CN115373162A - 一种基于场效应晶体管的光纤调制器件及其制备方法 - Google Patents

一种基于场效应晶体管的光纤调制器件及其制备方法 Download PDF

Info

Publication number
CN115373162A
CN115373162A CN202211125996.XA CN202211125996A CN115373162A CN 115373162 A CN115373162 A CN 115373162A CN 202211125996 A CN202211125996 A CN 202211125996A CN 115373162 A CN115373162 A CN 115373162A
Authority
CN
China
Prior art keywords
optical fiber
fiber
face
metal electrodes
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211125996.XA
Other languages
English (en)
Inventor
徐飞
吴晨晖
徐浩天
丁梓轩
熊毅丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202211125996.XA priority Critical patent/CN115373162A/zh
Publication of CN115373162A publication Critical patent/CN115373162A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass
    • G02F1/0115Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass in optical fibres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0102Constructional details, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种基于场效应晶体管的光纤调制器件及其制备方法。该光纤调制器件包括光纤、一对光纤端面金属电极、调制材料薄膜、氧化物介质层以及一层栅极金属电极;调制材料薄膜位于光纤的端面;一对光纤端面金属电极分别连接调制材料薄膜;氧化物介质层覆盖在调制材料薄膜上;栅极金属电极覆盖在氧化物介质层上。本发明制备的光纤端面场效应晶体管调制器件可以实现从近红外到中红外波段光调制功能,器件调制效果好,尺寸小,在光调制领域具有广泛应用前景。

Description

一种基于场效应晶体管的光纤调制器件及其制备方法
技术领域
本发明涉及一种电光调制器及其制备方法,尤其涉及一种基于场效应晶体管的光纤调制器件及其制备方法。
背景技术
在光调制领域,由于石墨烯具有零带隙和可调的费米能级,其已经成为一种理想的调光材料。将石墨烯和光纤结合,利用光纤的倏逝场与石墨烯相互作用,改变光的强度、相位等,可以实现光调制。
目前将石墨烯等二维材料与光纤进行结合的方法可以分为两大类:端面集成和侧面集成。二维材料与光纤的侧面集成,是指将光纤直径拉细,或者将光纤侧面抛光至纤芯裸露后,倏逝场可以与二维材料相互作用,达到光调制的效果。一般来说,光纤侧面集成二维材料的器件,其尺寸会达到几厘米的长度,不利于器件进一步小型化的发展。而将二维材料集成到光纤端面上,可以让光直接与材料接触,大大降低了光损耗。此前的光纤端面调制器往往采用双电极结构,电流产生的焦耳热可以有效调节石墨烯的费米能级。但局部温度过高也会使得器件产生不可预测的损伤,从而降低器件的稳定性。而粗糙的制备工艺也限制了石墨烯以及器件的性能。
电子束曝光(electron beam lithography,EBL)是使用电子束在衬底表面制造图案化结构的工艺,是光刻技术的延伸应用。光刻技术的精度会受到光子在波长尺度上的散射影响,使用的光波长越短,光刻能够达到的精度越高。而根据德布罗意波理论,电子是一种波长极短的波。因此,电子束曝光的精度可以达到纳米量级,从而为制作纳米线提供了很有用的工具。EBL在半导体工业中被广泛使用于研究新一代集成电路的工作中,故而应用范围往往被限制在硅基晶圆为衬底的成熟领域,将EBL应用于特殊表面结构实现定制化工艺与器件制备的技术鲜有报道。
发明内容
发明目的:本发明的第一个目的是提供一种低损耗、高调制精度、高集成度的基于场效应晶体管的光纤调制器件;
本发明的第二个目的是提供上述基于场效应晶体管的光纤调制器件的制备方法。
技术方案:本发明所述的基于场效应晶体管的光纤调制器件,包括光纤,位于光纤端面相对设置的两个光纤端面金属电极,位于两个光纤端面金属电极上表面且与两个光纤端面金属电极分别连接的调制材料薄膜;覆盖于所述调制材料薄膜上表面的氧化物介质层;覆盖于所述氧化物介质层上的栅极金属电极。
其中,所述两个光纤端面金属电极的厚度分别为20~100nm。
其中,所述两个光纤端面金属电极之间的间距为20~50μm。
其中,所述调制材料薄膜为石墨烯,层数为3-10层。
其中,调制材料薄膜的长边长度较所述两个光纤端面金属电极之间的间距长10-15μm,调制材料薄膜的短边长度为15~30μm,所述调制材料薄膜的短边与所述两个光纤端面金属电极接触。
其中,所述氧化物介质层的厚度为20~250nm;优选所述氧化物介质层为氧化铝、氧化硅、氧化铪、氧化钛中的一种,位于端面中心,覆盖所述调制材料薄膜,尺寸为80×60μm2
其中,所述栅极金属电极与所述光纤端面金属电极为非接触设置;所述栅极金属电极的厚度为20~100nm,带状宽度为20~40μm;优选所述栅极金属电极为金、银、铜中的一种。
其中,所述两个光纤端面金属电极在光纤端面上呈光纤的轴线对称分布。
上述基于场效应晶体管的光纤调制器件的制备方法,包括如下步骤:
(1)制备PMMA薄膜支撑的石墨烯薄膜;
(2)在光纤端面旋涂电子束抗蚀剂层,经过电子束曝光以及显影,得到一对电极的图案,再通过电子束蒸发沉积一层金属,并去除多余抗蚀剂后,在光纤端面得到一对光纤端面金属电极;此过程为EBL过程;
(3)将PMMA薄膜支撑的石墨烯薄膜转移到一对光纤端面金属电极上,去除PMMA薄膜,随后再次旋涂EBL抗蚀剂层,经过电子束曝光以及显影,留下目标矩形尺寸的抗蚀剂区域,覆盖光纤的纤芯以及一对光纤端面金属电极的尖端,通过等离子体刻蚀去除暴露在外的石墨烯,溶解抗蚀剂后得到石墨烯薄膜;
(4)重复步骤(2)的EBL过程,并沉积氧化物介质层;
(5)重复步骤(2)的EBL过程,并沉积栅极金属电极。
其中,步骤(1)中,制备PMMA薄膜支撑的石墨烯薄膜的方法为:利用化学气相沉积法在铜箔表面生长石墨烯薄膜;将PMMA聚合物旋涂至上述铜基石墨烯薄膜上,再用过硫酸铵水溶液腐蚀铜箔,清洗后,获得PMMA薄膜支撑的石墨烯薄膜。
其中,步骤(3)中,去除PMMA薄膜的方法为:对位于一对光纤端面金属电极的光纤跳线上的PMMA薄膜支撑的石墨烯薄膜,加热干燥,在丙酮中浸泡,即去除PMMA薄膜。
发明原理:光源通过光纤传输,照射到端面上的栅极金属电极后被反射回光纤中,在此过程中光会被石墨烯吸收两次,器件的光反射率受到石墨烯的光吸收率影响。石墨烯的光吸收率会随着石墨烯费米能级的提高单调递减。石墨烯的费米能级与载流子浓度有关。采用外加门控电压的方法可以调控石墨烯的载流子浓度,也就能够调制石墨烯的费米能级。石墨烯的费米能级随着外加门控电压的升高单调递增。此器件通过改变门控电压调节石墨烯的费米能级,也就调节了其光吸收率。于是光反射率会随着器件门控电压的变化而变化,实现电光调制效果。同时氧化铝介质层的厚度也会影响调控的效率,当介质层较薄时,调控效率更高。
现有的光纤端面集成电极的技术,往往采用先镀金属膜,再用物理方法去除部分金属膜层,使得端面上集成两个分立的金属电极。现有技术受制于工艺精度,无法将图案更加精细的电极结构集成在光纤端面。采用EBL工艺,可以将任意形状的图案集成在光纤端面上,图案精度可以达到微米级别。
有益效果:本发明与现有技术相比,取得如下显著效果:(1)将EBL工艺引入光纤端面器件的制备,从而实现石墨烯与电极图案的精准控制,将源、漏、栅三电极同时集成在光纤端面上,开创性地将一个完整的场效应晶体管结构封装在百微米的区域中,实现了基于场效应管的低损耗、高调制精度、高集成度的电光调制器。(2)光通过光纤照射在光纤端面的石墨烯上,并直接反射回光纤,无需机械耦合,光损耗极小。(3)该电光调制器尺寸仅有百微米,可以适应更多更复杂的使用场景。(4)该电光调制器采用EBL加工工艺,可以精准控制电极和石墨烯的形状大小。
附图说明
图1为本发明的光纤调制器件的立体结构示意图;
图2为本发明的光纤调制器件的侧面结构示意图;
图3为本发明光纤调制器件的制备流程图;
图4为本发明光纤调制器件的测试光路和电路图;
图5为本发明光纤调制器件的光反射率随门控电压的变化曲线;
图6为本发明光纤调制器件的源漏电流和光反射率随门控电压的变化曲线。
具体实施方式
下面对本发明作进一步详细描述。
如图1、2所示,本发明的电光调制器,包括光纤1,一对光纤端面金属电极2,调制材料薄膜3,氧化物介质层4,栅极金属电极5。一对光纤端面金属电极2位于光纤1的端面上,并相对光纤轴心对称分布,一对光纤端面金属电极2之间的间距23μm,大于光纤纤芯6的直径;本实施例的一对光纤端面金属电极2的材料为金,厚度为30nm。
调制材料薄膜3覆盖了光纤的纤芯和一对光纤端面电极2的尖端。本实施例的调制材料薄膜3为石墨烯,层数为5层,矩形长边长度较一对光纤端面金属电极间距多出10μm,短边长度为15μm,调制材料薄膜3的短边与一对光纤端面金属电极接触。
氧化物介质层4完全覆盖调制材料薄膜3。本实施例的氧化物介质层为氧化铝,位于端面中心,覆盖所述调制材料薄膜,尺寸为80×60μm2,厚度为30nm。
栅极金属电极5覆盖在氧化物介质层4之上。本实施例的栅极金属电极为金,与一对光纤端面金属电极没有接触,延伸方向与一对光纤端面金属电极延伸方向正交,厚度为30nm,带状宽度为20μm,中轴位置对准光纤纤芯。
在测试时,通过给栅极金属电极5施加电压,调控调制材料薄膜3的光吸收率,当光通过光纤纤芯辐照到调制材料薄膜3时,会有部分光被吸收,光照射到栅极金属电极5表面后被反射,反射光通过光纤1导出、分析。
为实现图1的器件,本实施例制备的详细流程如图2所示:
(1)利用化学气相沉积法在铜箔表面生长石墨烯薄膜;将PMMA聚合物选图在上述石墨烯薄膜上,再用过硫酸铵水溶液腐蚀铜箔;之后将获得的PMMA薄膜支撑的石墨烯薄膜转移到去离子水中清洗数次;
(2)在单模光纤跳线端面旋涂EBL抗蚀剂层,随后经过电子束曝光以及显影,再通过电子束蒸发沉积一层金,并去除多余抗蚀剂后,在光纤端面得到一对光纤端面金电极;
(3)将步骤(1)的薄膜转移到步骤(2)制得一对光纤端面金属电极的单模光纤跳线上,在120℃的温度下加热干燥20分钟后,在丙酮中浸泡2分钟,去除PMMA薄膜,随后再次旋涂EBL抗蚀剂层,经过电子束曝光以及显影,留下目标矩形尺寸的抗蚀剂区域,覆盖住纤芯以及一对金属电极的尖端,通过等离子体刻蚀去除暴露的多余石墨烯,溶解抗蚀剂后可以得到矩形石墨烯薄膜;
(4)重复步骤(2)的EBL过程,并通过电子束蒸发沉积氧化铝介质层;
(5)重复步骤(2)的EBL过程,并通过电子束蒸发沉积一层栅极金电极。
图3是本实施制备基于场效应晶体管的光纤调制器件的测量光路,包括激光器7、光环形器8、功率传感器9、功率计10、电源11、电源12、电脑13。激光器7提供光源,光经过光环形器8入射到光纤端面的结构上并反射,被调制过的反射光再次经过光环形器连接到功率传感器9并通过功率计10测量。电源11接通光纤端面的对电极,施加源漏电压。电源12接通栅极电极施加门控电压。电源11、电源12和功率计10都连接到电脑13上,进行同步控制,收集并记录各项测试参数。
图4是本发明实施例的电光调制器的光反射率随着门控电压的变化图。在测试过程中保持源漏电压100mV不变。在不施加门控电压的情况下,光反射率为81.17%。随着门控电压不断增强,当门控电压VG达到±3V时,可以观测到反射率被明显调制。接着扫描门控电压的范围从±4V提高到±10V时,反射率调制深度随门控电压变化而变化。从图5中可以看到,反射率调制深度为1.05%,电流的开关比为5.58。从测试结果来看,通过门控电压调制石墨烯费米能级,致使石墨烯电导率发生改变,从而调控石墨烯的光吸收,最终可以实现对光反射率的调控,调控效果显著。

Claims (10)

1.一种基于场效应晶体管的光纤调制器件,其特征在于,包括光纤,位于光纤端面相对设置的两个光纤端面金属电极,位于两个光纤端面金属电极上表面且与两个光纤端面金属电极分别连接的调制材料薄膜;覆盖于所述调制材料薄膜上表面的氧化物介质层;覆盖于所述氧化物介质层上的栅极金属电极。
2.根据权利要求1所述的基于场效应晶体管的光纤调制器件,其特征在于,所述两个光纤端面金属电极的厚度分别为20~100nm。
3.根据权利要求1所述的基于场效应晶体管的光纤调制器件,其特征在于,所述两个光纤端面金属电极之间的间距为20~50μm。
4.根据权利要求1所述的基于场效应晶体管的光纤调制器件,其特征在于,所述调制材料薄膜为石墨烯,层数为3-10层。
5.根据权利要求1所述的基于场效应晶体管的光纤调制器件,其特征在于,调制材料薄膜的长边长度较所述两个光纤端面金属电极之间的间距长10-15μm,调制材料薄膜的短边长度为15~30μm,所述调制材料薄膜的短边与所述两个光纤端面金属电极接触。
6.根据权利要求1所述的基于场效应晶体管的光纤调制器件,其特征在于,所述氧化物介质层的厚度为20~250nm。
7.根据权利要求1所述的基于场效应晶体管的光纤调制器件,其特征在于,所述栅极金属电极与所述光纤端面金属电极为非接触设置。
8.根据权利要求1所述的基于场效应晶体管的光纤调制器件,其特征在于,所述栅极金属电极的厚度为20~100nm,带状宽度为20~40μm。
9.根据权利要求1所述的基于场效应晶体管的光纤调制器件,其特征在于,所述两个光纤端面金属电极在光纤端面上呈光纤的轴线对称分布。
10.一种权利要求1所述基于场效应晶体管的光纤调制器件的制备方法,其特征在于,包括如下步骤:
(1)制备PMMA薄膜支撑的石墨烯薄膜;
(2)在光纤端面旋涂电子束抗蚀剂层,经过电子束曝光以及显影,得到一对电极的图案,再通过电子束蒸发沉积一层金属,去除多余抗蚀剂后,在光纤端面得到一对光纤端面金属电极;此过程为EBL过程;
(3)将PMMA薄膜支撑的石墨烯薄膜转移到一对光纤端面金属电极上,去除PMMA薄膜,随后再次旋涂EBL抗蚀剂层,经过电子束曝光以及显影,留下目标矩形尺寸的抗蚀剂区域,覆盖光纤的纤芯以及一对光纤端面金属电极的尖端,通过等离子体刻蚀去除暴露在外的石墨烯,溶解抗蚀剂后得到石墨烯薄膜;
(4)重复步骤(2)的EBL过程,并沉积氧化物介质层;
(5)重复步骤(2)的EBL过程,并沉积栅极金属电极。
CN202211125996.XA 2022-09-16 2022-09-16 一种基于场效应晶体管的光纤调制器件及其制备方法 Pending CN115373162A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211125996.XA CN115373162A (zh) 2022-09-16 2022-09-16 一种基于场效应晶体管的光纤调制器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211125996.XA CN115373162A (zh) 2022-09-16 2022-09-16 一种基于场效应晶体管的光纤调制器件及其制备方法

Publications (1)

Publication Number Publication Date
CN115373162A true CN115373162A (zh) 2022-11-22

Family

ID=84070726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211125996.XA Pending CN115373162A (zh) 2022-09-16 2022-09-16 一种基于场效应晶体管的光纤调制器件及其制备方法

Country Status (1)

Country Link
CN (1) CN115373162A (zh)

Similar Documents

Publication Publication Date Title
Huang et al. Cylindrically focused nonablative femtosecond laser processing of long‐range uniform periodic surface structures with tunable diffraction efficiency
TWI634716B (zh) 使用cmos製造技術之波導形成
CN109786277B (zh) 对薄膜进行计量分析的装置及方法与获得薄膜性质的方法
US20240168320A1 (en) Reconfigurable photonic integrated chip based on phase change material film and processing method therefor
Palmer et al. Microscopic circuit fabrication on refractory superconducting films
US20030211403A1 (en) Photomask for nearfield exposure, method for making pattern using the photomask, and apparatus for making pattern including the photomask
US10989867B2 (en) Microsphere based patterning of metal optic/plasmonic sensors including fiber based sensors
CN110534880B (zh) 单个纳米颗粒光散射电调控天线及制备、电调控的方法
Hickman et al. Use of diffracted light from latent images to improve lithography control
CN115373162A (zh) 一种基于场效应晶体管的光纤调制器件及其制备方法
JP2004538630A (ja) THz放射の発生デバイス
CN116666498A (zh) 一种简易制备的等离激元修饰的MoS2宽光谱光敏场效应管及其制备方法
Wang et al. Strong Anisotropy of Multilayer γ‐InSe‐Enabled Polarization Division Multiplexing Photodetection
Salgueiro et al. System for laser writing to lithograph masks for integrated optics
CN109613764A (zh) 单片集成电控液晶双模微镜、其制备方法和光学显微镜
JP6401667B2 (ja) 光センサ素子
CN113990742A (zh) 一种半导体器件的制造方法
US6303402B1 (en) Method of manufacturing near field light generating device
CN112731757A (zh) 应用于等离激元直写光刻的光场调控芯片及制备方法
CN113252167B (zh) 一种宽光谱高效率超导单光子探测器及其制备方法
WO2019090477A1 (zh) 光波导、单光子源及光波导的制作方法
CN110031924A (zh) 一种用于实现可调谐表面等离激元分频的方法及系统
Huang et al. Blazed grating couplers on LiNbO 3 optical channel waveguides and their applications to integrated optical circuits
CN108681216A (zh) 一种制备多周期多形貌的微纳米复合结构的装置和方法
CN113639795B (zh) 原位监测控制光波导器件温度和光功率的系统和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination