WO2019090477A1 - 光波导、单光子源及光波导的制作方法 - Google Patents

光波导、单光子源及光波导的制作方法 Download PDF

Info

Publication number
WO2019090477A1
WO2019090477A1 PCT/CN2017/109731 CN2017109731W WO2019090477A1 WO 2019090477 A1 WO2019090477 A1 WO 2019090477A1 CN 2017109731 W CN2017109731 W CN 2017109731W WO 2019090477 A1 WO2019090477 A1 WO 2019090477A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
waveguide
doped layer
active
Prior art date
Application number
PCT/CN2017/109731
Other languages
English (en)
French (fr)
Inventor
魏宇佳
张臣雄
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/109731 priority Critical patent/WO2019090477A1/zh
Priority to CN201780078477.3A priority patent/CN110088910B/zh
Publication of WO2019090477A1 publication Critical patent/WO2019090477A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • H01L29/221Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds including two or more compounds, e.g. alloys
    • H01L29/225Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Definitions

  • the embodiments of the present application relate to the field of optical quantum computing, and in particular, to a method for fabricating an optical waveguide, a single photon source, and an optical waveguide.
  • Quantum computers based on the principles of quantum mechanics can provide true parallel computing capabilities using quantum superposition and entanglement.
  • the use of linear optics with auxiliary photons, combined with high efficiency single photon detector for post-selection measurement can achieve universal photon calculation. Therefore, optical quantum calculation based on linear optical systems has been extensively studied.
  • integrated optical quantum computing devices are more compact, stable, and easy to expand, with the potential to achieve large-scale multi-bit photon quantum computing.
  • Large-scale photon quantum computing requires multiple identical single-photon sources to provide photon bits for two-photon interference to achieve two-bit photoquantum gates, so single-photon sources are an important part of optical quantum computing devices. Integrating a single photon source onto the chip of the optical quantum computing device can reduce the coupling loss of the single photon source and other on-chip devices, improve the compactness and stability of the device, and facilitate expansion.
  • quantum dot III-V semiconductor quantum dot
  • an optical waveguide containing quantum dots can be fabricated by using a flip chip technology and a low temperature wafer bonding technique, and quantum dots and quantum dots are realized by combining an optical waveguide of a fractional sub-point and a passive waveguide to form an optical waveguide.
  • quantum dot fluorescence ie, photons generated by quantum dots
  • quantum dots are randomly formed during the growth process, and the wavelengths of the different quantum dots are usually different. Photons of different wavelengths cannot perform two-photon interference. Therefore, the wavelengths of the quantum dots are different, so that the single photon source Extensions are limited.
  • the embodiments of the present application provide a method for fabricating an optical waveguide, a single photon source, and an optical waveguide, which can be used to solve the problem that the expansion of a single photon source is limited due to different illumination wavelengths of different quantum dots in the prior art.
  • an embodiment of the present application provides an optical waveguide
  • the optical waveguide includes: a control electrode, a passive waveguide, and an active waveguide located above the passive waveguide; and the active waveguide includes: a first doping on the passive waveguide a hetero-layer, a neutral active layer over the first doped layer, and a second doped layer over the neutral active layer, wherein the first doped layer and the second doped layer are electrically opposite
  • the neutral active layer contains quantum dots;
  • the control electrode includes a first electrode and a second electrode; a first electrode portion is formed on the first doped layer, a first electrode is formed on the first electrode portion; and a second doped layer is formed on the first doped layer A second electrode portion is formed on the second electrode portion, and a second electrode is formed on the second electrode portion.
  • the first electrode and the second electrode are respectively formed on the first doped layer and the second doped layer of the active waveguide, by applying voltage to the first electrode and the second electrode,
  • the neutral active layer of the content sub-point between the first doped layer and the second doped layer forms an electric field, and the electric field energy is regulated by the electric field Stark effect
  • the energy level spacing of the quantum dots in the neutral active layer is adjusted to adjust the wavelength of the light.
  • the passive waveguide is elongated, with the first electrode on one side of the passive waveguide and the second electrode on the other side of the passive waveguide.
  • the first doped layer extends at a first position to a side perpendicular to a length direction of the passive waveguide to form a first electrode connection portion and a first electrode portion, wherein the first electrode connection One end of the portion is connected to the first position, and the other end of the first electrode connection portion is connected to the first electrode portion;
  • the second doped layer extends at the second position to the other side perpendicular to the longitudinal direction of the passive waveguide to form The second electrode connecting portion and the second electrode portion, wherein one end of the second electrode connecting portion is connected to the second position, and the other end of the second electrode connecting portion is connected to the second electrode portion.
  • the width of the first electrode connection and the second electrode connection is less than the width of the active waveguide.
  • the width of the first electrode connecting portion and the second electrode connecting portion is smaller than the width of the active waveguide, so that photons are not propagated to the first electrode connecting portion and the second electrode connecting portion to ensure photon. Propagation efficiency in optical waveguides.
  • the first electrode connection portion and the second electrode connection portion have a length of 1-9 mm and a width of 50-150 nm.
  • the first electrode and the second electrode have a length of 50-500 um and a width of 50-500 um.
  • the first doped layer is a P doped layer
  • the second doped layer is an N doped layer
  • the first electrode is a positive electrode
  • the second electrode is a negative electrode
  • first The doped layer is an N doped layer
  • the second doped layer is a P doped layer
  • the first electrode is a negative electrode
  • the second electrode is a positive electrode
  • the active waveguide includes a first portion and a second portion; the width of the first end of the first portion to the second end of the first portion is constant; the second end of the first portion and the first end of the second portion Connected, the width of the second end of the first portion is the same as the width of the first end of the second portion; the width of the second end of the second portion to the second end of the second portion gradually decreases.
  • an embodiment of the present application provides a single photon source including: the optical waveguide, the light source device, and the filter according to the above aspect.
  • the light source device is configured to emit excitation light to quantum dots in the optical waveguide to generate photons.
  • a filter is used to filter the photons.
  • the first electrode and the second electrode are respectively formed on the first doped layer and the second doped layer of the active waveguide, by applying voltage to the first electrode and the second electrode,
  • the neutral active layer of the content sub-point between the first doped layer and the second doped layer forms an electric field, and the quantum dot can be used to control the quantum dots in the neutral active layer by adjusting the electric field
  • the energy level is adjusted to adjust the wavelength of the light.
  • an embodiment of the present application provides a method for fabricating an optical waveguide for fabricating the optical waveguide according to the above aspect, the method comprising:
  • the active substrate comprising: a substrate layer, a buffer layer over the substrate layer, a sacrificial layer over the buffer layer, and an active waveguide layer over the sacrificial layer;
  • the active waveguide layer is combined with the passive substrate; the sacrificial layer, the buffer layer and the base layer are removed; the mark for positioning the quantum dots is evaporated on the active waveguide layer; the position of the quantum dot is determined according to the mark; a location, etching the active waveguide layer to form an active waveguide, and etching the passive substrate to form a passive waveguide;
  • the active waveguide comprises: a first doped layer over the passive waveguide, located at a neutral active layer over a doped layer, and a second doped layer over the neutral active layer, formed on the first doped layer a first electrode portion is formed with a second electrode portion on the second doped layer; a first electrode of the positive and negative electrodes is vapor-deposited on the first electrode portion, and a second electrode is vapor-
  • the first electrode and the second electrode are respectively formed on the first doped layer and the second doped layer of the active waveguide, by applying voltage to the first electrode and the second electrode,
  • the neutral active layer of the content sub-point between the first doped layer and the second doped layer forms an electric field, and the quantum dot can be used to control the quantum dots in the neutral active layer by adjusting the electric field
  • the energy level is adjusted to adjust the wavelength of the quantum dots.
  • FIG. 1 is a schematic view of an optical waveguide provided by an embodiment of the present application.
  • FIG. 2A is a schematic diagram of an optical waveguide provided by another embodiment of the present application.
  • 2B is a schematic diagram of an optical waveguide provided by another embodiment of the present application.
  • FIG. 3 is a schematic diagram of a single photon source provided by an embodiment of the present application.
  • FIG. 4 is a flow chart of a method for fabricating an optical waveguide according to an embodiment of the present application.
  • FIG. 5A is a schematic diagram of an active substrate provided by an embodiment of the present application.
  • 5B is a schematic diagram of a passive substrate provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a combination of an active waveguide layer and a passive substrate provided by an embodiment of the present application;
  • FIG. 7A is a top plan view showing a combination of an active waveguide layer and a passive substrate after etching according to an embodiment of the present application;
  • Figure 7B is a cross-sectional view of the A-A plane of Figure 7A provided by an embodiment of the present application;
  • 7C is a plan view of a first portion, a second portion, a second electrode connection portion, a second electrode portion, and a first doped layer of the active waveguide formed after etching according to an embodiment of the present application;
  • Figure 7D is a cross-sectional view of the A-A plane of Figure 7C provided by an embodiment of the present application.
  • Figure 7E is a cross-sectional view of the A-A plane of Figure 7A provided by another embodiment of the present application.
  • Figure 7F is a cross-sectional view of the A-A plane of Figure 7A provided by another embodiment of the present application.
  • 7G is a top plan view of an optical waveguide provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an optical waveguide provided by another embodiment of the present application.
  • FIG. 1 shows a schematic diagram of an optical waveguide 10 provided by an embodiment of the present application.
  • the optical waveguide includes 10: a regulation electrode 103, a passive waveguide 101, and an active waveguide 102 located above the passive waveguide 101.
  • the passive waveguide 101 refers to an optical waveguide that does not include quantum dots.
  • the active waveguide 102 refers to an optical waveguide including quantum dots, and the active waveguide 102 contains only one quantum dot.
  • the quantum dots in the active waveguide 102 generate photons after being exposed to the excitation light, which are first coupled into the active waveguide 102 and then coupled into the passive waveguide 101.
  • the active waveguide 102 includes a first doped layer 102a over the passive waveguide 101, a neutral active layer 102b over the first doped layer 102a, and a neutral active source.
  • a second doped layer 102c over layer 102b. That is, the lower surface of the first doped layer 102a and the upper surface of the passive waveguide 101 are bonded, and the upper surface of the first doped layer 102a and the lower surface of the neutral active layer 102b are bonded to each other, and the neutral active layer is bonded.
  • Upper surface of 102b and lower surface of second doped layer 102c fit. The first doped layer 102a and the second doped layer 102c are electrically opposite.
  • the second doped layer is an N (Negative) doped layer; or, when the first doped layer is an N doped layer
  • the second doped layer is a P doped layer.
  • the quantum dots are located in the neutral active layer 102b of the active waveguide 102.
  • the control electrode 103 includes a first electrode 103a and a second electrode 103b.
  • a first electrode portion 104 is formed on the first doping layer 102a, and the first electrode portion 104 is for providing the first electrode 103a.
  • the first electrode 103a is formed on the first electrode portion 104.
  • the first electrode 103a is formed by vapor deposition and is located on the first electrode portion 104.
  • a second electrode portion 105 is formed on the second doped layer 102c, and the second electrode portion 105 is for providing the second electrode 103b.
  • the second electrode 103b is formed on the second electrode portion 105.
  • the second electrode 103b is formed by vapor deposition and is located on the second electrode portion 105.
  • the first electrode 103a and the second electrode 103b are opposite in polarity, and the first electrode 103a and the first doping layer 102a are electrically identical, and the second electrode 103b and the second doping layer 102c are electrically identical. Further, in the present embodiment, the positions of the first electrode portion 104 and the second electrode portion 105 with respect to the active waveguide 102 are not limited.
  • the first electrode and the second electrode are respectively formed on the first doped layer and the second doped layer of the active waveguide, by applying voltage to the first electrode and the second electrode, at the first
  • the neutral active layer of the content sub-dot between the doped layer and the second doped layer forms an electric field, and the energy level of the quantum dots in the neutral active layer can be adjusted by adjusting the electric field by using the electric field Stark effect
  • the interval is adjusted to adjust the wavelength of the light.
  • the defects due to defects around the quantum dots, the defects trap and release electrons, causing electric field oscillations near the quantum dots.
  • the electric field applied by the regulating electrode can drive away the electrons in the defect, thereby eliminating the above-mentioned electric field oscillation, avoiding the instability of the quantum dot illuminating frequency, thereby weakening the non-uniform broadening of the photon line and improving the quality of the photon generated by the quantum dot.
  • FIG. 2A shows a schematic diagram of an optical waveguide 10 provided by another embodiment of the present application.
  • FIG. 2B is a plan view of the optical waveguide 10 shown in FIG. 2A.
  • the optical waveguide 10 includes a regulation electrode 103, a passive waveguide 101, and an active waveguide 102 located above the passive waveguide 101.
  • the active waveguide 102 includes a first doped layer 102a over the passive waveguide 101, a neutral active layer 102b over the first doped layer 102a, and a first over the neutral active layer 102b.
  • the second doped layer 102c wherein the first doped layer 102a and the second doped layer 102c are electrically opposite.
  • the control electrode 103 includes a first electrode 103a and a second electrode 103b.
  • a first electrode portion 104 is formed on the first doped layer 102a, and a first electrode 103a is formed on the first electrode portion 108.
  • the second electrode portion 105 is formed on the second doped layer 102c, and the second electrode 103b is formed on the second electrode portion 105.
  • the first electrode and the second electrode are respectively formed on the first doped layer and the second doped layer of the active waveguide, by applying voltage to the first electrode and the second electrode,
  • the neutral active layer of the content sub-point between the first doped layer and the second doped layer forms an electric field, and the quantum dot can be used to control the quantum dots in the neutral active layer by adjusting the electric field
  • the energy level is adjusted to adjust the wavelength of the light.
  • the first doped layer 102a extends to a side perpendicular to the length direction of the passive waveguide 101 at the first position to form the first electrode connection portion 106 and the first electrode portion 104, wherein the first electrode connection One end of the portion 106 is connected to the first position, and the other end of the first electrode connecting portion 106 is connected to the first electrode portion 104.
  • the second doping layer 102c extends to the other side perpendicular to the longitudinal direction of the passive waveguide 101 at the second position to form the second electrode connection portion 107 and the second electrode portion 105, wherein the second electrode connection portion 107 One end is connected to the second position, and the other end of the second electrode connecting portion 107 is connected to the second electrode portion 105.
  • the passive waveguide 101 extends to one side of its own length direction to form a first supporting portion 108, and the first electrode connecting portion 106 and the first electrode portion 104 are located at the first supporting portion. Above 108. Passive waveguide 101 Extending to the other side of the length direction thereof, a second support portion 109 is formed, and a first doped layer 102a is formed on the second support portion 109, and a neutral active layer is formed on the first doped layer 102a. 102b, and a second electrode connection portion 107 and a second electrode portion 105 on the neutral active layer 102b.
  • the passive waveguide 101 is elongated, the first electrode 103a is located on one side of the passive waveguide 101, and the second electrode 103b is located on the other side of the passive waveguide 101.
  • the active waveguide 102 includes a first portion 110 and a second portion 111.
  • the width of the first end of the first portion 110 to the second end of the first portion 110 is constant, the second end of the first portion 110 is coupled to the first end of the second portion 111, and the width of the second end of the first portion 110 and the second portion 111
  • the width of the first end of the second end 111 is gradually decreased, and the width of the second end of the second portion 111 is gradually decreased.
  • the photons in the active waveguide 102 When the quantum dots in the active waveguide 102 generate photons, the photons eventually propagate toward the second end of the second portion 111. Since the width of the second portion 111 of the active waveguide 102 is gradually reduced, the active waveguide 102 cannot be bound. The photons that are in which they are propagating are coupled to the passive waveguide 101 below to propagate.
  • the widths of the first electrode connecting portion 106 and the second electrode connecting portion 107 are smaller than the width of the active waveguide 102, that is, the first electrode connecting portion 106 and the second electrode connecting portion 107.
  • the width is less than the width of the first portion 110 of the active waveguide 102.
  • the first doped layer 102a is a P doped layer
  • the second doped layer 102c is an N doped layer
  • the first electrode 103a is a positive electrode
  • the second electrode 103b is a negative electrode
  • first The doped layer 102a is an N doped layer
  • the second doped layer 102c is a P doped layer
  • the first electrode 103a is a negative electrode
  • the second electrode 103b is a positive electrode.
  • the first electrode connecting portion 106 and the second electrode connecting portion 107 have a length of 1-9 mm and a width of 50-150 nm. In one example, the first electrode connection portion 106 and the second electrode connection portion 107 have a width of 50 nm.
  • the first electrode 103a and the second electrode 103b have a length of 50-500 um and a width of 50-500 um.
  • the first electrode 103a and the second electrode 103b have a length of 500 um and a width of 500 um.
  • FIG. 3 shows a schematic diagram of a single photon source 30 provided by an embodiment of the present application.
  • the single photon source 30 includes an optical waveguide 10, a light source device 11, and a filter 12.
  • the optical waveguide 10 is the optical waveguide 10 as provided in the above embodiments of Figs. 1 and 2A.
  • the light source device 11 is aligned with one end of the optical waveguide 10 including the active waveguide 102.
  • the light source device 11 is for emitting excitation light to quantum dots in the optical waveguide 10 to generate photons.
  • the light source device 11 may be a grating coupler.
  • the filter 12 is connected to the other end of the optical waveguide 10.
  • Filter 12 is used to filter photons.
  • filter 12 can be a ring filter.
  • the first electrode and the second electrode are respectively formed on the first doped layer and the second doped layer of the active waveguide, by applying voltage to the first electrode and the second electrode,
  • the neutral active layer of the content sub-point between the first doped layer and the second doped layer forms an electric field, and the quantum dot can be used to control the quantum dots in the neutral active layer by adjusting the electric field
  • the energy level is adjusted to adjust the wavelength of the light.
  • FIG. 4 is a flowchart of a method for fabricating an optical waveguide provided by an embodiment of the present application. This method can be used to fabricate the optical waveguide 10 provided by the above-described embodiments of Figs. 1 and 2A. The method can include the following steps.
  • step 401 an active substrate is generated.
  • the active substrate includes: a substrate layer, a buffer layer over the substrate layer, a sacrificial layer over the buffer layer, and An active waveguide layer over the sacrificial layer.
  • the active substrate 112 includes an active waveguide layer 118, a sacrificial layer 113 over the active waveguide layer 118, a buffer layer 114 over the sacrificial layer 113, and a buffer layer 114.
  • the constituent materials of the active waveguide layer 118, the buffer layer 114, and the base layer 115 are the same.
  • the active waveguide layer 118 includes a first doped layer 102a, a neutral active layer 102b, and a second doped layer 102c. The first doped layer 102a and the second doped layer 102c are electrically opposite.
  • the first doping layer 102a and the second doping 102c are doped with different chemical elements in the constituent material of the active waveguide layer 118.
  • the constituent material of the active waveguide layer is indium phosphide, and the doped sulfur element forms an N-doped layer, and the doped zinc element forms a P-doped layer.
  • the constituent material of the active waveguide layer is gallium arsenide, and the doped silicon element forms an N-doped layer, and the zinc-doped element forms a P-doped layer.
  • the neutral active layer 102b is a quantum dot grown in a constituent material of the active waveguide layer.
  • the material of the quantum dots may be indium arsenide.
  • Step 402 combining an active waveguide layer of the active substrate and a passive substrate.
  • the active substrate includes one side of the active waveguide layer bonded to the passive substrate by a low temperature wafer bonding (Wafer Bonding) technique.
  • Wafer Bonding low temperature wafer bonding
  • the material of the passive substrate may be silicon dioxide and silicon; or, is silicon dioxide and silicon nitride. As shown in FIG. 5B, if the material of the passive substrate is silicon dioxide and silicon, the passive substrate comprises two layers of silicon dioxide and two layers of silicon; if the material of the passive substrate is silicon dioxide and nitrided For silicon, the passive substrate includes a layer of silicon dioxide and a layer of silicon.
  • step 403 the sacrificial layer, the buffer layer, and the base layer are removed.
  • the sacrificial layer is etched using a chemical agent according to the constituent material of the sacrificial layer, and finally the sacrificial layer, the buffer layer, and the underlying layer are removed.
  • the constituent material of the sacrificial layer is indium gallium arsenide
  • the sacrificial layer is etched using sulfuric acid, hydrogen peroxide, and water; if the constituent material of the sacrificial layer is aluminum gallium arsenide, hydrofluoric acid is used to etch the sacrificial layer. As shown in FIG.
  • the buffer layer and the base layer are removed, a combination of the passive substrate 116 and the active waveguide layer 118 remains, and the first doped layer 102a in the active waveguide layer 118 is passive.
  • the neutral active layer 102b is over the first doped layer 102a and the second doping 102c is over the neutral active layer 102b.
  • Step 404 depositing a mark on the active waveguide layer for positioning the quantum dots.
  • a mark is deposited over the active waveguide layer for the quantum dot positioning described later.
  • the material labeled above may be a metal such as gold, aluminum or titanium.
  • Step 405 determining the position of the quantum dot according to the mark.
  • Single-photon fluorescence imaging of the active waveguide layer at low temperature according to the results of single-photon fluorescence imaging, combined with the above markers, can accurately locate quantum dots.
  • Step 406 forming an active waveguide by etching the active waveguide layer according to the position of the quantum dot, and etching the passive substrate to form a passive waveguide.
  • the active waveguide and the passive waveguide are set according to constituent materials of the active waveguide layer and the passive substrate. According to the position of the quantum dots, the active waveguide layer is etched to form an active waveguide by using a dry etching technique, and the passive substrate is etched to form a passive waveguide.
  • FIG. 7A there is shown a top view after etching, etching to form the first portion 110 and the second portion 111 of the active waveguide, and the passive waveguide 101.
  • the first electrode connection portion 104 and the first electrode portion 106, and the second electrode connection portion 107 and the second electrode portion 105 are formed by etching.
  • a supporting substrate 117 for supporting the above-described optical waveguide is also formed.
  • FIG. 7B in combination, a cross-sectional view of the A-A plane in FIG. 7A is shown. As shown in FIG.
  • the lower portion of the passive substrate is the support substrate 117, and the upper portion of the passive substrate is the passive waveguide 101, the first doping Layer 102a is over passive waveguide 101, neutral active layer 102b is over first doped layer 102a, and second doped layer 102c is over neutral active layer 102b.
  • step 406 forming an active waveguide by etching the active waveguide layer according to the position of the quantum dot, and etching the passive substrate to form a passive waveguide, further comprising the following substeps:
  • the first and second portions of the active waveguide, and the second electrode connection portion and the second electrode portion are developed by the first EBL exposure.
  • the first portion and the second portion of the active waveguide, and the second electrode connection portion and the second electrode portion are etched by etching according to the development result obtained after the first EBL exposure.
  • FIG. 7C a first portion 110, a second portion 111, a second electrode connection portion 107, a second electrode portion 105, and a first doped layer 102a of the active waveguide formed after etching are illustrated.
  • FIG. 7D a cross-sectional view of the AA plane in FIG. 7C is shown. As shown in FIG. 7D, the first doped layer 102a is over the passive substrate 116, and the neutral active layer 102b is at the first doping. Above layer 102a, second doped layer 102c is overlying neutral active layer 102b.
  • the structure of the passive waveguide, and the first electrode connection portion and the first electrode portion were developed by the second EBL exposure.
  • the passive waveguide, the first electrode connecting portion 104, and the first electrode portion 106 are formed by etching according to the development result obtained after the second EBL exposure.
  • the constituent material of the passive substrate may be silicon dioxide and silicon.
  • FIG. 7E a cross-sectional view of the A-A plane in FIG. 7A is shown.
  • the lower portion of the passive substrate is the support substrate 117
  • the upper portion of the passive substrate is the passive waveguide 101.
  • the support substrate 117 includes a layer of silicon 120 and a layer of silicon dioxide 121 over the silicon 120
  • the passive waveguide 101 includes a layer of silicon 122 over the silicon dioxide 121 and over the silicon 122.
  • a layer of silica 123 A layer of silica 123.
  • the constituent material of the passive substrate may be silicon dioxide and silicon nitride.
  • FIG. 7F a cross-sectional view of the A-A plane in FIG. 7A is shown.
  • the lower portion of the passive substrate is the support substrate 117
  • the upper portion of the passive substrate is the passive waveguide 101.
  • the support substrate 117 is a layer of silicon nitride 124
  • the passive waveguide 703 includes a layer of silicon nitride 125 formed over the silicon nitride 124 and a layer of silicon dioxide 126 over the silicon nitride 125.
  • step 407 the first electrode is vapor-deposited on the first electrode portion, and the second electrode is vapor-deposited on the second electrode portion.
  • the first electrode 103a and the second electrode 103b are vapor-deposited on the first electrode portion 104 and the second electrode portion 105, respectively.
  • the positive electrode is vapor-deposited, titanium/platinum/gold is sequentially deposited; if the negative electrode is vapor-deposited, nickel/gold/rhenium/nickel/gold is sequentially deposited.
  • the etched optical waveguide is as shown in FIG.
  • the width of the corresponding passive waveguide 802 below the first portion 801 of the source waveguide is greater than the width of the first portion 801.
  • the width of the corresponding passive waveguide 804 below it gradually increases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种光波导(10)、单光子源(30)及光波导(10)的制作方法,光波导(10)包括:调控电极(103)、无源波导(101)和位于无源波导(101)之上的有源波导(102);有源波导(102)包括:位于无源波导(101)之上的第一掺杂层(102a)、位于第一掺杂层(102a)之上的中性有源层(102b)、以及位于中性有源层(102b)之上的第二掺杂层(102c),第一掺杂层(102a)和第二掺杂层(102c)电性相反,中性有源层(102b)含有量子点;调控电极(103)包括第一电极(103a)和第二电极(103b);第一掺杂层(102a)上形成有第一电极部(104),第一电极部(104)上形成有第一电极(103a);第二掺杂层(102c)上形成有第二电极部(105),第二电极部(105)上形成有第二电极(103b)。由于第一掺杂层(102a)和第二掺杂层(102c)上分别形成有第一电极(103a)和第二电极(103b),通过对第一电极(103a)和第二电极(103b)施加电压,在第一掺杂层(102a)和第二掺杂层(102c)之间形成一电场,调控电场能够对发光波长进行调节。

Description

光波导、单光子源及光波导的制作方法 技术领域
本申请实施例涉及光量子计算领域,特别涉及一种光波导、单光子源及光波导的制作方法。
背景技术
传统电子计算机的计算速度和能力依赖于超大规模的集成电路技术。但随着晶体管的体积不断变小,量子效应和发热将限制计算机能力的继续提升。基于量子力学原理的量子计算机能够利用量子叠加和纠缠现象提供真正的并行运算能力。其中,用线性光学器件配合辅助光子,并结合高效率的单光子探测器进行后选择测量能够实现通用的光量子计算。因此,基于线性光学系统的光量子计算受到了广泛的研究。
相比于基于自由空间光学器件的光量子计算装置,集成光量子计算装置更加紧凑、稳定且易于扩展,具有实现大规模多比特的光量子计算的潜力。大规模的光量子计算需要多个全同的单光子源来提供光子比特,进行双光子干涉以实现两比特光量子门,因此单光子源是光量子计算装置的重要组成部分。将单光子源集成到光量子计算装置的芯片上,能够减小单光子源和其它片上器件的耦合损耗,提高装置的紧凑性和稳定性,有利于扩展。一种方法是将III-V族半导体量子点(下文简称“量子点”)集成到硅基芯片上以形成片上集成的单光子源,而含有量子点的光波导是片上单光子源中重要组成部分。在现有技术中,可以利用倒装芯片技术和低温晶圆键合技术制作含有量子点的光波导,通过将含量子点的光波导和无源波导相结合形成光波导,实现了量子点和硅基芯片的结合,并能够满足量子点荧光(即量子点产生的光子)到无源波导的高效转移。
在现有技术中量子点在生长过程中是随机形成的,不同量子点的发光波长通常不一样,不同波长的光子无法进行双光子干涉,因此,量子点的发光波长不同,使得单光子源的扩展受到限制。
发明内容
本申请实施例提供了一种光波导、单光子源及光波导的制作方法,可用以解决现有技术中因不同量子点的发光波长不一样,而导致单光子源的扩展受到限制的问题。
一方面,本申请实施例提供一种光波导,光波导包括:调控电极、无源波导和位于无源波导之上的有源波导;有源波导包括:位于无源波导之上的第一掺杂层、位于第一掺杂层之上的中性有源层、以及位于中性有源层之上的第二掺杂层,其中,第一掺杂层和第二掺杂层电性相反,中性有源层含有量子点;调控电极包括第一电极和第二电极;第一掺杂层上形成有第一电极部,第一电极部上形成有第一电极;第二掺杂层上形成有第二电极部,第二电极部上形成有第二电极。
本申请实施例提供的方案中,由于有源波导的第一掺杂层和第二掺杂层上分别形成有第一电极和第二电极,通过对第一电极和第二电极施加电压,在第一掺杂层和第二掺杂层之间的含量子点的中性有源层形成一个电场,利用电场斯塔克效应,通过调控上述电场能 够对中性有源层中的量子点的能级间隔进行调控,从而对发光波长进行调节。
在一个可能的设计中,无源波导呈长条状,第一电极位于无源波导的一侧,第二电极位于无源波导的另一侧。
在另一个可能的设计中,第一掺杂层在第一位置处向垂直于无源波导的长度方向的一侧延伸,形成第一电极连接部和第一电极部,其中,第一电极连接部的一端和第一位置相连,第一电极连接部的另一端和第一电极部相连;第二掺杂层在第二位置处向垂直于无源波导的长度方向的另一侧延伸,形成第二电极连接部和第二电极部,其中,第二电极连接部的一端和第二位置相连,第二电极连接部的另一端和第二电极部相连。
在又一个可能的设计中,第一电极连接部和第二电极连接部的宽度小于有源波导的宽度。
本申请实施例提供的方案中,通过第一电极连接部和第二电极连接部的宽度小于有源波导的宽度,确保光子不会向第一电极连接部和第二电极连接部传播,保证光子在光波导中传播效率。
在又一个可能的设计中,第一电极连接部和第二电极连接部的长度为1-9mm,宽度为50-150nm。
在又一个可能的设计中,第一电极和第二电极的长度为50-500um,宽度为50-500um。
在又一个可能的设计中,第一掺杂层为P掺杂层,且第二掺杂层为N掺杂层,第一电极为正电极,且第二电极为负电极;或者,第一掺杂层为N掺杂层,且第二掺杂层为P掺杂层,第一电极为负电极,且第二电极为正电极。
在又一个可能的设计中,有源波导包括第一部分和第二部分;第一部分的第一端至第一部分的第二端的宽度不变;第一部分的第二端和第二部分的第一端相连,第一部分的第二端的宽度和第二部分的第一端的宽度相同;第二部分的第一端至第二部分的第二端的宽度逐渐减小。
另一方面,本申请实施例提供一种单光子源,单光子源包括:如上述方面所述的光波导、光源装置和滤波器。
光源装置用于向光波导中的量子点发射激发光,产生光子。
滤波器用于对光子滤波。
本申请实施例提供的方案中,由于有源波导的第一掺杂层和第二掺杂层上分别形成有第一电极和第二电极,通过对第一电极和第二电极施加电压,在第一掺杂层和第二掺杂层之间的含量子点的中性有源层形成一个电场,利用电场斯塔克效应,通过调控上述电场能够对中性有源层中的量子点的能级间隔进行调控,从而对发光波长进行调节。
又一方面,本申请实施例提供一种光波导的制作方法,用于制作如上述方面所述的光波导,所述方法包括:
生成有源衬底,有源衬底包括:基底层、位于基底层之上的缓冲层、位于缓冲层之上的牺牲层、以及位于牺牲层之上的有源波导层;将有源衬底的有源波导层和无源衬底结合;除去牺牲层、缓冲层和基底层;在有源波导层上蒸镀上用于定位量子点的标记;根据标记确定量子点的位置;根据量子点的位置,对有源波导层刻蚀形成有源波导,以及对无源衬底刻蚀形成无源波导;其中,有源波导包括:位于无源波导之上的第一掺杂层、位于第一掺杂层之上的中性有源层、以及位于中性有源层之上的第二掺杂层,第一掺杂层上形成有 第一电极部,第二掺杂层上形成有第二电极部;在第一电极部上蒸镀正负电极第一电极,并在第二电极部上蒸镀第二电极。
本申请实施例提供的方案中,由于有源波导的第一掺杂层和第二掺杂层上分别形成有第一电极和第二电极,通过对第一电极和第二电极施加电压,在第一掺杂层和第二掺杂层之间的含量子点的中性有源层形成一个电场,利用电场斯塔克效应,通过调控上述电场能够对中性有源层中的量子点的能级间隔进行调控,从而对量子点的发光波长进行调节。
附图说明
图1是本申请一个实施例提供的光波导的示意图;
图2A是本申请另一个实施例提供的光波导的示意图;
图2B是本申请另一个实施例提供的光波导的示意图;
图3是本申请一个实施例提供的单光子源的示意图;
图4是本申请一个实施例提供的光波导的制作方法的流程图;
图5A是本申请一个实施例提供的有源衬底的示意图;
图5B是本申请一个实施例提供的无源衬底的示意图;
图6是本申请一个实施例提供的有源波导层和无源衬底的结合的示意图;
图7A是本申请一个实施例提供的有源波导层和无源衬底的结合经过刻蚀之后的俯视图;
图7B是本申请一个实施例提供的图7A中A-A面的剖面图;
图7C是本申请一个实施例提供的刻蚀后形成的有源波导的第一部分、第二部分、第二电极连接部、第二电极部和第一掺杂层的俯视图;
图7D是本申请一个实施例提供的图7C中A-A面的剖面图;
图7E是本申请另一个实施例提供的图7A中A-A面的剖面图;
图7F是本申请另一个实施例提供的图7A中A-A面的剖面图;
图7G是本申请一个实施例提供的光波导的俯视图;
图8是本申请另一个实施例提供的光波导的示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
请参考图1,其示出了本申请一个实施例提供的光波导10的示意图。光波导包括10:调控电极103、无源波导101和位于无源波导101之上的有源波导102。
无源波导101是指不包含量子点的光波导。有源波导102是指包含有量子点的光波导,且有源波导102中仅包含一个量子点。有源波导102中的量子点在受到激发光的照射后产生光子,该光子先耦合到有源波导102中,再耦合到无源波导101中。
如图1所示,有源波导102包括:位于无源波导101之上的第一掺杂层102a、位于第一掺杂层102a之上的中性有源层102b、以及位于中性有源层102b之上的第二掺杂层102c。也即,第一掺杂层102a的下表面和无源波导101的上表面贴合,第一掺杂层102a的上表面和中性有源层102b的下表面贴合,中性有源层102b的上表面和第二掺杂层102c的下表面 贴合。第一掺杂层102a和第二掺杂层102c电性相反。也即,当第一掺杂层为P(Positive,正)掺杂层时,第二掺杂层为N(Negative,负)掺杂层;或者,当第一掺杂层为N掺杂层时,第二掺杂层为P掺杂层。量子点位于有源波导102的中性有源层102b中。
如图1所示,调控电极103包括:第一电极103a和第二电极103b。第一掺杂层102a上形成有第一电极部104,第一电极部104用于设置第一电极103a。第一电极部104上形成有第一电极103a,例如第一电极103a通过蒸镀的方式形成并位于第一电极部104上。第二掺杂层102c上形成有第二电极部105,第二电极部105用于设置第二电极103b。第二电极部105上形成有第二电极103b,例如第二电极103b通过蒸镀的方式形成并位于第二电极部105上。第一电极103a和第二电极103b极性相反,且第一电极103a和第一掺杂层102a电性相同,第二电极103b和第二掺杂层102c电性相同。并且,本实施例对第一电极部104和第二电极部105相对于有源波导102的位置不做限定。
在本申请实施例中,由于有源波导的第一掺杂层和第二掺杂层上分别形成有第一电极和第二电极,通过对第一电极和第二电极施加电压,在第一掺杂层和第二掺杂层之间的含量子点的中性有源层形成一个电场,利用电场斯塔克效应,通过调控上述电场能够对中性有源层中的量子点的能级间隔进行调控,从而对发光波长进行调节。
此外,由于量子点周围存在缺陷,该缺陷会捕获和释放电子,导致量子点附近的电场振荡。调控电极施加的电场能够赶走缺陷中的电子,从而消除上述电场振荡,避免造成量子点发光频率的不稳定,从而减弱光子谱线的非均匀加宽,提高量子点产生的光子的品质。
请参考图2A,其示出了本申请另一个实施例提供的光波导10的示意图。图2B是图2A所示的光波导10的俯视图。光波导10包括调控电极103、无源波导101和位于无源波导101之上的有源波导102。
有源波导102包括:位于无源波导101之上的第一掺杂层102a、位于第一掺杂层102a之上的中性有源层102b、以及位于中性有源层102b之上的第二掺杂层102c,其中,第一掺杂层102a和第二掺杂层102c电性相反。调控电极103包括第一电极103a和第二电极103b。第一掺杂层102a上形成有第一电极部104,第一电极部上108形成有第一电极103a。第二掺杂层上102c形成有第二电极部105,第二电极部105上形成有第二电极103b。
本申请实施例提供的方案中,由于有源波导的第一掺杂层和第二掺杂层上分别形成有第一电极和第二电极,通过对第一电极和第二电极施加电压,在第一掺杂层和第二掺杂层之间的含量子点的中性有源层形成一个电场,利用电场斯塔克效应,通过调控上述电场能够对中性有源层中的量子点的能级间隔进行调控,从而对发光波长进行调节。
可选地,第一掺杂层102a在第一位置处向垂直于无源波导101的长度方向的一侧延伸,形成第一电极连接部106和第一电极部104,其中,第一电极连接部106的一端和第一位置相连,第一电极连接部106的另一端和第一电极部104相连。第二掺杂层102c在第二位置处向垂直于无源波导101的长度方向的另一侧延伸,形成第二电极连接部107和第二电极部105,其中,第二电极连接部107的一端和第二位置相连,第二电极连接部107的另一端和第二电极部105相连。
可选地,如图2A所示,无源波导101向其自身长度方向的一侧延伸,形成第一支撑部108,上述第一电极连接部106和第一电极部104位于该第一支撑部108之上。无源波导101 向其自身长度方向的另一侧延伸,形成第二支撑部109,该第二支撑部109之上形成有第一掺杂层102a,第一掺杂层102a之上形成有中性有源层102b、以及位于中性有源层102b之上的第二电极连接部107和第二电极部105。
可选地,如图2A所示,无源波导101呈长条状,第一电极103a位于无源波导101的一侧,第二电极103b位于无源波导101的另一侧。可选地,如图2A和2B所示,有源波导102包括第一部分110和第二部分111。第一部分110的第一端至第一部分110的第二端的宽度不变,第一部分110的第二端和第二部分111的第一端相连,第一部分110的第二端的宽度和第二部分111的第一端的宽度相同,第二部分111的第一端至第二部分111的第二端的宽度逐渐减小。当有源波导102中的量子点产生光子后,该光子最终向第二部分111的第二端方向传播,由于有源波导102的第二部分111的宽度逐渐减小,有源波导102无法束缚住在其中传播的光子,光子便耦合到下方的无源波导101中传播。
可选地,如图2A和2B所示,第一电极连接部106和第二电极连接部107的宽度小于有源波导102的宽度,也即第一电极连接部106和第二电极连接部107的宽度小于有源波导102的第一部分110的宽度。通过上述方式,在有源波导102中传播的光子便不会向第一电极连接部106和第二电极连接部107中传播,提高了光波导10的传播效率。
可选地,第一掺杂层102a为P掺杂层,且第二掺杂层102c为N掺杂层,第一电极103a为正电极,且第二电极103b为负电极;或者,第一掺杂层102a为N掺杂层,且第二掺杂层102c为P掺杂层,第一电极103a为负电极,且第二电极103b为正电极。
可选地,第一电极连接部106和第二电极连接部107的长度为1-9mm,宽度为50-150nm。在一个示例中,第一电极连接部106和第二电极连接部107的宽度为50nm。
可选地,第一电极103a和第二电极103b的长度为50-500um,宽度为50-500um。在一个示例中,第一电极103a和第二电极103b的长度为500um,宽度也为500um。
请参考图3,其示出了本申请一个实施例提供的单光子源30的示意图。单光子源30包括:光波导10、光源装置11和滤波器12。
其中,光波导10是如上述图1和图2A实施例提供的光波导10。
如图3所示,光源装置11与光波导10包含有源波导102的一端对齐。光源装置11用于向光波导10中的量子点发射激发光,产生光子。例如,光源装置11可以是光栅耦合器。
滤波器12与光波导10的另一端相连。滤波器12用于对光子滤波。例如,滤波器12可以是环形滤波器。
本申请实施例提供的方案中,由于有源波导的第一掺杂层和第二掺杂层上分别形成有第一电极和第二电极,通过对第一电极和第二电极施加电压,在第一掺杂层和第二掺杂层之间的含量子点的中性有源层形成一个电场,利用电场斯塔克效应,通过调控上述电场能够对中性有源层中的量子点的能级间隔进行调控,从而对发光波长进行调节。
请参考图4,其示出了本申请一个实施例提供的光波导的制作方法的流程图。该方法可用于制作上述图1、图2A实施例提供的光波导10。该方法可以包括如下几个步骤。
步骤401,生成有源衬底。
有源衬底包括:基底层、位于基底层之上的缓冲层、位于缓冲层之上的牺牲层、以及 位于牺牲层之上的有源波导层。
如图5A所示,有源衬底112包括:有源波导层118、位于有源波导层118之上的牺牲层113、位于牺牲层113之上的缓冲层114,以及位于缓冲层114之上的基底层115。其中有源波导层118、缓冲层114和基底层115的构成材料相同。有源波导层118包含第一掺杂层102a、中性有源层102b和第二掺杂层102c。其中,第一掺杂层102a和第二掺杂层102c电性相反。第一掺杂层102a和第二掺杂102c是在有源波导层118的构成材料中掺杂了不同的化学元素形成。例如,有源波导层的构成材料是磷化铟,则掺杂硫元素形成N掺杂层,掺杂锌元素形成P掺杂层。又例如,有源波导层的构成材料是砷化镓,则掺杂硅元素形成N掺杂层,掺杂锌元素形成P掺杂层。中性有源层102b是在有源波导层的构成材料中生长了量子点。
可选地,量子点的材料可以是砷化铟。
步骤402,将有源衬底的有源波导层和无源衬底结合。
通过低温晶圆键合(Wafer Bonding)技术,将有源衬底包含有源波导层的一边与无源衬底结合。
可选地,无源衬底的材料可以是二氧化硅和硅;或者,是二氧化硅和氮化硅。如图5B所示,若无源衬底的材料是二氧化硅和硅,则无源衬底包括两层二氧化硅和两层硅;若无源衬底的材料是二氧化硅和氮化硅,则无源衬底包括一层二氧化硅和一层硅。
步骤403,除去牺牲层、缓冲层和基底层。
根据牺牲层的构成材料,使用化学试剂腐蚀牺牲层,最终除去牺牲层,缓冲层和基底层。示例性地,若牺牲层的构成材料是铟镓砷磷,则使用硫酸、双氧水和水来腐蚀牺牲层;若牺牲层的构成材料是铝镓砷,则使用氢氟酸来腐蚀牺牲层。如图6所示,除去牺牲层,缓冲层和基底层之后,还剩下无源衬底116和有源波导层118的结合,有源波导层118中的第一掺杂层102a位于无源衬底116之上,中性有源层102b位于第一掺杂层102a之上,第二掺杂102c位于中性有源层102b之上。
步骤404,在有源波导层上蒸镀上用于定位量子点的标记。
在有源波导层上方蒸镀上标记,该标记用于后述量子点定位。可选地,上述标记的材料可以金、铝和钛等金属。
步骤405,根据标记确定量子点的位置。
在低温下对有源波导层进行单光子荧光成像,根据单光子荧光成像的结果,再结合上述标记,能够准确定位量子点。
步骤406,根据量子点的位置,对有源波导层刻蚀形成有源波导,以及对无源衬底刻蚀形成无源波导。
有源波导和无源波导根据有源波导层和无源衬底的构成材料设定。根据量子点的位置,利用干法刻蚀技术,对有源波导层刻蚀形成有源波导,以及对无源衬底刻蚀形成无源波导。
请参考图7A,其示出了刻蚀之后的俯视图,刻蚀形成有源波导的第一部分110和第二部分111、以及无源波导101。同时,刻蚀形成第一电极连接部104和第一电极部106、以及第二电极连接部107和第二电极部105。此外,刻蚀之后,还形成了支撑衬底117,支撑衬底117用于支撑上述光波导。请结合参考图7B,其示出了图7A中A-A面的剖面图。如图7B所示,无源衬底的下部为支撑衬底117,无源衬底的上部为无源波导101,第一掺杂 层102a位于无源波导101之上,中性有源层102b位于第一掺杂层102a之上,第二掺杂层102c位于中性有源层102b之上。
可选地,上述步骤406,根据量子点的位置,对有源波导层刻蚀形成有源波导,以及对无源衬底刻蚀形成无源波导,还包括以下子步骤:
1、根据量子点的位置,进行第一次电子束(Electron Beam Lithography,EBL)曝光。
通过第一次EBL曝光,将有源波导的第一部分和第二部分、以及第二电极连接部和第二电极部进行了显影。
2、根据第一次EBL曝光后得到的显影结果,刻蚀形成有源波导的第一部分和第二部分、以及第二电极连接部和第二电极部。
请参考图7C,其示出了刻蚀后形成的有源波导的第一部分110、第二部分111、第二电极连接部107、第二电极部105和第一掺杂层102a。请结合参考图7D其示出了图7C中A-A面的剖面图,如图7D所示,第一掺杂层102a位于无源衬底116之上,中性有源层102b位于第一掺杂层102a之上,第二掺杂层102c位于中性有源层102b之上。
3、进行第二次EBL曝光。
通过第二次EBL曝光,将无源波导的结构、以及第一电极连接部和第一电极部进行了显影。
4、根据第二次EBL曝光后得到的显影结果,刻蚀形成无源波导、第一电极连接部104和第一电极部106。
本次刻蚀之后,即形成了如图7A所示的光波导。
在一种可能的实施方式中,无源衬底的构成材料可以是二氧化硅和硅,请参考图7E,其示出了图7A中A-A面的剖面图。如图7E所示,无源衬底的下部为支撑衬底117,无源衬底的上部为无源波导101。其中,支撑衬底117包括了一层硅120和位于硅120之上的一层二氧化硅121;无源波导101包括了位于二氧化硅121之上的一层硅122和位于硅122之上的一层二氧化硅123。
在另一种可能的实施方式中,无源衬底的构成材料可以是二氧化硅和氮化硅,请参考图7F,其示出了图7A中A-A面的剖面图。如图7F所示,无源衬底的下部为支撑衬底117,无源衬底的上部为无源波导101。其中,支撑衬底117为一层氮化硅124;无源波导703包括了形成氮化硅124之上的一层氮化硅125和位于氮化硅125之上的一层二氧化硅126。
步骤407,在第一电极部上蒸镀第一电极,并在第二电极部上蒸镀第二电极。
如图7G所示,分别在第一电极部104和第二电极部105蒸镀上第一电极103a和第二电极103b。若蒸镀正电极,则依次蒸镀上钛/铂/金;若蒸镀负电极,则依次蒸镀上镍/金/锗/镍/金。
可选地,请参考图8,若有源波导的构成材料为砷化镓且无源衬底的构成材料为二氧化硅和氮化硅,则刻蚀的光波导如图8所示,有源波导的第一部分801下方对应的无源波导802的宽大于第一部分801的宽。当有源波导的第二部分803的宽度逐渐减小时,其下方对应的无源波导804的宽度逐渐增大。通过上述结构,确保当有源波导变窄时,其中的光子能够更高效地耦合到下方的无源波导中。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一 步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (10)

  1. 一种光波导,其特征在于,所述光波导包括:调控电极、无源波导和位于所述无源波导之上的有源波导;
    所述有源波导包括:位于所述无源波导之上的第一掺杂层、位于所述第一掺杂层之上的中性有源层、以及位于所述中性有源层之上的第二掺杂层,其中,所述第一掺杂层和所述第二掺杂层电性相反,所述中性有源层含有量子点;
    所述调控电极包括第一电极和第二电极;
    所述第一掺杂层上形成有第一电极部,所述第一电极部上形成有所述第一电极;所述第二掺杂层上形成有第二电极部,所述第二电极部上形成有所述第二电极。
  2. 根据权利要求1所述的光波导,其特征在于,所述无源波导呈长条状;
    所述第一电极位于所述无源波导的一侧,所述第二电极位于所述无源波导的另一侧。
  3. 根据权利要求2所述的光波导,其特征在于,
    所述第一掺杂层在第一位置处向垂直于所述无源波导的长度方向的一侧延伸,形成第一电极连接部和所述第一电极部,其中,所述第一电极连接部的一端和所述第一位置相连,所述第一电极连接部的另一端和所述第一电极部相连;
    所述第二掺杂层在第二位置处向垂直于所述无源波导的长度方向的另一侧延伸,形成第二电极连接部和所述第二电极部,其中,所述第二电极连接部的一端和所述第二位置相连,所述第二电极连接部的另一端和所述第二电极部相连。
  4. 根据权利要求3所述的光波导,其特征在于,所述第一电极连接部和所述第二电极连接部的宽度小于所述有源波导的宽度。
  5. 根据权利要求3所述的光波导,其特征在于,所述第一电极连接部和所述第二电极连接部的长度为1-9mm,宽度为50-150nm。
  6. 根据权利要求1至5任一项所述的光波导,其特征在于,所述第一电极和所述第二电极的长度为50-500um,宽度为50-500um。
  7. 根据权利要求1至5任一项所述的光波导,其特征在于,
    所述第一掺杂层为P掺杂层,且所述第二掺杂层为N掺杂层,所述第一电极为正电极,且所述第二电极为负电极;
    或者,
    所述第一掺杂层为N掺杂层,且所述第二掺杂层为P掺杂层,所述第一电极为负电极,且所述第二电极为正电极。
  8. 根据权利要求1至5任一项所述的光波导,其特征在于,
    所述有源波导包括第一部分和第二部分;
    所述第一部分的第一端至所述第一部分的第二端的宽度不变;
    所述第一部分的第二端和所述第二部分的第一端相连,所述第一部分的第二端的宽度和所述第二部分的第一端的宽度相同;
    所述第二部分的第一端至所述第二部分的第二端的宽度逐渐减小。
  9. 一种单光子源,其特征在于,所述单光子源包括:如权利要求1至8任一项所述的光波导、光源装置和滤波器;
    所述光源装置用于向所述光波导中的量子点发射激发光,产生光子;
    所述滤波器用于对所述光子滤波。
  10. 一种光波导的制作方法,其特征在于,用于制作如权利要求1至8任一项所述的光波导,所述方法包括:
    生成有源衬底,所述有源衬底包括:基底层、位于所述基底层之上的缓冲层、位于所述缓冲层之上的牺牲层、以及位于所述牺牲层之上的有源波导层;
    将所述有源衬底的有源波导层和无源衬底结合;
    除去所述牺牲层、所述缓冲层和所述基底层;
    在所述有源波导层上蒸镀用于定位量子点的标记;
    根据所述标记确定所述量子点的位置;
    根据所述量子点的位置,对所述有源波导层刻蚀形成有源波导,以及对所述无源衬底刻蚀形成无源波导;其中,所述有源波导包括:位于所述无源波导之上的第一掺杂层、位于所述第一掺杂层之上的中性有源层、以及位于所述中性有源层之上的第二掺杂层,所述第一掺杂层上形成有第一电极部,所述第二掺杂层上形成有第二电极部;
    在所述第一电极部上蒸镀第一电极,并在所述第二电极部上蒸镀第二电极。
PCT/CN2017/109731 2017-11-07 2017-11-07 光波导、单光子源及光波导的制作方法 WO2019090477A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/109731 WO2019090477A1 (zh) 2017-11-07 2017-11-07 光波导、单光子源及光波导的制作方法
CN201780078477.3A CN110088910B (zh) 2017-11-07 2017-11-07 光波导、单光子源及光波导的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/109731 WO2019090477A1 (zh) 2017-11-07 2017-11-07 光波导、单光子源及光波导的制作方法

Publications (1)

Publication Number Publication Date
WO2019090477A1 true WO2019090477A1 (zh) 2019-05-16

Family

ID=66437447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109731 WO2019090477A1 (zh) 2017-11-07 2017-11-07 光波导、单光子源及光波导的制作方法

Country Status (2)

Country Link
CN (1) CN110088910B (zh)
WO (1) WO2019090477A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114354512A (zh) * 2021-12-14 2022-04-15 之江实验室 一种量子点薄膜光谱检测仪器及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2362261B (en) * 1999-11-16 2002-08-21 Toshiba Res Europ Ltd A photon source
US20020114367A1 (en) * 2000-09-22 2002-08-22 Andreas Stintz Quantum dot lasers
US7019333B1 (en) * 1999-11-16 2006-03-28 Kabushiki Kaisha Toshiba Photon source
GB2440850B (en) * 2004-12-03 2008-08-20 Toshiba Res Europ Ltd Method of operating a photon source
CN106299066A (zh) * 2016-08-31 2017-01-04 武汉光谷量子技术有限公司 一种量子点单光子源及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE197359T1 (de) * 1994-02-24 2000-11-15 British Telecomm Halbleitervorrichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2362261B (en) * 1999-11-16 2002-08-21 Toshiba Res Europ Ltd A photon source
US7019333B1 (en) * 1999-11-16 2006-03-28 Kabushiki Kaisha Toshiba Photon source
US20020114367A1 (en) * 2000-09-22 2002-08-22 Andreas Stintz Quantum dot lasers
GB2440850B (en) * 2004-12-03 2008-08-20 Toshiba Res Europ Ltd Method of operating a photon source
CN106299066A (zh) * 2016-08-31 2017-01-04 武汉光谷量子技术有限公司 一种量子点单光子源及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JHANG, YUAN-HSUAN ET AL.: "1.3-µm InAs/GaAs Quantum Dot Lasers on Silicon-on-Insulator Substrates by Metal-Stripe Bonding", 2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS-CLEO, 10 May 2015 (2015-05-10) - 31 December 2015 (2015-12-31), pages 1 - 2, XP033194626, DOI: 10.1364/CLEO_SI.2015.SW3F.4 *

Also Published As

Publication number Publication date
CN110088910A (zh) 2019-08-02
CN110088910B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
Zhou et al. High-efficiency shallow-etched grating on GaAs membranes for quantum photonic applications
JP5068256B2 (ja) ファイバ結合された単一光子源
JP5259842B2 (ja) 光素子
Elshaari et al. Deterministic integration of hBN emitter in silicon nitride photonic waveguide
CN115241731A (zh) 具有光束形状和光束方向修改的激光器
Zhang et al. InGaN light‐emitting diodes with indium‐tin‐oxide sub‐micron lenses patterned by nanosphere lithography
JP2018046258A (ja) 光集積回路装置及びその製造方法
WO2024114803A1 (zh) 光子晶体激光器及其制备方法
Srocka et al. Deterministically fabricated strain-tunable quantum dot single-photon sources emitting in the telecom O-band
CN112013975A (zh) 一种小型化的上转换单光子探测器
CN110854673B (zh) 基于片上集成波导与半导体纳米线的复合结构单纵模激光器
WO2019090477A1 (zh) 光波导、单光子源及光波导的制作方法
JP2003043274A (ja) 3次元フォトニック結晶およびその製造方法ならびにプローブ
JP2013048136A (ja) 光素子およびその製造方法
Seven et al. Graphene/Al2O3/Si Schottky diode with integrated waveguide on a silicon-on-insulator wafer
CN114883349A (zh) 一种金刚石光子集成电路制备方法
JP2018088456A (ja) 量子カスケード半導体レーザ
JPH05173036A (ja) 光導波路形成法
KR100679739B1 (ko) 광결정 발광다이오드의 제조방법
CN104466674B (zh) 基于光子晶体y波导的片上集成合束激光器及其制作方法
Zhang et al. A large misalignment tolerance multi-branch waveguide for high efficiency coupling
WO2020237423A1 (zh) 硅波导输出激光器
WO2022259484A1 (ja) 光導波路、量子演算装置及び光導波路の製造方法
WO2024013910A1 (ja) 光回路、量子演算装置及び光回路の製造方法
US20220317335A1 (en) Systems and methods for single-photon emission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931645

Country of ref document: EP

Kind code of ref document: A1