CN115377237A - 一种锑化铝薄膜太阳电池 - Google Patents

一种锑化铝薄膜太阳电池 Download PDF

Info

Publication number
CN115377237A
CN115377237A CN202211056744.6A CN202211056744A CN115377237A CN 115377237 A CN115377237 A CN 115377237A CN 202211056744 A CN202211056744 A CN 202211056744A CN 115377237 A CN115377237 A CN 115377237A
Authority
CN
China
Prior art keywords
layer
alsb
thickness
solar cell
cdte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211056744.6A
Other languages
English (en)
Other versions
CN115377237B (zh
Inventor
黎敏强
黎兵
熊小勇
李秀玲
高凤英
曾广根
李卫
冯良桓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202211056744.6A priority Critical patent/CN115377237B/zh
Publication of CN115377237A publication Critical patent/CN115377237A/zh
Application granted granted Critical
Publication of CN115377237B publication Critical patent/CN115377237B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种锑化铝薄膜太阳电池,包所述的异质PN结由n‑CdS和p‑AlSb构成,吸收层为AlSb,缓冲层为CdTe,背接触层为ZnTe:Cu。本发明制备后,吸收层AlSb的厚度达到800nm,提高了光生电流密度,CdTe和ZnTe:Cu层厚度800nm,除了分别作为缓冲层和背接触层之外,厚度增加可以更加有效地阻挡水汽和吸收层的接触,避免其潮解而破坏AlSb薄膜的质量;减少一层CdTe,增大AlSb薄膜厚度,串联等效电阻减小,短路电流增大,电池的VOC减小,效率提升明显。

Description

一种锑化铝薄膜太阳电池
技术领域
本发明专利属于太阳电池技术领域,具体涉及一种锑化铝薄膜太阳电池。
背景技术
太阳电池是通过光电效应或者光化学效应直接把光能转化成电能的装置,是一种利用太阳光直接发电的光电半导体器件。太阳电池发电属于可再生能源利用的重要组成部分,随着我国光伏产业的发展和对绿色能源的迫切需求,太阳电池正沿着高效、低成本的技术路线快速发展着。碲化镉和铜铟镓硒等薄膜太阳电池具有转换效率高、价格低廉、轻便可柔性的优点得到了较为广泛的应用,但碲化镉含有有毒元素镉和稀有元素碲,铜铟镓硒含有稀有且昂贵元素铟、镓,这些都很大程度上限制了它们的大面积使用和长期发展。锑基化合物(硫化锑,硒化锑)薄膜具有带隙适中,吸光系数高,原材料价格低,绿色无毒,制备方法简单等特点,使得硒化锑太阳电池和硫化锑太阳电池受到了越来越多的关注。
但是,目前现有技术存在的问题:
电池的串联等效电阻过高,光生电流密度低;从太阳电池载流子的复合角度来看,多了一层CdTe就增加了异质结的晶界,从而增加了载流子在晶界上的陷阱复合,载流子复合增加,其短路电流减小,且空气中的水汽和AlSb层的接触,会潮解而破坏AlSb薄膜的质量,减小了电池的工作效率。
为了解决上述问题,本文提出一种锑化铝薄膜太阳电池。
发明内容
为了解决上述的技术问题,本发明设计了一种锑化铝薄膜太阳电池,制备后,AlSb吸收层的厚度达到800nm,提高了光生电流密度,CdTe和ZnTe:Cu层厚度800nm,除了分别作为缓冲层和背接触层之外,厚度增加可以更加有效地阻挡水汽和吸收层的接触,避免其潮解而破坏AlSb薄膜的质量;减少一层CdTe,增大AlSb薄膜厚度,串联等效电阻减小,短路电流增大,电池的VOC减小,效率提升明显。
为了达到上述技术效果,本发明通过以下技术方案实现的:一种锑化铝薄膜太阳电池,包括导电玻璃基底、异质PN结、吸收层、缓冲层、背接触层,所述的锑化铝薄膜太阳电池由导电玻璃基底、异质PN结、吸收层、缓冲层、背接触层从下向上依次组装构成,其特征在于:所述的异质PN结由n-CdS和p-AlSb构成,吸收层为AlSb,缓冲层为CdTe,背接触层为ZnTe:Cu。
作为优选,所述的CdTe的带隙为1.35~1.55eV,作为吸收层AlSb和背接触层ZnTe:Cu之间的缓冲层。
作为优选,所述的缓冲层CdTe的厚度为800nm。
作为优选,所述的吸收层AlSb的带隙为1.62eV,厚度为800nm。
作为优选,所述的背接触层ZnTe:Cu的厚度为800nm。
进一步地,本发明还涉及一种锑化铝薄膜太阳电池的制备方法,其特征在于,包括以下步骤:
S1、在衬底温度为350°、沉积气压为
Figure 723889DEST_PATH_IMAGE001
Pa的条件下,采用脉冲激光沉积 法,用90mJ的激光能量制备CdTe薄膜,薄膜厚度为800nm;
S2、在衬底温度为400°、沉积气压为
Figure 595024DEST_PATH_IMAGE001
Pa的条件下,采用脉冲激光沉积 法,用90mJ的激光能量制备AlSb薄膜,薄膜厚度为800nm;
S3、在衬底温度为350°、沉积气压为
Figure 312444DEST_PATH_IMAGE001
Pa的条件下,采用脉冲激光沉积 法,用90mJ的激光能量制备ZnTe:Cu薄膜,薄膜厚度为800nm;
S4、在衬底温度为200°、沉积气压为0.5Pa的条件下,采用磁控溅射法制备CdS薄膜,薄膜厚度为100nm。本发明的有益效果:该结构直接由n-CdS和p-AlSb构成异质PN结,吸收层为AlSb,CdTe的带隙为1.35~1.55eV,与AlSb的带隙1.62eV接近,可作为吸收层AlSb和背接触层ZnTe:Cu之间的缓冲层,背接触层是ZnTe:Cu,有效降低电池的串联等效电阻。各层制备后,吸收层AlSb的厚度达到800nm,提高了光生电流密度,CdTe和ZnTe:Cu层厚度800nm,除了分别作为缓冲层和背接触层之外,厚度增加可以更加有效地阻挡水汽和AlSb层的接触,避免其潮解而破坏AlSb薄膜的质量。
本发明的有益效果:n-CdS和p-AlSb构成的异质PN结完全可以实现光电转换,产生光生载流子;减少一层CdTe可以有效减小等效串联电阻,从而提升短路电流ISC,光电转换效率提升明显。从太阳电池载流子的复合角度来看,减少了一层CdTe就减少了异质结的晶界,从而减少了载流子在晶界上的陷阱复合,载流子复合减少,其短路电流增大。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的结构示意图;
图2为本发明的锑化铝薄膜太阳电池I-V测试结果图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
如图1所示,:一种锑化铝薄膜太阳电池,包括导电玻璃基底、异质PN结、吸收层、缓冲层、背接触层,所述的锑化铝薄膜太阳电池由导电玻璃基底、异质PN结、吸收层、缓冲层、背接触层从下向上依次组装构成,所述的异质PN结由n-CdS和p-AlSb构成,吸收层为AlSb,缓冲层为CdTe,背接触层为ZnTe:Cu。
所述的CdTe的带隙为1.35~1.55eV,作为吸收层AlSb和背接触层ZnTe:Cu之间的缓冲层。
所述的缓冲层CdTe的厚度为800nm。
所述的吸收层AlSb的带隙为1.62eV,厚度为800nm。
所述的背接触层ZnTe:Cu的厚度为800nm。
本发明还涉及一种锑化铝薄膜太阳电池的制备方法,其特征在于,包括以下步骤:
S1、在衬底温度为350°、沉积气压为
Figure 97866DEST_PATH_IMAGE001
Pa的条件下,采用脉冲激光沉积 法,用90mJ的激光能量制备CdTe薄膜,薄膜厚度为800nm;
S2、在衬底温度为400°、沉积气压为
Figure 849922DEST_PATH_IMAGE001
Pa的条件下,采用脉冲激光沉积 法,用90mJ的激光能量制备AlSb薄膜,薄膜厚度为800nm;
S3、在衬底温度为350°、沉积气压为
Figure 614660DEST_PATH_IMAGE001
Pa的条件下,采用脉冲激光沉积 法,用90mJ的激光能量制备ZnTe:Cu薄膜,薄膜厚度为800nm;
S4、在衬底温度为200°、沉积气压为0.5Pa的条件下,采用磁控溅射法制备CdS薄膜,薄膜厚度为100nm。本发明的有益效果:该结构直接由n-CdS和p-AlSb构成异质PN结,吸收层为AlSb,CdTe的带隙为1.35~1.55eV,与AlSb的带隙1.62eV接近,可作为吸收层AlSb和背接触层ZnTe:Cu之间的缓冲层,背接触层是ZnTe:Cu,有效降低电池的串联等效电阻。各层制备后,吸收层AlSb的厚度达到800nm,提高了光生电流密度,CdTe和ZnTe:Cu层厚度800nm,除了分别作为缓冲层和背接触层之外,厚度增加可以更加有效地阻挡水汽和AlSb层的接触,避免其潮解而破坏AlSb薄膜的质量。
实施例2
如图2所示,锑化铝薄膜太阳电池,用I-V测试系统对其进行测试,结果得:该电池开路电压VOC为0.28V;短路电流ISC为0.64mA;填充因子FF为21.87%;转换效率为0.559%;等效串联电阻Rs为509.23Ω;与现有技术相比,减少一层CdTe,增大AlSb薄膜厚度,串联等效电阻减小,短路电流增大,电池的VOC减小,效率提升明显;由上述测试结果可知,n-CdS和p-AlSb构成的异质PN结完全可以实现光电转换,产生光生载流子;减少一层CdTe可以有效减小等效串联电阻,从而提升短路电流ISC,光电转换效率提升明显。从太阳电池载流子的复合角度来看,减少了一层CdTe就减少了异质结的晶界,从而减少了载流子在晶界上的陷阱复合,载流子复合减少,其短路电流增大。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (6)

1.一种锑化铝薄膜太阳电池,包括导电玻璃基底、异质PN结、吸收层、缓冲层、背接触层,所述的锑化铝薄膜太阳电池由导电玻璃基底、异质PN结、吸收层、缓冲层、背接触层从下向上依次组装构成,其特征在于:所述的异质PN结由n-CdS和p-AlSb构成,吸收层为AlSb,缓冲层为CdTe,背接触层为ZnTe:Cu。
2.根据权利要求1所述的一种锑化铝薄膜太阳电池,其特征在于:所述的CdTe的带隙为1.35~1.55eV,作为吸收层AlSb和背接触层ZnTe:Cu之间的缓冲层。
3.根据权利要求1所述的一种锑化铝薄膜太阳电池,其特征在于:所述的CdTe的厚度为800nm。
4.根据权利要求1所述的一种锑化铝薄膜太阳电池,其特征在于:所述的AlSb的带隙为1.62eV,厚度为800nm。
5.根据权利要求1所述的一种锑化铝薄膜太阳电池,其特征在于:所述的ZnTe:Cu的厚度为800nm。
6.如权利要求1-5任意一项所述的一种锑化铝薄膜太阳电池的制备方法,其特征在于,包括以下步骤:
S1、在衬底温度为350°、沉积气压为
Figure 987245DEST_PATH_IMAGE001
Pa的条件下,采用脉冲激光沉积法,用 90mJ的激光能量制备CdTe薄膜,薄膜厚度为800nm;
S2、在衬底温度为400°、沉积气压为
Figure 652581DEST_PATH_IMAGE001
Pa的条件下,采用脉冲激光沉积法,用 90mJ的激光能量制备AlSb薄膜,薄膜厚度为800nm;
S3、在衬底温度为350°、沉积气压为
Figure 686265DEST_PATH_IMAGE001
Pa的条件下,采用脉冲激光沉积法,用 90mJ的激光能量制备ZnTe:Cu薄膜,薄膜厚度为800nm;
S4、在衬底温度为200°、沉积气压为0.5Pa的条件下,采用磁控溅射法制备CdS薄膜,薄膜厚度为100nm。
CN202211056744.6A 2022-08-30 2022-08-30 一种锑化铝薄膜太阳电池 Active CN115377237B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211056744.6A CN115377237B (zh) 2022-08-30 2022-08-30 一种锑化铝薄膜太阳电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211056744.6A CN115377237B (zh) 2022-08-30 2022-08-30 一种锑化铝薄膜太阳电池

Publications (2)

Publication Number Publication Date
CN115377237A true CN115377237A (zh) 2022-11-22
CN115377237B CN115377237B (zh) 2024-01-30

Family

ID=84069328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211056744.6A Active CN115377237B (zh) 2022-08-30 2022-08-30 一种锑化铝薄膜太阳电池

Country Status (1)

Country Link
CN (1) CN115377237B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116544316A (zh) * 2023-07-07 2023-08-04 四川大学 一种AlSb薄膜太阳能电池潮解抑制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201156545Y (zh) * 2008-01-07 2008-11-26 四川大学 一种锑化铝透明薄膜太阳电池
CN102257633A (zh) * 2008-12-18 2011-11-23 第一太阳能有限公司 包括背面金属接触的光伏器件
US20140083505A1 (en) * 2012-09-25 2014-03-27 First Solar, Inc. Varying cadmium telluride growth temperature during deposition to increase solar cell reliability
CN104810424A (zh) * 2015-04-17 2015-07-29 四川大学 具有CdxTe插入层的CdTe薄膜太阳电池
JP2018133369A (ja) * 2017-02-13 2018-08-23 学校法人立命館 薄膜太陽電池
CN109449226A (zh) * 2018-10-31 2019-03-08 中国科学院电工研究所 一种薄膜太阳电池及其制备方法
CN113745359A (zh) * 2021-08-26 2021-12-03 暨南大学 一种碲化镉梯度吸收层的制备方法及太阳电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201156545Y (zh) * 2008-01-07 2008-11-26 四川大学 一种锑化铝透明薄膜太阳电池
CN102257633A (zh) * 2008-12-18 2011-11-23 第一太阳能有限公司 包括背面金属接触的光伏器件
US20140083505A1 (en) * 2012-09-25 2014-03-27 First Solar, Inc. Varying cadmium telluride growth temperature during deposition to increase solar cell reliability
CN104810424A (zh) * 2015-04-17 2015-07-29 四川大学 具有CdxTe插入层的CdTe薄膜太阳电池
JP2018133369A (ja) * 2017-02-13 2018-08-23 学校法人立命館 薄膜太陽電池
CN109449226A (zh) * 2018-10-31 2019-03-08 中国科学院电工研究所 一种薄膜太阳电池及其制备方法
CN113745359A (zh) * 2021-08-26 2021-12-03 暨南大学 一种碲化镉梯度吸收层的制备方法及太阳电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116544316A (zh) * 2023-07-07 2023-08-04 四川大学 一种AlSb薄膜太阳能电池潮解抑制方法
CN116544316B (zh) * 2023-07-07 2023-09-08 四川大学 一种AlSb薄膜太阳能电池潮解抑制方法

Also Published As

Publication number Publication date
CN115377237B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
KR101372536B1 (ko) 탠덤형 박막 태양전지 및 그의 제조방법
Ullal et al. Current status of polycrystalline thin-film PV technologies
KR102350885B1 (ko) 태양 전지
CN115377237B (zh) 一种锑化铝薄膜太阳电池
JP2010287607A (ja) タンデム型薄膜太陽電池
KR20130111815A (ko) 태양전지 및 이의 제조방법
KR101428146B1 (ko) 태양전지 모듈 및 이의 제조방법
JPH11150282A (ja) 光起電力素子及びその製造方法
Breeze Next generation thin-film solar cells
CN202601634U (zh) CdTe薄膜太阳能电池
El Farri et al. Theoretical simulation of ZnS buffer layer thin films with SCAPS-1D software for photovoltaic applications.
KR20090034079A (ko) 이셀렌화몰리브덴층을 포함하는 태양전지 및 그의 제조방법
Licht High Efficiency Solar Cells (What are the highest solar energy conversion efficiencies?)
CN219591399U (zh) 叠层太阳能电池组件
Dhere Present status of the development of thin-film solar cells
CN219679160U (zh) 光伏电池
US9349901B2 (en) Solar cell apparatus and method of fabricating the same
CN218734188U (zh) 一种光伏组件
KR20110003802A (ko) 탠덤형 박막 태양전지 및 그의 제조방법
KR101327040B1 (ko) 태양전지 및 이의 제조방법
KR101283174B1 (ko) 태양전지 및 이의 제조방법
JP2669926B2 (ja) 薄膜太陽電池
JP2713799B2 (ja) 薄膜太陽電池
Richards et al. Photovoltaics devices
KR101326968B1 (ko) 태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant