CN115332624A - 热稳定、超薄轻质、阻燃peo基固态电解质的制备方法 - Google Patents

热稳定、超薄轻质、阻燃peo基固态电解质的制备方法 Download PDF

Info

Publication number
CN115332624A
CN115332624A CN202211250182.9A CN202211250182A CN115332624A CN 115332624 A CN115332624 A CN 115332624A CN 202211250182 A CN202211250182 A CN 202211250182A CN 115332624 A CN115332624 A CN 115332624A
Authority
CN
China
Prior art keywords
peo
based solid
solid electrolyte
mof
pan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211250182.9A
Other languages
English (en)
Other versions
CN115332624B (zh
Inventor
马越
王田雨
张敏
刘婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Ruizhi New Energy Technology Co ltd
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202211250182.9A priority Critical patent/CN115332624B/zh
Publication of CN115332624A publication Critical patent/CN115332624A/zh
Application granted granted Critical
Publication of CN115332624B publication Critical patent/CN115332624B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/43Acrylonitrile series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0011Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0061Organic fillers or organic fibrous fillers, e.g. ground leather waste, wood bark, cork powder, vegetable flour; Other organic compounding ingredients; Post-treatment with organic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/007Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by mechanical or physical treatments
    • D06N3/0077Embossing; Pressing of the surface; Tumbling and crumbling; Cracking; Cooling; Heating, e.g. mirror finish
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2205/00Condition, form or state of the materials
    • D06N2205/10Particulate form, e.g. powder, granule
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/06Properties of the materials having thermal properties
    • D06N2209/067Flame resistant, fire resistant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

本发明公开了一种热稳定、超薄轻质、阻燃PEO基固态电解质的制备方法,包括以下步骤:利用静电纺丝制备刚性PAN支撑层‑活化MOF材料,而后去除其微孔内的客体分子‑合成负载阻燃剂的MOF@FR改性填料‑将一定配比的PEO与NaTFSI以及MOF@FR在乙腈中进行混合搅拌,得到PEO基固态电解质的浆料‑将PEO基固态电解质的浆料涂覆在PAN支撑层的两面并烘干,得到PAN支撑膜‑热压。本发明采用上述方法,通过具有多重功能的改性核壳MOF填料来提高PEO基固态聚合物电解质的电化学性能和阻燃性,并以具有优异机械性能和高温热稳定性的静电纺丝PAN膜作为支撑层提高机械韧性,在实现阻燃性能、优异的机械性能和电化学性能的同时,具有超薄的厚度,有利于钠电池高能量密度的实现。

Description

热稳定、超薄轻质、阻燃PEO基固态电解质的制备方法
技术领域
本发明涉及一种钠电池固态电解质材料技术,尤其涉及一种热稳定、超薄轻质、阻燃PEO基固态电解质的制备方法。
背景技术
目前,锂电体系已经运用到生活中的各个方面。由于全球锂资源的有限性,且我国目前还没有大规模的锂矿,所以对国内企业来说锂资源算是一种稀缺资源。同时由于钠电池钠储量远过于锂,生产成本低(比锂电池体系成本下降30%-40%左右)以及与锂电池工作原理类似等优点被认为是锂电池体系的替代产品。
为了构建高比能电池体系,我们希望电池正极电位尽可能高,负极电位尽可能低。基于此直接使用钠金属(低还原电位-2.71 V)作为负极的钠金属电池最高理论比容量可达1165 mAh/g。因此钠金属电池是实现高比能电池,解决锂电池资源缺陷和价格上涨的新型策略。
但是目前钠金属电池所面临的挑战主要是金属钠与液态电解液非常容易发生不可逆的化学反应,从而降低电池的循环稳定性,以及有机电解液由于热失控引发的易泄露、易燃、易爆等安全性问题。
目前已有多种钠电池用固态电解质被开发解决此类问题。比如采用固态电解质。与易燃、易挥发的液体电解质相比,固态电解质的安全性得到明显提升,并保护金属阳极组件,从而使电池的更高理论能量密度和运行可靠性朝着更广泛的应用范围发展。其中在所有的固态电解质中,PEO基固态聚合物电解质因其具有的优异的碱金属盐溶解性、易加工和低成本等优点被认为具有很大的发展潜力。
但是固态电解质仍然存在安全隐患,尤其是针对聚合物电解质而言。PEO是一种典型的易燃聚合物,本身极易燃烧,在热失控条件下会释放大量的热量,进一步增加电池爆炸的风险,这使其应用到电池中非常致命。阻燃剂(FR)直接添加是提高合成聚合物防火安全性的常用方法。然而阻燃剂与金属阳极的不相容性,以及对相应复合材料热稳定性和力学性能的恶化。这使得设计防火安全的聚合物电解质仍然是一个挑战。
即如何在不影响电化学性能的同时提升钠电池用PEO基固态电解质的阻燃性能亟待解决。
发明内容
本发明公开了一种含有阻燃剂的核壳结构的MOF颗粒(MOF微孔内灌入阻燃剂DMMP)作为阻燃性无机填料,辅以热稳定性的静电纺丝聚丙烯腈(PAN)膜作为支撑层的超薄、轻质、高机械强度PEO基固态电解质的制备方法。解决了传统固态电解质的安全性虽然得到了提升,但是仍然存在安全隐患,尤其是针对固态聚合物电解质而言,因为聚合物基底(如PEO)是极易燃烧的,在电池热失控时释放出大量的热量同样会剧烈燃烧甚至爆炸的问题。
为实现上述目的,本发明提供了一种热稳定、超薄轻质、阻燃PEO基固态电解质的制备方法,包括以下步骤:
步骤1、利用静电纺丝制备刚性PAN支撑层;
步骤2、活化MOF材料,而后去除其微孔内的客体分子;
步骤3、基于步骤2制备的活化后的MOF材料,合成负载阻燃剂的MOF@FR改性填料;
步骤4、将一定配比的PEO与NaTFSI以及MOF@FR在乙腈中进行混合搅拌,得到PEO基固态电解质的浆料;
步骤5、将PEO基固态电解质的浆料通过涂覆机涂覆在PAN支撑层的两面并烘干,得到PAN支撑膜;
步骤6、将烘干的PEO基固态电解质热压。
优选的,所述步骤1具体包括以下步骤:
步骤1.1、将PAN粉末置于60 ℃真空环境下干燥12 h;
步骤1.2、称取1 g 干燥后的PAN粉末溶于N,N-二甲基甲酰胺中,配制质量分数为10%的溶液;
步骤1.3、在室温环境下搅拌1.5 h后完全溶解,获得静电纺丝前驱液;
步骤1.4、通过控制静电纺丝工艺参数纺出纤维尺寸均一的PAN膜;
步骤1.5、将制备的PAN膜于真空烘箱中并于100 ℃条件下真空干燥24 h,去除残留溶剂及水分。
优选的,所述步骤1.4中的静电纺丝工艺参数为:高压电15 KV,低压电-2 KV,喷头流速0.1 mm/min,接收器的转速600 r/min,喷头与接收器距离15 cm,平移距离200 cm。
优选的,所述步骤2具体包括以下步骤:
通过水热法合成的MOF材料置于真空烘箱中并于170 ℃条件下真空干燥5 h,去除MOF微孔内的客体分子。
优选的,所述客体分子包括残留有机溶剂及空气中的水分。
优选的,所述步骤3具体包括以下步骤:
步骤3.1、将活化后的MOF粉末完全浸入甲基膦酸二甲酯溶剂中3天,在此过程中,每隔12 h更换一次甲基膦酸二甲酯溶剂,确保最大量的甲基膦酸二甲酯填充MOF的孔隙;
步骤3.2、用甲醇快速清洗粉末,去除附着在MOF颗粒表面的甲基膦酸二甲酯;
步骤3.3、在室温下干燥。
优选的,所述步骤4中的MOF@FR的占比为的30%,PEO和NaTFSI的配比为[EO/Na+]=15:1,搅拌时间为10小时。
优选的,所述步骤5中PAN支撑膜的厚度为10-20 μm,PEO基固态电解质的浆料的涂覆刻度为15-35μm。
优选的,所述步骤5中烘干过程为先置于室温下12h,然后置于真空烘箱中并于60℃条件下烘干12h。
优选的,所述步骤6中热压压力为50 MPa, 热压温度为65℃,热压时间为10-30min。
因此,本发明采用上述方法具有以下有益效果:
1、将阻燃剂封装在保护性MOF孔道内,防止了阻燃剂直接溶解在电解质中对电解质电化学性能和机械性能产生负面影响。在电池的热失控过程中,由于温度的升高,填料内部阻燃剂溢出,有效抑制高可燃电解质的燃烧。
2、热稳定性的静电纺丝PAN框架使聚合物电解质薄层的形成在机械强度(MPa)下得到数量级的改善,使得聚合物电解质薄膜表现出出色的抑制钠枝晶生长的能力。
即使用改用核壳结构的MOF@FR填料,并以静电纺丝PAN膜作为支撑层,制备热稳定性、超薄、轻质的阻燃PEO基固态电解质,提升阻燃性的同时避免阻燃剂对电解质机械性能和电化学性能的负面作用,并且使所组装的电池具有高的倍率性能及高的循环性能,有利于钠电池高能量密度的实现。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明的实施例1的TEM图;
图2为本发明的实施例1的SEM图;
图3为本发明的实施例1的FTIR图;
图4为本发明的实施例1的TG图;
图5为本发明的实施例1的DTG图;
图6为本发明的实施例1的XRD图;
图7为本发明的实施例1与对比例1和对比例2中制备的 PEO基固态电解质的微型量热仪测试对比图;
图8为本发明实施例1、对比例2中制备的PEO基固态电解质的点燃测试对比图;
图9为本发明实施例1、对比例1、对比例2中制备的PEO基固态电解质的SEM对比图;
图10为本发明实施例1、对比例1、对比例2中制备的PEO基固态电解质的应力应变曲线对比图;
图11为本发明实施例1、对比例1、对比例2中制备的PEO基固态电解质的临界电流密度对比图;
图12为本发明实施例1、对比例1、对比例2中制备的PEO基固态电解质的离子电导率对比图;
图13为本发明实施例1制备的PEO基固态电解质的钠离子迁移数变化图;
图14为本发明对比例1制备的PEO基固态电解质的钠离子迁移数变化图;
图15为本发明实施例1、对比例1和对比例2中制备的 PEO基固态电解质循环曲线对比图;
图16为本发明实施例1、对比例1和对比例2中制备的PEO基固态电解质的倍率性能对比图。
具体实施方式
以下将结合附图对本发明作进一步的描述,需要说明的是,本实施例以本技术方案为前提,给出了详细的实施方式和具体的操作过程,但本发明的保护范围并不限于本实施例。
图1为本发明的实施例一种的结构示意图,如图1所示,本发明包括以下步骤:
步骤1、利用静电纺丝制备刚性PAN支撑层;
优选的,所述步骤1具体包括以下步骤:
步骤1.1、将PAN粉末置于60 ℃真空环境下干燥12 h;
步骤1.2、称取1 g 干燥后的PAN粉末溶于N,N-二甲基甲酰胺中(DMF),配制质量分数为10%的溶液;
步骤1.3、在室温环境下搅拌1.5 h后完全溶解,获得静电纺丝前驱液;
步骤1.4、通过控制静电纺丝工艺参数纺出纤维尺寸均一的PAN膜;
步骤1.5、将制备的PAN膜于真空烘箱中并于100 ℃条件下真空干燥24 h,去除残留溶剂及水分。
优选的,所述步骤1.4中的静电纺丝工艺参数为:高压电15 KV,低压电-2 KV,喷头流速0.1 mm/min,接收器的转速600 r/min,喷头与接收器距离15 cm,平移距离200 cm。
步骤2、活化MOF材料,而后去除其微孔内的客体分子;
优选的,所述步骤2具体包括以下步骤:
通过水热法合成的MOF材料(HKUST-1)置于真空烘箱中并于170 ℃条件下真空干燥5 h,去除MOF微孔内的客体分子。优选的,所述客体分子包括残留有机溶剂及空气中的水分。
步骤3、基于步骤2制备的活化后的MOF材料,合成负载阻燃剂的MOF@FR改性填料;
优选的,所述步骤3具体包括以下步骤:
步骤3.1、将活化后的MOF粉末完全浸入甲基膦酸二甲酯溶剂(DMMP)中3天,在此过程中,每隔12 h更换一次甲基膦酸二甲酯溶剂,确保最大量的甲基膦酸二甲酯填充MOF的孔隙;
步骤3.2、用甲醇快速清洗粉末,去除附着在MOF颗粒表面的甲基膦酸二甲酯;
步骤3.3、在室温下干燥。
步骤4、将一定配比的PEO与NaTFSI以及MOF@FR在乙腈中进行混合搅拌,得到PEO基固态电解质的浆料;
优选的,所述步骤4中的MOF@FR(HKUST-1@DMMP)的占比为的30%,PEO和NaTFSI的配比为[EO/Na+]=15:1,搅拌时间为10小时。
步骤5、将PEO基固态电解质的浆料通过涂覆机涂覆在PAN支撑层的两面并烘干,得到PAN支撑膜;
优选的,所述步骤5中PAN支撑膜的厚度为10-20 μm,PEO基固态电解质的浆料的涂覆刻度为15-35μm。且所述步骤5中烘干过程为先置于室温下12h,然后置于真空烘箱中并于60℃条件下烘干12h。
步骤6、将烘干的PEO基固态电解质热压。
优选的,所述步骤6中热压压力为50 MPa, 热压温度为65℃,热压时间为 10-30min。
为进一步说明提供以下实施例和对比例:
实施例1公开了以下制备方法:
步骤1、将1 g PAN(已真空干燥)溶于N,N-二甲基甲酰胺(DMF)中配制质量分数为10%的溶液,在室温搅拌1.5 h后完全溶解,获得静电纺丝前驱液。通过控制静电纺丝工艺参数(高压电:15 KV,低压电:-2 KV,喷头流速:0.1 mm/min,接收器的转速:600 r/min,喷头与接收器距离15 cm,平移距离:200 cm)纺出纤维尺寸均一的PAN膜。随后,将制备的PAN膜于真空烘箱中100 ℃真空干燥24 h,去除残留溶剂及水分;
步骤2、通过水热法合成的MOF材料(HKUST-1)于真空烘箱中170 ℃ 真空干燥5 h,去除MOF微孔内客体分子(客体分子包括残留有机溶剂及空气中的水分);
步骤3、将活化后的MOF粉末浸入甲基膦酸二甲酯(DMMP)中3天,每隔12 h更换一次DMMP溶剂,确保最大量的DMMP填充MOF的孔隙。然后,用甲醇快速清洗粉末,去除附着在颗粒表面的DMMP,并在室温下干燥;
步骤4、将500 mg PEO与245 mg NaTFSI、214 mg MOF@FR在乙腈中进行混合搅拌,得到PEO基固态电解质的浆料;搅拌时间为10小时;
步骤5、将PEO基固态电解质的浆料通过涂覆机涂敷在静电纺丝PAN框架两面并烘干;PAN支撑膜的厚度为10-20 μm;PEO基固态电解质的浆料的涂覆刻度为15-35μm;烘干过程为先室温12小时,然后真空烘箱60度12小时;
步骤6、将烘干的PEO基固态电解质热压;热压压力为50 MPa, 热压温度为65度,热压时间为 15 min。
对比例1
步骤1、将500 mg PEO与245 mg NaTFSI在乙腈中进行混合搅拌,得到PEO基固态电解质的浆料;搅拌时间为10小时;
步骤2、将得到PEO基固态电解质的浆料浇筑到聚四氟乙烯的模具上,室温烘干12小时,真空60度烘干12小时;
对比例2
步骤1、将1 g PAN(已真空干燥)溶于N,N-二甲基甲酰胺(DMF)中配制质量分数为10%的溶液,在室温搅拌1.5 h后完全溶解,获得静电纺丝前驱液。通过控制静电纺丝工艺参数(高压电:15 KV,低压电:-2 KV,喷头流速:0.1 mm/min,接收器的转速:600 r/min,喷头与接收器距离15 cm,平移距离:200 cm)纺出纤维尺寸均一的PAN膜。随后,将制备的PAN膜于真空烘箱中100 ℃真空干燥24 h,去除残留溶剂及水分;
步骤2、将500 mg PEO与245 mg NaTFSI在乙腈中进行混合搅拌,得到PEO基固态电解质的浆料;搅拌时间为10小时;
步骤3、将PEO基固态电解质的浆料通过涂覆机涂敷在静电纺丝PAN框架两面并烘干;PAN支撑膜的厚度为10-20 μm;PEO基固态电解质的浆料的涂覆刻度为15-35μm;烘干过程为先室温12小时,然后真空烘箱60度12小时;
步骤4、将烘干的PEO基固态电解质热压;热压压力为50 MPa, 热压温度为65度,热压时间为 15 min。
透射电子显微镜(TEM)表征
将本发明实施例1中制备的改性核壳结构MOF@FR进行TEM表征,结果如图1为本发明的实施例1的TEM图;图2为本发明的实施例1的SEM图,如图1和图2,可以看到所制备的改性核壳结构MOF@FR有P元素的存在;
红外光谱(FTIR)表征
图3为本发明的实施例1的FTIR图,将本发明实施例1中制备的改性核壳结构MOF@FR进行FTIR表征,结果如图3所示,可以看到制备的改性核壳结构MOF@FR分别存在MOF, FR的极性基团的非对称振动特征峰;
热重分析仪(TG)测试
图4为本发明的实施例1的TG图;图5为本发明的实施例1的DTG图,将本发明实施例1中制备的改性核壳结构MOF@FR进行TG表征,结果如图4、5所示,可以看到制备的改性核壳结构MOF@FR与FR仅暴露于MOF表面不同,证明FR已被固定在MOF保护性孔道内;
X射线衍射仪(XRD)表征
图6为本发明的实施例1的XRD图,将本发明实施例1中制备的改性核壳结构MOF@FR进行XRD表征,结果如图6所示,可以看到制备的改性核壳结构MOF@FR与MOF具有相同晶体结构,MOF框架未遭到破坏;
微型量热仪(MCC)测试
图7为本发明的实施例1与对比例1和对比例2中制备的 PEO基固态电解质的微型量热仪测试对比图,将本发明实施例1、对比例1、对比例2中制备的PEO基固态电解质进行MCC (微型量热仪)测试,结果如图7所示,以改性核壳结构MOF@FR作为填料制备的PEO基固态电解质,热释放速率峰值(peak Heat Release Rate, pHRR)由629 W g-1和628.2 W g-1降至344.5 W g-1
点燃表征:
图8为本发明实施例1、对比例2中制备的PEO基固态电解质的点燃测试对比图,将本发明实施例1、对比例2中制备的PEO基固态电解质进行点燃测试,结果如图8所示,改性阻燃电解质相较于纯PEO缓解了燃烧情况,具有自熄性;
扫描电子显微镜(SEM)表征:
图9为本发明实施例1、对比例1、对比例2中制备的PEO基固态电解质的SEM对比图,将本发明实施例1中制备的PEO基固态电解质进行SEM表征,结果如图9所示,可以看到所制备的PEO基固态电解质厚度约为25μm;
力学性能测试
图10为本发明实施例1、对比例1、对比例2中制备的PEO基固态电解质的应力应变曲线对比图,将本发明实施例1、对比例1、对比例2中制备的PEO基固态电解质(120μm、25μm、25μm)进行应力应变测试,结果如图10所示,可观察到实施例1中制备的PEO基固态电解质的机械性能得到了很大的提高;
临界电流密度(CCD)测试
图11为本发明实施例1、对比例1、对比例2中制备的PEO基固态电解质的临界电流密度对比图,将本发明实施例1、对比例1、对比例2中制备的PEO基固态电解质(120μm、25μm、25μm)进行临界电流密度测试,结果如图11所示, 可观察到实施例1中制备的PEO基固态电解质相比于对比例1和对比例2具有更高的临界电流密度和更低的过电位,同时综合临界电流密度、过电位以及力学性能测试,实施例1的综合性能最为优异;
离子电导率测试(EIS)
图12为本发明实施例1、对比例1、对比例2中制备的PEO基固态电解质的离子电导率对比图,将本发明实施例1、对比例1、对比例2中制备的PEO基固态电解质进行离子电导率测试,结果如图12所示,可观察到实施例1中制备的PEO基固态电解质具有更高的离子电导率;
钠离子迁移数测试(i-t)
图13为本发明实施例1制备的PEO基固态电解质的钠离子迁移数变化图;图14为本发明对比例1制备的PEO基固态电解质的钠离子迁移数变化图,将本发明实施例1中制备的PEO基固态电解质进行锂离子迁移数测试,结果如图13所示;将对比例1所得的传统PEO基固态电解质进行离子迁移数测试,结果如图14所示;可观察到实施例1中制备的PEO基固态电解质具有更高的的锂离子迁移数(0.76);
电化学性能测试
图15为本发明实施例1、对比例1和对比例2中制备的 PEO基固态电解质循环曲线对比图;图16为本发明实施例1、对比例1和对比例2中制备的PEO基固态电解质的倍率性能对比图,将本发明实施例1、对比例1、对比例2中制备的PEO基固态电解质与Na3V2(PO4)3正极以及钠金属负极组装纽扣电池进行电化学性能测试,结果如图15、16所示,实施例1中制备的PEO基固态电解质具有更好的循环性能和倍率性能。
通过实施例1与对比例1和对比例2可以看出本发明制备的改性核壳结构MOF@FR避免了阻燃剂直接溶解在电解质中所造成的负面影响,并发挥阻燃作用。以此为填料制备的热稳定性、超薄、轻质的阻燃PEO基固态电解质在厚度约为25μm时,其的机械性能、离子电导率以及临界电流密度的综合性能较好,通过实施例1与对比例1可以看出本发明制备的热稳定性、超薄、轻质的阻燃PEO基固态电解质(25μm厚)具有更优异的机械性能、离子电导率、离子迁移数以及临界电流密度,所组装的电池具有更好的循环性能和倍率性能。综合以上优点,该电解质膜有利于实现全固态钠金属电池高能量密度的同时,实现阻燃性和安全性。
因此,本发明采用上述方法,当将具有高孔隙率、良好的热稳定性和超大的比表面积等特点的多孔金属-有机框架(MOF)颗粒,应用于固态聚合物电解质时,超大的比表面积和金属离子(内)-有机配体(外)形成的电荷分布结构可以吸附阴离子,释放更多可自由传导的离子。另一方面,MOF可以提高聚合物的阻燃性。另外,MOF材料的多孔特性在气体分离、过滤和捕捉挥发性有机物已得到广泛应用。因此,利用MOF的多孔特性吸附阻燃剂形成的核壳结构的MOF@FR改性MOF颗粒用于聚合物基的无机填料,一方面可以发挥MOF本身能够提高聚合物离子迁移数的电化学作用,另一方面可以提高聚合物基固态电解质的阻燃性能。同时,为了提高电芯体系的能量密度,采用具有热稳定性且耐氧化的PAN静电纺丝膜作为刚性骨架,用来制备超薄、轻质、高机械强度PEO基阻燃固态电解质。
最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行限制,尽管参照较佳实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范围。

Claims (10)

1.一种热稳定、超薄轻质、阻燃PEO基固态电解质的制备方法,其特征在于:包括以下步骤:
步骤1、利用静电纺丝制备刚性PAN支撑层;
步骤2、活化MOF材料,而后去除其微孔内的客体分子;
步骤3、基于步骤2制备的活化后的MOF材料,合成负载阻燃剂的MOF@FR改性填料;
步骤4、将一定配比的PEO与NaTFSI以及MOF@FR在乙腈中进行混合搅拌,得到PEO基固态电解质的浆料;
步骤5、将PEO基固态电解质的浆料通过涂覆机涂覆在PAN支撑层的两面并烘干,得到PAN支撑膜;
步骤6、将烘干的PEO基固态电解质热压。
2.根据权利要求1所述的热稳定、超薄轻质、阻燃PEO基固态电解质的制备方法,其特征在于:所述步骤1具体包括以下步骤:
步骤1.1、将PAN粉末置于60 ℃真空环境下干燥12 h;
步骤1.2、称取1 g 干燥后的PAN粉末溶于N,N-二甲基甲酰胺中,配制质量分数为10%的溶液;
步骤1.3、在室温环境下搅拌1.5 h后完全溶解,获得静电纺丝前驱液;
步骤1.4、通过控制静电纺丝工艺参数纺出纤维尺寸均一的PAN膜;
步骤1.5、将制备的PAN膜于真空烘箱中并于100 ℃条件下真空干燥24 h,去除残留溶剂及水分。
3.根据权利要求2所述的热稳定、超薄轻质、阻燃PEO基固态电解质的制备方法,其特征在于:所述步骤1.4中的静电纺丝工艺参数为:高压电15 KV,低压电-2 KV,喷头流速0.1mm/min,接收器的转速600 r/min,喷头与接收器距离15 cm,平移距离200 cm。
4.根据权利要求1所述的热稳定、超薄轻质、阻燃PEO基固态电解质的制备方法,其特征在于:所述步骤2具体包括以下步骤:
通过水热法合成的MOF材料置于真空烘箱中并于170 ℃条件下真空干燥5 h,去除MOF微孔内的客体分子。
5.根据权利要求1或4所述的热稳定、超薄轻质、阻燃PEO基固态电解质的制备方法,其特征在于:所述客体分子包括残留有机溶剂及空气中的水分。
6.根据权利要求1所述的热稳定、超薄轻质、阻燃PEO基固态电解质的制备方法,其特征在于:所述步骤3具体包括以下步骤:
步骤3.1、将活化后的MOF粉末完全浸入甲基膦酸二甲酯溶剂中3天,在此过程中,每隔12 h更换一次甲基膦酸二甲酯溶剂,确保最大量的甲基膦酸二甲酯填充MOF的孔隙;
步骤3.2、用甲醇快速清洗粉末,去除附着在MOF颗粒表面的甲基膦酸二甲酯;
步骤3.3、在室温下干燥。
7.根据权利要求1所述的热稳定、超薄轻质、阻燃PEO基固态电解质的制备方法,其特征在于:所述步骤4中的MOF@FR的占比为的30%,PEO和NaTFSI的配比为[EO/Na+]=15:1,搅拌时间为10小时。
8.根据权利要求1所述的热稳定、超薄轻质、阻燃PEO基固态电解质的制备方法,其特征在于:所述步骤5中PAN支撑膜的厚度为10-20 μm,PEO基固态电解质的浆料的涂覆刻度为15-35μm。
9.根据权利要求1所述的热稳定、超薄轻质、阻燃PEO基固态电解质的制备方法,其特征在于:所述步骤5中烘干过程为先置于室温下12h,然后置于真空烘箱中并于60℃条件下烘干12h。
10.根据权利要求1所述的热稳定、超薄轻质、阻燃PEO基固态电解质的制备方法,其特征在于:所述步骤6中热压压力为50 MPa, 热压温度为65℃,热压时间为10-30 min。
CN202211250182.9A 2022-10-13 2022-10-13 热稳定、超薄轻质、阻燃peo基固态电解质的制备方法 Active CN115332624B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211250182.9A CN115332624B (zh) 2022-10-13 2022-10-13 热稳定、超薄轻质、阻燃peo基固态电解质的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211250182.9A CN115332624B (zh) 2022-10-13 2022-10-13 热稳定、超薄轻质、阻燃peo基固态电解质的制备方法

Publications (2)

Publication Number Publication Date
CN115332624A true CN115332624A (zh) 2022-11-11
CN115332624B CN115332624B (zh) 2023-01-31

Family

ID=83913706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211250182.9A Active CN115332624B (zh) 2022-10-13 2022-10-13 热稳定、超薄轻质、阻燃peo基固态电解质的制备方法

Country Status (1)

Country Link
CN (1) CN115332624B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116315076A (zh) * 2023-05-22 2023-06-23 西北工业大学 一种具有连续离子传输通路的固态电解质及其制备方法和应用
CN118016994A (zh) * 2024-04-08 2024-05-10 中山大学 一种轻薄复合固态电解质及其制备方法、应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9474997B1 (en) * 2014-03-21 2016-10-25 The United States Of America As Represented By The Secretary Of The Army Metal-organic framework sorbents having hierarchical pore structure and method of making the same
EP3254755A1 (en) * 2016-06-10 2017-12-13 Centre National de la Recherche Scientifique - CNRS - High degree of condensation titanium-based inorganic-organic hybrid solid material, method for preparing same and uses thereof
CN108598565A (zh) * 2018-03-29 2018-09-28 武汉新能源研究院有限公司 一种甲基膦酸二甲酯固态电解质的制备方法及锂离子电池
CN110911742A (zh) * 2019-12-27 2020-03-24 湖北大学 一种固态电池用聚合物电解质复合膜的制备方法
CN111052477A (zh) * 2017-02-07 2020-04-21 加利福尼亚大学校务委员会 复合电解质膜及其制造方法和电化学装置
CN112038695A (zh) * 2020-09-29 2020-12-04 西北工业大学 磷酸三酯类溶液改性的阻燃固态聚合物电解质及制备方法
US20210028439A1 (en) * 2018-08-31 2021-01-28 Lg Chem, Ltd. Solid electrolyte, method for preparing same, and all-solid-state battery including same
CN113036216A (zh) * 2021-03-10 2021-06-25 西北工业大学 复合阻燃剂改性的peo基固态聚合物电解质及制备方法
CN113270639A (zh) * 2021-04-06 2021-08-17 华南师范大学 一种peo基固态电解质及其制备方法和应用
CN113285118A (zh) * 2021-04-14 2021-08-20 华南师范大学 一种基于mof三维骨架支撑的复合物固态电解质及其制备方法
CN114335711A (zh) * 2021-12-29 2022-04-12 中南大学 一种原位掺入mof的pvdf-hfp-peo双层固态聚合物电解质的制备方法和应用
CN114583392A (zh) * 2022-03-22 2022-06-03 广东工业大学 一种金属-有机框架材料基耐热阻燃膜的浆料及其制备方法和应用
CN114649560A (zh) * 2022-02-24 2022-06-21 嘉兴学院 一种Zn-MOF/PAN@PAN复合隔膜材料及其制备方法和应用
CN114759253A (zh) * 2022-04-18 2022-07-15 西北工业大学 纤维素膜作为支撑层的超薄、轻质、高机械强度peo基固态电解质的制备方法
CN114784371A (zh) * 2022-04-25 2022-07-22 华南理工大学 一种peo基固态电解质及其制备与在固态锂硫电池中的应用

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9474997B1 (en) * 2014-03-21 2016-10-25 The United States Of America As Represented By The Secretary Of The Army Metal-organic framework sorbents having hierarchical pore structure and method of making the same
EP3254755A1 (en) * 2016-06-10 2017-12-13 Centre National de la Recherche Scientifique - CNRS - High degree of condensation titanium-based inorganic-organic hybrid solid material, method for preparing same and uses thereof
CN111052477A (zh) * 2017-02-07 2020-04-21 加利福尼亚大学校务委员会 复合电解质膜及其制造方法和电化学装置
CN108598565A (zh) * 2018-03-29 2018-09-28 武汉新能源研究院有限公司 一种甲基膦酸二甲酯固态电解质的制备方法及锂离子电池
US20210028439A1 (en) * 2018-08-31 2021-01-28 Lg Chem, Ltd. Solid electrolyte, method for preparing same, and all-solid-state battery including same
CN110911742A (zh) * 2019-12-27 2020-03-24 湖北大学 一种固态电池用聚合物电解质复合膜的制备方法
CN112038695A (zh) * 2020-09-29 2020-12-04 西北工业大学 磷酸三酯类溶液改性的阻燃固态聚合物电解质及制备方法
CN113036216A (zh) * 2021-03-10 2021-06-25 西北工业大学 复合阻燃剂改性的peo基固态聚合物电解质及制备方法
CN113270639A (zh) * 2021-04-06 2021-08-17 华南师范大学 一种peo基固态电解质及其制备方法和应用
CN113285118A (zh) * 2021-04-14 2021-08-20 华南师范大学 一种基于mof三维骨架支撑的复合物固态电解质及其制备方法
CN114335711A (zh) * 2021-12-29 2022-04-12 中南大学 一种原位掺入mof的pvdf-hfp-peo双层固态聚合物电解质的制备方法和应用
CN114649560A (zh) * 2022-02-24 2022-06-21 嘉兴学院 一种Zn-MOF/PAN@PAN复合隔膜材料及其制备方法和应用
CN114583392A (zh) * 2022-03-22 2022-06-03 广东工业大学 一种金属-有机框架材料基耐热阻燃膜的浆料及其制备方法和应用
CN114759253A (zh) * 2022-04-18 2022-07-15 西北工业大学 纤维素膜作为支撑层的超薄、轻质、高机械强度peo基固态电解质的制备方法
CN114784371A (zh) * 2022-04-25 2022-07-22 华南理工大学 一种peo基固态电解质及其制备与在固态锂硫电池中的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
曹艳霞等: "聚环氧乙烷/埃洛石纳米管复合材料的热稳定性和燃烧性质", 《高分子通报》 *
李丹扬等: "AP/Co-MOF核壳型纳米复合材料对AP热分解的自催化性能", 《化学与生物工程》 *
梁凤青: "MOFs-PEO复合聚合物电解质的制备及性能研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116315076A (zh) * 2023-05-22 2023-06-23 西北工业大学 一种具有连续离子传输通路的固态电解质及其制备方法和应用
CN118016994A (zh) * 2024-04-08 2024-05-10 中山大学 一种轻薄复合固态电解质及其制备方法、应用

Also Published As

Publication number Publication date
CN115332624B (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
CN115332624B (zh) 热稳定、超薄轻质、阻燃peo基固态电解质的制备方法
Zhu et al. In situ extracted poly (acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium–sulfur batteries
Shang et al. Challenges for large scale applications of rechargeable Zn–air batteries
Zhang et al. A porous, mechanically strong and thermally stable zeolitic imidazolate framework-8@ bacterial cellulose/aramid nanofibers composite separator for advanced lithium-ion batteries
CN111477816A (zh) 一种锂离子电池隔膜及其制备方法
CN112670543B (zh) 基于中空结构mof的复合固态电解质膜及其制备方法与应用
Liu et al. An effective dual-channel strategy for preparation of polybenzimidazole separator for advanced-safety and high-performance lithium-ion batteries
CN111313111A (zh) 一种基于金属有机框架衍生的杂原子掺杂碳/CoS2功能材料及其应用
Zhang et al. Highly porous zeolitic imidazolate framework-8@ bacterial cellulose composite separator with enhanced electrolyte absorption capability for lithium-ion batteries
Dai et al. Modified alginate dressing with high thermal stability as a new separator for Li-ion batteries
Niu et al. Evidence of high temperature stable performance of polyether ether ketone (PEEK) separator with sponge-structured in lithium-ion battery
CN114649560A (zh) 一种Zn-MOF/PAN@PAN复合隔膜材料及其制备方法和应用
CN110752337A (zh) 一种复合隔膜、其制备方法及应用
WO2023179550A1 (zh) 一种复合油基隔膜及其制备方法和二次电池
Li et al. Chromium-based metal-organic framework coated separator for improving electrochemical performance and safety of lithium-ion battery
Wang et al. Novel ZrO2@ Polyimde nano-microspheres-coated polyethylene separators for high energy density and high safety Li-ion battery
CN109659468A (zh) 一种具有热断功能的复合隔膜及其制备和应用
CN113506951A (zh) 用于金属二次电池的纤维素基复合隔膜及其制备方法
CN105932197A (zh) 一种聚苯二甲酰对苯二胺多孔膜的制备方法
CN114597580B (zh) 钠离子电池用全纤维素复合隔膜及其原位制备方法和应用
Zhou et al. Tailoring the Function of Battery Separators via the Design of MOF Coatings
Yang et al. A polysulfide-functionalized separator enables robust long-cycle operation of lithium-metal batteries
Oh et al. Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery
Gao et al. Electrospun polyimide/cellulose acetate propionate nanofiber membrane-based gel polymer electrolyte with fast lithium-ion transport and high interface stability for lithium metal batteries
CN114496589B (zh) 一种多孔凝胶电解质及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231023

Address after: 710086 Room 208, 2nd Floor, Building 4-B1, Xixian Financial Port, Phase I, Fengdong New City Energy Jinmao Starting Zone, Xixian New District, Xi'an City, Shaanxi Province

Patentee after: Shaanxi Ruizhi New Energy Technology Co.,Ltd.

Address before: No. 127, Youyi West Road, Beilin District, Xi'an City, Shaanxi Province, 710068

Patentee before: Northwestern Polytechnical University

TR01 Transfer of patent right