CN115340370B - 基于用后耐火材料的高铝质自流浇注料及其制备方法 - Google Patents

基于用后耐火材料的高铝质自流浇注料及其制备方法 Download PDF

Info

Publication number
CN115340370B
CN115340370B CN202210988319.4A CN202210988319A CN115340370B CN 115340370 B CN115340370 B CN 115340370B CN 202210988319 A CN202210988319 A CN 202210988319A CN 115340370 B CN115340370 B CN 115340370B
Authority
CN
China
Prior art keywords
alumina
equal
content
recycled
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210988319.4A
Other languages
English (en)
Other versions
CN115340370A (zh
Inventor
张华�
魏志鹏
吴沁晔
李远兵
李淑静
胡波
吴旻昊
徐娜娜
刘紫云
吴士敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jinnai New Material Technology Co ltd
Original Assignee
Jiangsu Jinnai New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Jinnai New Material Technology Co ltd filed Critical Jiangsu Jinnai New Material Technology Co ltd
Priority to CN202210988319.4A priority Critical patent/CN115340370B/zh
Publication of CN115340370A publication Critical patent/CN115340370A/zh
Application granted granted Critical
Publication of CN115340370B publication Critical patent/CN115340370B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/106Refractories from grain sized mixtures containing zirconium oxide or zircon (ZrSiO4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本申请涉及钢包用耐火材料的领域,具体公开一种基于用后耐火材料的高铝质自流浇注料,其由包含回收刚玉骨料、回收锆刚玉骨料、回收尖晶石细粉、氧化铝、萤石矿渣、可水合氧化铝、水、增塑剂、交联剂、回收高铝质纤维的原料制成,其中增塑剂为磷酸二氢铝、磷酸铝或勃姆石溶胶中的一种或两种及两种以上的组合;交联剂为硅酸钠、氟硅酸钠或硅溶胶中的一种或两种及两种以上的组合;本申请还公开了上述高铝质自流浇注料的制备方法,包括先混配骨料获得干料,再加入水、增塑剂、交联剂、回收高铝质纤维的步骤。本申请在使用回收料作为骨料的条件下,其产品性能与新料制品相当,可以取代新料制品,并兼具节能高效、绿色环保、成本低廉的效果。

Description

基于用后耐火材料的高铝质自流浇注料及其制备方法
技术领域
本申请涉及钢包用耐火材料的技术领域,尤其是涉及一种基于用后耐火材料的高铝质自流浇注料及其制备方法。
背景技术
自流浇注料是九十年代发展起来的一种新型耐火材料,其与普通浇注料相比不但继承了低水泥浇注料致密度高、具有良好耐火性能、抗侵蚀性能和耐磨性能等优点,且施工上不需要振动设备而能够自行流动,自行固化密实。其优良的耐高温性能和施工性能使其广泛地应用于多种工业窑炉,如加热炉、均热炉的整体浇注、回转窑冷却器及烧嘴部位等。
目前使用的自流浇注料由包括一定粒度的耐火骨料、粉料、分散剂和结合剂制成,其中骨料材质主要使用刚玉质、铬刚玉质、镁铝质等,而使用的结合剂以铝酸钙水泥为主(CN111960808A)。已有研究表明,自流浇注料中加入一定量的Al2O3和SiO2微粉能对自流浇注料的强度起到改性作用,但是作为结合剂的纯铝酸钙水泥一般含20%-30%的CaO,在高温下CaO可与材料中的Al2O3和SiO2发生反应,生成两个低熔点化合物钙长石(熔点约1553℃)和钙铝黄长石(熔点约1560℃),使浇注料在使用过程中出现烧结收缩的现象,降低材料的耐高温性能。此外,水泥中的CaO还会消耗原料中添加的Al2O3微粉,生成CaO·2Al2O3和CaO·6Al2O3等,如式(1)、式(2)所示。水泥的加入量越大,生成的CaO ·2Al2O3和CaO·6Al2O3越多。
CaO+6Al2O3=CaO·6Al2O3ΔG2=-17430-37.2T(J/mol)(2)
CaO+2Al2O3=CaO·2Al2O3ΔG3=-16400-26.8T(J/mol)(3)
同时,CaO·6Al2O3的生成过程伴随着体积膨胀,使浇注料在经过中、高温使用后,产生大量的结构缺陷,随之带来强度下降、使用寿命缩短的问题。
针对上述中的相关技术,发明人认为目前自流浇注料配方中的重要组分间存在相互干扰,导致自流耐火材料的强度、耐高温性能受到影响。
发明内容
为了改善目前自流浇注料配方中组分间的相互干扰对材料的强度、耐高温性能造成影响的问题,本申请的第一个目的在于提供一种基于用后耐火材料的高铝质自流浇注料,其基本实现了基于用后耐火材料的高铝质自流浇注料的无Ca化,优化了浇注料的高温使用性能,延长了使用寿命,并达到了对用后耐火材料进行二次利用的目的。
本申请的第二个目的在于提供一种制备基于用后耐火材料的高铝质自流浇注料的方法,其制备方法工艺简洁、操作简单、生产过程高效环保,且能够基于用后耐火材料稳定生产出质量合格的高铝质自流浇注料。
为实现上述第一个目的,本申请采用如下技术方案:
一种基于用后耐火材料的高铝质自流浇注料,其特征在于,所述自流浇注料由包含以下重量百分比的原料制成:
回收刚玉骨料35.0~42.0wt%
回收锆刚玉骨料25.0~34.0wt%
回收尖晶石细粉13.0~19.0wt%
氧化铝6.0~9.0wt%
萤石矿渣2.0~5.0wt%
可水合氧化铝1.5~4.5wt%
水4.5~6.5wt%
增塑剂3.5~4.5wt%
交联剂1.5~2.5wt%
回收高铝质纤维0.05~0.08wt%
其中,所述增塑剂为磷酸二氢铝、磷酸铝或勃姆石溶胶中的一种或两种及两种以上的组合;所述交联剂为硅酸钠、氟硅酸钠或硅溶胶中的一种或两种及两种以上的组合。
耐火材料在使用过程中不可避免地存在结构上的损伤,导致回收料性能有一定受损,因此回收的耐火材料骨料某些性能不如新料,但是耐火材料价格昂贵,存在很大的二次利用空间。发明人通过采用上述技术方案,利用可水合氧化铝取代传统水泥作为结合剂,可水合氧化铝的水解能够起到固相连接的作用,同时水合氧化铝中几乎没有Ca的存在,能够减少或消除组分间相互反应带来的问题,对用后耐火材料的强度和耐高温性能起到补足作用。同时,在上述技术方案中,增塑剂不仅起到辅助增粘的作用,且磷酸盐类作为增塑剂还能够在高温使用过程中与本申请筛选的含硅交联剂形成聚磷酸铝硅,产生新的陶瓷结合增强相,进一步优化基于用后耐火材料自流浇注料的强度。而增塑剂水解酸性有利于抑制可水合氧化铝的水解反应程度,因为可水合氧化铝过分水解容易形成过多的多孔、疏松结构,对本申请自流浇注料形成的产品的耐热性和强度都会产生不利影响。另外,在上述技术方案中,用后的高铝质纤维内部结构发生粉化,纤维长度变短,本申请发明人发现,将这种存在使用损坏的高铝质纤维加入本申请的上述配方中,回收高铝质纤维的粒子能够在微观上填充自流浇注料内的孔隙,起到固相侨联的作用,提高本申请自流浇注料的结构稳定性。同时回收高铝质纤维出现的结构上的一维堆积能够缓解本申请自流浇注料制品使用过程受到的热冲击,起到防爆作用。
实现方式还可以包括以下任何特征或全部特征。
所述可水合氧化铝的主要化学成分是:Al2O3含量≥64.5wt%,Na2O含量≤0.15wt%,IL≤18.9wt%。
所述可水合氧化铝的粒径小于0.074mm。
所述回收刚玉骨料的主要化学成分为:Al2O3含量≥97.5wt%,Na2O含量≤0.5wt%;所述回收刚玉骨料粒径介于8~5mm之间的颗粒占比30.0wt%~40.0wt%、粒径介于5~3mm之间的颗粒占比15.0wt%~25.0wt%、粒径介于3~1mm之间的颗粒占比10.0wt%~20.0wt%、粒径介于1~0.088mm之间的颗粒占比 5.0wt%~10.0wt%、粒径小于0.088mm的细粉占比18.0wt%~27.0wt%。
所述回收锆刚玉骨料的主要化学成分是:Al2O3含量≥87.0wt%,ZrO2含量≥9.0wt%,SiO2含量≤0.07wt%,Fe2O3含量≤0.1wt%;所述回收锆刚玉骨料粒径介于5~3mm之间的颗粒占比22.0wt%~32.0wt%、粒径介于3~1mm之间的颗粒占比30.0wt%~40.0wt%、粒径介于1~0.088mm之间的颗粒占比 18.0wt%~27.0wt%、粒径小于0.088mm的细粉占比10.0wt%~20.0wt%。
所述回收尖晶石细粉的主要化学成分是:MgO含量≥49.0wt%,Al2O3含量≥45.0wt%,SiO2含量≤3.5wt%,Fe2O3含量≤1.2wt%,IL≤0.2wt%;所述回收尖晶石细粉粒径介于1~0.088mm之间的颗粒占比28.0wt%~38.0wt%、粒径介于 0.088~0.045mm之间的颗粒占比47.0wt%~57.0wt%、粒径小于0.045mm的细粉占比10.0wt%~20.0wt%。
所述氧化铝为α氧化铝,所述α氧化铝的粒径≤0.5μm,所述α氧化铝的主要化学成分是:Al2O3含量≥99.2wt%,Na2O含量≤0.05wt%。
所述萤石矿渣的主要化学成分是:SiO2含量≥66.7wt%,Fe2O3含量≤ 16.5wt%,CaF2含量≤5.5wt%,所述萤石矿渣的粒径≤0.088mm。
通过上述技术方案中对可水合氧化铝、回收刚玉骨料、回收锆刚玉骨料、回收尖晶石细粉、α氧化铝及萤石矿渣主要化学成分的控制,尽可能的减少本申请自流浇注料中Ca的存在,从而减少各组分间发生反应对材料的强度和耐高温性能产生的不利影响。并且通过上述技术方案中对可水合氧化铝、回收刚玉骨料、回收锆刚玉骨料、回收尖晶石细粉、α氧化铝及萤石矿渣粒径的控制及多种粒径的组合使用,能够使本申请这些回收料组分粗、中、细及微粉互相搭配甚至发生嵌套,促使本申请自流浇注料尽可能维持在最紧密的堆积状态,这对本申请基于回收料的自流浇注料的强度和耐高温性能的提升十分有利。
所述回收高铝质纤维为用后硅酸铝纤维或用后氧化铝纤维中的一种或两种的组合。
为实现上述的第二个目的,本申请提供如下技术方案:
一种制备上述的基于用后耐火材料的高铝质自流浇注料的方法,具体操作步骤为,先将回收刚玉骨料、回收锆刚玉骨料、回收尖晶石细粉、氧化铝,萤石矿渣、可水合氧化铝混合均匀,再加入水、增塑剂、交联剂和回收高铝质纤维,混合均匀,得到基于用后耐火材料的高铝质自流浇注料。
通过上述简洁且易于操作的制备方法,能够稳定生产出质量合格的基于用后耐火材料的高铝质自流浇注料,且生产过程高效环保,能够适应工业化的大量生产。
综上所述,本申请提供了一种基于用后耐火材料的高铝质自流浇注料及其制备方法,具有以下有益效果:
本申请以回收的多种耐火材料为原料,并通过粒径搭配和化学手段对基于这些耐火材料制备的高铝质自流浇注料进行改性,尽可能地实现基于用后耐火材料的高铝质自流浇注料的无Ca化,减少原料组分间的相互不利反应,从而减小原料本身对产品性能的影响。而通过增塑剂和交联剂的选择,来促进原料组分间有利互作,最终使得本申请的高铝质自流浇注料在以回收料为主要骨料、以简洁工艺为制备方法的情况下,其产品110℃×24h烘后抗折强度可以达到13.5~15.1MPa,耐压强度可以达到72.2~79.6MPa,完全可以用来替代新料产品,在耐火材料自流浇注料领域具有节能、价廉而质优的效果,也拓展了一种新的用后耐火材料生产利用方向,具有环保价值。
具体实施方式
以下对本申请作进一步详细说明。
本申请首先公开一种基于用后耐火材料的高铝质自流浇注料,由包含以下重量百分比的原料制成:
回收刚玉骨料35.0~42.0wt%
回收锆刚玉骨料25.0~34.0wt%
回收尖晶石细粉13.0~19.0wt%
氧化铝6.0~9.0wt%
萤石矿渣2.0~5.0wt%
可水合氧化铝1.5~4.5wt%
水4.5~6.5wt%
增塑剂3.5~4.5wt%
交联剂1.5~2.5wt%
回收高铝质纤维0.05~0.08wt%
其中,所述回收刚玉骨料来源于废弃钢包无碳工作衬,选用主要化学成分为Al2O3含量≥97.5wt%,Na2O含量≤0.5wt%的回收刚玉骨料。回收刚玉骨料可以由两种及两种以上不同粒径大小的回收刚玉骨料混配而成,例如,粒径介于 8~5mm之间的颗粒占比30.0wt%~40.0wt%、粒径介于5~3mm之间的颗粒占比 15.0wt%~25.0wt%、粒径介于3~1mm之间的颗粒占比10.0wt%~20.0wt%、粒径介于1~0.088mm之间的颗粒占比5.0wt%~10.0wt%、粒径小于0.088mm的细粉占比18.0wt%~27.0wt%。
所述回收锆刚玉骨料来源于用后玻璃窑熔池工作衬,选用主要化学成分为 Al2O3含量≥87.0wt%,ZrO2含量≥9.0wt%,SiO2含量≤0.07wt%,Fe2O3含量≤0.1wt%的锆刚玉骨料。回收锆刚玉骨料可以由两种及两种以上不同粒径大小的回收锆刚玉骨料混配而成,例如,所述回收锆刚玉骨料粒径介于5~3mm之间的颗粒占比22.0wt%~32.0wt%、粒径介于3~1mm之间的颗粒占比30.0wt%~40.0wt%、粒径介于1~0.088mm之间的颗粒占比18.0wt%~27.0wt%、粒径小于0.088mm的细粉占比10.0wt%~20.0wt%。
所述回收尖晶石细粉为废弃钢包无碳工作衬破碎后筛选得到的,选用主要化学成分是:MgO含量≥49.0wt%,Al2O3含量≥45.0wt%,SiO2含量≤3.5wt%, Fe2O3含量≤1.2wt%,IL≤0.2wt%的尖晶石细粉。回收的尖晶石细粉可以由两种及两种以上不同粒径带下的回收尖晶石细粉混配而成,例如,回收尖晶石细粉粒径介于1~0.088mm之间的颗粒占比28.0wt%~38.0wt%、粒径介于0.088~0.045mm 之间的颗粒占比47.0wt%~57.0wt%、粒径小于0.045mm的细粉占比10.0 wt%~20.0wt%。
回收高铝质纤维为用后硅酸铝纤维或用后氧化铝纤维或用后硅酸铝纤维和用后氧化铝纤维的组合物。
回收刚玉骨料、回收锆刚玉骨料、回收尖晶石细粉、回收高铝质纤维通过用后材料的配合来替代板状刚玉、白刚玉或者棕刚玉等新料,能够有效缓解能源压力,具有绿色环保的优点,使用回收尖晶石细粉替代传统的镁砂,能够减少水化所形成的基质缺陷。
所述萤石矿渣为天然萤石选矿后破碎得到的,所述萤石矿渣的粒径≤ 0.088mm均可使用,所述萤石矿渣的主要化学成分是:SiO2含量≥66.7wt%,Fe2O3含量≤16.5wt%,CaF2含量≤5.5wt%。
所述氧化铝采用α-氧化铝,所述α氧化铝的粒径≤0.5μm均可使用,所述α氧化铝的主要化学成分是:Al2O3含量≥99.2wt%,Na2O含量≤0.05wt%。
所述增塑剂为磷酸二氢铝、磷酸铝或勃姆石溶胶中的一种或两种及两种以上的组合。所述交联剂为硅酸钠、氟硅酸钠或硅溶胶中的一种或两种及两种以上的组合。其中磷酸二氢铝、磷酸铝和勃姆石水解后的酸性还有利于抑制基质中可水合氧化铝的水解,且磷酸二氢铝、磷酸铝中的磷酸可以在高温使用过程中与交联剂反应形成聚磷酸铝硅,形成新的陶瓷结合增强相,起到进一步优化基质结合强度的效果。
本申请其次提供一种制备上述的基于用后耐火材料的高铝质自流浇注料的方法,主要包括以下步骤:
(1)将称量的35.0~42.0wt%的回收刚玉骨料、25.0~34.0wt%的回收锆刚玉骨料、13.0~19.0wt%的回收尖晶石细粉、6.0~9.0wt%的氧化铝,2.0~5.0wt%的萤石矿渣、1.5~4.5wt%的可水合氧化铝混合均匀,得到干料;
(2)向(1)中的干料中依次加入4.5~6.5wt%的水、3.5~4.5wt%的增塑剂、 1.5~2.5wt%的交联剂和0.05~0.08wt%的回收高铝质纤维,混合均匀,得到基于用后耐火材料的高铝质自流浇注料。
本申请制备的基于用后耐火材料的高铝质自流浇注料可用于在模具中进行浇筑施工,生产耐火材料制品。在生产中,步骤(1)和步骤(2)可连续进行,并在规定时间内完成浇筑施工;也可先完成步骤(1)得到干料并包装,待浇筑施工时,在现场完成步骤(2),并在规定时间内完成浇筑施工。
以下结合具体实施例对本申请做进一步地详细说明。
实施例1:
一种基于用后耐火材料的高铝质自流浇注料的制备方法,包括以下步骤:
(1)备料:
准备回收刚玉骨料,回收刚玉骨料的主要化学成分是:Al2O3含量=97.5wt%,Na2O含量=0.5wt%,回收刚玉骨料粒径介于8~5mm之间的颗粒占比35.0wt%、粒径介于5~3mm之间的颗粒占比19.0wt%、粒径介于3~1mm之间的颗粒占比 16.0wt%、粒径介于1~0.088mm之间的颗粒占比8.0wt%、粒径小于0.088mm的细粉占比22.0wt%;
准备回收锆刚玉骨料,回收锆刚玉骨料的主要化学成分是:Al2O3含量=87.0wt%,ZrO2含量=9.0wt%,SiO2含量=0.07wt%,Fe2O3含量=0.1wt%,回收锆刚玉骨料粒径介于5~3mm之间的颗粒占比27.0wt%、粒径介于3~1mm之间的颗粒占比35.0wt%、粒径介于1~0.088mm之间的颗粒占比22.0wt%、粒径小于 0.088mm的细粉占比16.0wt%;
准备回收尖晶石细粉,回收尖晶石细粉的主要化学成分是:MgO含量=49.0wt%,Al2O3含量=45.0wt%,SiO2含量=.5wt%,Fe2O3含量=1.2wt%, IL=0.2wt%,回收尖晶石细粉粒径介于1~0.088mm之间的颗粒占比33.0wt%、粒径介于0.088~0.045mm之间的颗粒占比52.0wt%、粒径小于0.045mm的细粉占比15.0wt%;
准备α氧化铝,α氧化铝的主要化学成分是:Al2O3含量=99.2wt%,Na2O 含量=0.05wt%,α氧化铝的粒径=0.5μm;
准备萤石矿渣,萤石矿渣的主要化学成分是:SiO2含量=36.7wt%,CaF2含量=35.5wt%,Fe2O3含量=16.5wt%,萤石矿渣粒径=0.088mm;
准备可水合氧化铝,可水合氧化铝的主要化学成分是:Al2O3含量=64.5wt%,Na2O含量=0.15wt%,IL=18.9wt%可水合氧化铝的粒径=0.074mm;
(2)制备干料:
将步骤(1)准备的35.0wt%的回收刚玉骨料,30.45wt%的回收锆刚玉骨料,13.0wt%的回收尖晶石细粉,6.0wt%的α氧化铝,2.0wt%的萤石矿渣,4.0wt%的可水合氧化铝混合均匀,得到干料;
(3)制备浇注料:
向步骤(2)得到的干料中依次加4.5wt%的水、3.5wt%的磷酸二氢铝、1.5wt%的硅酸钠和0.05wt%的用后硅酸铝纤维,混合均匀,得到基于用后耐火材料的高铝质自流浇注料。
实施例2:
(1)备料
本实施例中所准备的回收刚玉骨料、回收锆刚玉骨料、回收尖晶石细粉、α氧化铝、萤石矿渣、可水合氧化铝与实施例1中步骤(1)所备料完全相同;
(2)制备干料:
将步骤(1)准备的32.5wt%的回收刚玉骨料和26wt%的回收锆刚玉骨料,17.45wt%的回收尖晶石细粉,6.0wt%的α氧化铝,4.0wt%的萤石矿渣,3.5wt%的可水合氧化铝混合均匀,得到干料;
(3)制备浇注料
向步骤(2)得到的干料中依次加5.0wt%的水、4.0wt%的磷酸铝、1.5wt%的氟硅酸钠和0.05wt%的用后氧化铝纤维,混合均匀,得到基于用后耐火材料的高铝质自流浇注料。
实施例3:
(1)备料
本实施例中所准备的回收刚玉骨料、回收锆刚玉骨料、回收尖晶石细粉、α氧化铝、萤石矿渣、可水合氧化铝与实施例1中步骤(1)所备料完全相同;
(2)制备干料:
将步骤(1)准备的38.0wt%的回收刚玉骨料和28.45wt%的回收锆刚玉骨料,13.0wt%的回收尖晶石细粉,6.0wt%的α氧化铝,2.0wt%的萤石矿渣,3.0wt%的可水合氧化铝混合均匀,得到干料;
(3)制备浇注料
向步骤(2)得到的干料中依次加4.5wt%的水、3.5wt%的勃姆石溶胶、1.5wt%的硅溶胶和0.05wt%的用后硅酸铝纤维,混合均匀,得到基于用后耐火材料的高铝质自流浇注料。
实施例4:
(1)备料
本实施例中所准备的回收刚玉骨料、回收锆刚玉骨料、回收尖晶石细粉、α氧化铝、萤石矿渣、可水合氧化铝与实施例1中步骤(1)所备料完全相同;
(2)制备干料:
将步骤(1)准备的41.45wt%的回收刚玉骨料和25.0wt%的回收锆刚玉骨料,13.0wt%的回收尖晶石细粉,6.0wt%的α氧化铝,2.0wt%的萤石矿渣,2.0wt%的可水合氧化铝混合均匀,得到干料;
(3)制备浇注料
向步骤(2)得到的干料中依次加4.5wt%的水、4.5wt%的勃姆石溶胶、1.5wt%的硅溶胶和0.05wt%的用后氧化铝纤维,混合均匀,得到基于用后耐火材料的高铝质自流浇注料。
实施例5:
(1)备料
本实施例中所准备的回收刚玉骨料、回收锆刚玉骨料、回收尖晶石细粉、α氧化铝、萤石矿渣、可水合氧化铝与实施例1中步骤(1)所备料完全相同;
(2)制备干料:
将步骤(1)准备的41.45wt%的回收刚玉骨料和25.0wt%的回收锆刚玉骨料,13.0wt%的回收尖晶石细粉,6.0wt%的α氧化铝,2.0wt%的萤石矿渣,2.5wt%的可水合氧化铝混合均匀,得到干料;
(3)制备浇注料
向步骤(2)得到的干料中依次加5.0wt%的水、3.5wt%的磷酸二氢铝、1.5wt%的氟硅酸钠和0.05wt%的用后氧化铝纤维,混合均匀,得到基于用后耐火材料的高铝质自流浇注料。
性能检测试验:
依照YB/T 4197-2009中的规定,将实施例1-5获得的基于用后耐火材料的高铝质自流浇注料制备为230mm×114mm×65mm的试样,并依照YB/T 4197-2009中的规定对上述试样1-5进行抗折强度(MPa)测试;
依照YB/T 4197-2009中的规定,将实施例1-5获得的基于用后耐火材料的高铝质自流浇注料分别制备为直径50mm,高50mm的试样,并依照YB/T 4197-2009中的规定对上述试样1-5进行耐压强度(MPa)测试;
依照YB/T 376.1-1995中的规定,将实施例1-5获得的基于用后耐火材料的高铝质自流浇注料分别制备为所要求的试样,并参照YB/T 376.1-1995中的规定将试样1100℃抗热震性能测试20次后,记录试样的强度保留率(%)。
本申请基于用后耐火材料的高铝质自流浇注料的抗折强度(MPa)、耐压强度(MPa)、抗热震性能(%)检测结果如表1所示。
表1
Figure 1
以上均为本申请的较佳实施例,并非依此限制本申请的保护范围,故:凡依本申请的结构、形状、原理所做的等效变化,均应涵盖于本申请的保护范围之内。

Claims (10)

1.一种基于用后耐火材料的高铝质自流浇注料,其特征在于,所述自流浇注料由包含以下重量百分比的原料制成:
回收刚玉骨料35.0~42.0 wt %
回收锆刚玉骨料25.0~34.0 wt %
回收尖晶石细粉13.0~19.0 wt %
氧化铝 6.0~9.0 wt %
萤石矿渣2.0~5.0 wt %
可水合氧化铝1.5~4.5 wt %
水4.5~6.5 wt %
增塑剂3.5~4.5 wt %
交联剂1.5~2.5 wt %
回收高铝质纤维0.05~0.08 wt %
其中,所述增塑剂为磷酸二氢铝、磷酸铝或勃姆石溶胶中的一种或两种及两种以上的组合;
所述交联剂为硅酸钠、氟硅酸钠或硅溶胶中的一种或两种及两种以上的组合;
以上组分含量之和为100%。
2.根据权利要求1所述的基于用后耐火材料的高铝质自流浇注料,其特征在于,所述可水合氧化铝的主要化学成分是:Al2O3含量≥64.5wt%,Na2O含量≤0.15wt%,IL≤18.9wt%。
3.根据权利要求2所述的基于用后耐火材料的高铝质自流浇注料,其特征在于,所述可水合氧化铝的粒径≤0.074mm。
4.根据权利要求3所述的基于用后耐火材料的高铝质自流浇注料,其特征在于,所述回收刚玉骨料的主要化学成分为:Al2O3含量≥97.5wt%,Na2O含量≤0.5wt%;
所述回收刚玉骨料粒径介于8~5mm之间的颗粒占比30.0wt%~40.0wt%、粒径介于5~3mm之间的颗粒占比15.0wt%~25.0wt%、粒径介于3~1mm之间的颗粒占比10.0wt%~20.0wt%、粒径介于1~0.088mm之间的颗粒占比5.0wt%~10.0wt%、粒径小于0.088mm的细粉占比18.0wt%~27.0wt%。
5.根据权利要求4所述的基于用后耐火材料的高铝质自流浇注料,其特征在于,所述回收锆刚玉骨料的主要化学成分是:Al2O3含量≥87.0wt%,ZrO2含量≥9.0wt%,SiO2含量≤0.07wt%,Fe2O3含量≤0.1wt%;
所述回收锆刚玉骨料粒径介于5~3mm之间的颗粒占比22.0wt%~32.0wt%、粒径介于3~1mm之间的颗粒占比30.0wt%~40.0wt%、粒径介于1~0.088mm之间的颗粒占比18.0wt%~27.0wt%、粒径小于0.088mm的细粉占比10.0wt%~20.0wt%。
6.根据权利要求5所述的基于用后耐火材料的高铝质自流浇注料,其特征在于,所述回收尖晶石细粉的主要化学成分是:MgO含量≥49.0wt%,Al2O3含量≥45.0wt%,SiO2含量≤3.5wt%,Fe2O3含量≤1.2wt%,IL≤0.2wt%;
所述回收尖晶石细粉粒径介于1~0.088mm之间的颗粒占比28.0 wt%~38.0wt%、粒径介于0.088~0.045mm之间的颗粒占比47.0 wt%~57.0wt%、粒径小于0.045mm的细粉占比10.0wt%~20.0wt%。
7.根据权利要求6所述的基于用后耐火材料的高铝质自流浇注料,其特征在于,所述氧化铝为α氧化铝,所述α氧化铝的粒径≤0.5μm,所述α氧化铝的主要化学成分是:Al2O3含量≥99.2wt%,Na2O含量≤0.05wt%。
8.根据权利要求7所述的基于用后耐火材料的高铝质自流浇注料,其特征在于,所述萤石矿渣的主要化学成分是:SiO2含量≥66.7wt%,Fe2O3含量≤16.5wt%,CaF2含量≤5.5wt%,所述萤石矿渣的粒径≤0.088mm。
9.根据权利要求1所述的基于用后耐火材料的高铝质自流浇注料,其特征在于,所述回收高铝质纤维为用后硅酸铝纤维或用后氧化铝纤维中的一种或两种的组合。
10.一种制备权利要求1-9任一项所述的基于用后耐火材料的高铝质自流浇注料的方法,其特征在于,先将回收刚玉骨料、回收锆刚玉骨料、回收尖晶石细粉、氧化铝,萤石矿渣、可水合氧化铝混合均匀,再加入水、增塑剂、交联剂和回收高铝质纤维,混合均匀,得到基于用后耐火材料的高铝质自流浇注料。
CN202210988319.4A 2022-08-17 2022-08-17 基于用后耐火材料的高铝质自流浇注料及其制备方法 Active CN115340370B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210988319.4A CN115340370B (zh) 2022-08-17 2022-08-17 基于用后耐火材料的高铝质自流浇注料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210988319.4A CN115340370B (zh) 2022-08-17 2022-08-17 基于用后耐火材料的高铝质自流浇注料及其制备方法

Publications (2)

Publication Number Publication Date
CN115340370A CN115340370A (zh) 2022-11-15
CN115340370B true CN115340370B (zh) 2023-07-04

Family

ID=83951716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210988319.4A Active CN115340370B (zh) 2022-08-17 2022-08-17 基于用后耐火材料的高铝质自流浇注料及其制备方法

Country Status (1)

Country Link
CN (1) CN115340370B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115650747B (zh) * 2022-11-16 2023-12-15 鞍山钢铁冶金炉材科技有限公司 一种镁铁铝尖晶石质钢包包壁喷补料及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102503460B (zh) * 2011-10-12 2014-06-04 瑞泰科技股份有限公司 一种采用复合促硬剂的磷酸盐结合浇注料
CN102718512B (zh) * 2012-06-28 2014-07-02 洛阳利尔耐火材料有限公司 一种抗热震刚玉-尖晶石质耐火浇注料及其制备方法
CN105565830B (zh) * 2015-12-14 2018-12-04 武汉钢铁集团耐火材料有限责任公司 复合材质rh精炼炉浸渍管外包体及其成型工艺
CN112159214B (zh) * 2020-09-07 2022-08-23 湛江自立高温材料有限公司 用于精炼钢包工作层的浇注料
CN114031377A (zh) * 2021-09-26 2022-02-11 武汉如星科技有限公司 一种无碳钢包用无水泥结合喷补料及其制备方法
CN113943167B (zh) * 2021-12-02 2022-12-27 湖南湘钢瑞泰科技有限公司 一种rh浸渍管浇注料及其制备方法
CN114736025A (zh) * 2022-03-18 2022-07-12 昆明理工大学 一种利用回收碳纤维提高耐火浇注料强度的方法

Also Published As

Publication number Publication date
CN115340370A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
Lee et al. Castable refractory concretes
US4331773A (en) Refractory composition
US7943541B2 (en) Sintered refractory product exhibiting enhanced thermal shock resistance
EP1955987B1 (en) Refractory brick
CA2691078C (en) Azs refractory composition
US8980775B2 (en) Powder for glass-ceramic dry refractory material
JP2549450B2 (ja) 単斜晶系ジルコニアを含有する新規な耐火性組成物ならびに改善された高温時機械的強度および改善された熱衝撃抵抗性を示す上記組成物から形成された物品
CN101805198B (zh) 莫来石钢纤维浇注料
CN109734462B (zh) 磷酸二氢铝结合钢纤维增强耐火浇注料及制备方法
CN114195529B (zh) 精炼钢包用高强镁质耐火泥
CN115340370B (zh) 基于用后耐火材料的高铝质自流浇注料及其制备方法
CN103011851A (zh) 莫硅刚玉耐磨砖及制备方法
JP2002241182A (ja) 不定形耐火組成物
SK12592000A3 (sk) Zásaditá voľne tečúca odlievacia hmota a z nej zhotovené tvarovky
CN102992787A (zh) 冶炼窑炉内衬层专用氧化锆耐火砖
Sornlar et al. Characterization of alumina crucible made from aluminum industrial waste
CN104909773A (zh) 含复合添加剂的铝酸钙水泥结合铝镁质浇注料及其制备方法
WO2001090030A1 (en) Insulating raw material for high temperature applications
EP3421571A1 (en) Precast-block refractory for coke oven
JP2002234776A (ja) 溶鋼取鍋用不定形耐火組成物
CN113149669A (zh) 一种以用后耐火材料为原料的镁质结合剂及其应用
RU2140407C1 (ru) Огнеупорная бетонная смесь
Kumar et al. Study on preformed and in situ spinel containing alumina castable for steel ladle: Effect of fume silica content
JPH02133359A (ja) 高強度セメント組成物及び高強度セメント硬化体の製造方法
JPH06345550A (ja) キャスタブル耐火物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant