口的芯砖及其制备方法
CN112521137B (zh) 一种晶须增强复合相变蓄热球及其制备方法
CN107746282A (zh) 一种原位碳化硅纤维增强液相烧结碳化硅陶瓷及制造方法
CN115386345B (zh) 一种基于铜渣的复合壳层相变蓄热球及其制备方法
CN106588051A (zh) 一种低气孔镁铬砖及其制备方法
CN113716940A (zh) 一种新型的蓄热砖及制备方法
CN112321283B (zh) 一种复合相变蓄热球及其制备方法
CN107056260A (zh) 一种用来封堵炼铁高炉出铁口的环保型无水炮泥及其制备方法
CN101544502B (zh) 一种钙长石质轻质耐火材料及其制备方法
CN109626970B (zh) 一种有色冶炼熔化熔炉液线下方炉壁用耐火材料及其制备方法
CN101423407B (zh) 一种Al4SiC4-Al2OC复合耐火材料及其制备方法
CN107827456A (zh) 一种氧化锆空心球隔热制品的制备方法
CN107640962A (zh) 一种Ausmelt铜熔炼炉用铝铬砖及其制备方法
CN109485387B (zh) 一种环境障涂层用空心球形bsas粉末的制备方法
CN106868354A (zh) 一种耐腐蚀复合金属材料及其制作方法
CN108191441B (zh) 干熄焦炉斜道立柱用氮化铝增强浇注料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant