CN115323351A - 氮化钛膜的成膜方法和氮化钛膜的成膜装置 - Google Patents

氮化钛膜的成膜方法和氮化钛膜的成膜装置 Download PDF

Info

Publication number
CN115323351A
CN115323351A CN202210472341.3A CN202210472341A CN115323351A CN 115323351 A CN115323351 A CN 115323351A CN 202210472341 A CN202210472341 A CN 202210472341A CN 115323351 A CN115323351 A CN 115323351A
Authority
CN
China
Prior art keywords
gas
titanium nitride
nitride film
forming
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210472341.3A
Other languages
English (en)
Inventor
高桥毅
洪锡亨
樋口健介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022024043A external-priority patent/JP2022173989A/ja
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN115323351A publication Critical patent/CN115323351A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/488Word lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76883Post-treatment or after-treatment of the conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53257Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a refractory metal
    • H01L23/53261Refractory-metal alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供一种氮化钛膜的成膜方法和氮化钛膜的成膜装置,用于形成电阻率低的氮化钛膜。在该方法中,交替地重复实施对收容在处理容器内的基板供给原料气体的操作和对所述基板供给反应气体的操作来形成所述氮化钛膜,其中,所述原料气体含有含氯和钛的钛化合物,所述反应气体含有含氮且与所述钛化合物进行反应来形成氮化钛的氮化合物。在将所述处理容器内的压力的条件设定成使所述氮化钛膜的电阻率成为57μΩ·cm以下的处于2.7kPa~12.6kPa的范围内的条件下,实施形成所述氮化钛膜的工序。

Description

氮化钛膜的成膜方法和氮化钛膜的成膜装置
技术领域
本公开涉及一种氮化钛膜的成膜方法和氮化钛膜的成膜装置。
背景技术
在半导体器件的制造中,氮化钛(TiN)膜被使用于各种用途。该TiN膜例如是将含钛(Ti)的气体例如四氯化钛(TiCl4)气体、以及含氮(N)的气体例如氨(NH3)气体用作成膜气体来形成的。
关于TiN膜,专利文献1中记载有以下一种技术:使用TiCl4气体和NH3气体,在被设定为1.3kPa(10Torr)以内的压力下,利用ALD(Atomic Layer Deposition:原子层沉积)法来进行成膜。另外,专利文献2中记载有以下一种技术:使用上述气体,在被设定为10-3Torr~数十Torr的范围内的压力下,利用CVD(Chemical Vapor Deposition:化学气相沉积)法来进行成膜。
现有技术文献
专利文献
专利文献1:日本特开2018-66050号公报
专利文献2:日本特开平6-188205号公报
发明内容
发明要解决的问题
本公开提供一种能够形成电阻率低的氮化钛膜的技术。
用于解决问题的方案
本公开是一种氮化钛膜的成膜方法,其特征在于,
包括以下工序:交替地重复实施对收容在处理容器内的基板供给原料气体的操作和对所述基板供给反应气体的操作来形成所述氮化钛膜,其中,所述原料气体含有含氯和钛的钛化合物,所述反应气体含有含氮且与所述钛化合物进行反应来形成氮化钛的氮化合物,
在将所述处理容器内的压力设定成使所述氮化钛膜的电阻率成为57μΩ·cm以下的处于2.7kPa~12.6kPa的范围内的条件下,实施形成所述氮化钛膜的工序。
发明的效果
根据本公开,能够形成电阻率低的氮化钛膜。
附图说明
图1是示出本公开的氮化钛膜的成膜装置的一例的纵剖侧面图。
图2是示出本公开的氮化钛膜的成膜方法的气体供给顺序的一例的图。
图3是示出形成于基板的一面侧的氮化钛膜的纵剖侧面图。
图4是用于说明成膜方法的压力条件的特性图。
图5是示出氮化钛膜的评价结果的第一特性图。
图6是示出氮化钛膜的评价结果的第二特性图。
图7是示出氮化钛膜的评价结果的第三特性图。
图8是示出氮化钛膜的评价结果的第四特性图。
图9是示出氮化钛膜的评价结果的第五特性图。
图10是示出氮化钛膜的评价结果的第六特性图。
具体实施方式
<成膜装置>
参照图1来说明对基板进行氮化钛膜(TiN膜)的成膜的装置(下面称为“成膜装置”)的一个实施方式。
成膜装置1具备用于收容作为基板的半导体晶圆(下面称为“晶圆”)W的处理容器10,在该处理容器10的侧壁的上部例如配置有圆环状的排气管道13。并且,在该排气管道13的上表面以堵住处理容器10的上部开口的方式设置有顶壁14。处理容器10经由排气管道13的排气口131,通过真空排气通路16与由例如真空泵构成的真空排气部17连接。
在真空排气通路16中设置有作为压力调节部的APC(Auto pressure Controller:自动压力控制器)阀18。APC阀18例如由蝶形阀构成,以能够将真空排气通路16开闭自如的方式设置,该APC阀18构成为:通过调节APC阀18的开度来增大和减小真空排气通路16的电导,由此实现调节处理容器10内的压力的功能。
在处理容器10的内部设置有载置台2,该载置台2用于将晶圆W水平地支承,并且在该载置台2埋设有用于将晶圆W进行加热的加热器21。该载置台2构成为通过升降机构24升降自如。此外,在图1中,用点划线表示处于交接位置的载置台2。图中,标记25是用于进行晶圆W的交接的支承销,构成为通过升降机构26升降自如。标记22是支承销25用的贯通孔,标记27和28分别是随着载置台2、支承销25的升降动作而伸缩的波纹管。
在处理容器10以与载置台2相向的方式设置有喷淋头3,该喷淋头3用于向处理容器10内喷淋状地供给处理气体。喷淋头3在其内部具备气体扩散空间31,并且喷淋头3的下表面构成为形成有大量的气体喷出孔33的喷淋板32。气体扩散空间31经由气体导入孔34而与气体供给系统4连接。
气体供给系统4具备:原料气体供给部4A,其用于向处理容器10供给原料气体;反应气体供给部4B,其供给反应气体;添加气体供给部4C,其用于供给向原料气体中添加的添加气体;以及氢气供给部4D,其用于进行作为吹扫气体的氢气的供给,该吹扫气体用于对原料气体和反应气体进行吹扫。原料气体是含有含氯(Cl)和钛(Ti)的钛化合物的气体,作为钛化合物,例如使用四氯化钛(TiCl4)。另外,反应气体是含有含氮(N)且与钛化合物进行反应来形成氮化钛(TiN)的氮化合物的气体,作为氮化合物,例如使用氨(NH3)。并且,添加气体是含有与作为上述钛化合物的TiCl4中包含的氯进行反应的硅化合物的气体,作为硅化合物,使用硅烷(SiH4)。
原料气体供给部4A包括TiCl4气体的供给源41和供给通路411,例如在气体供给通路411中,从上游侧起设置有流量调整部412、贮存罐413以及阀V1。另外,反应气体供给部4B包括NH3气体的供给源42和供给通路421,例如在气体供给通路421中,从上游侧起设置有流量调整部422、贮存罐423以及阀V2。并且,添加气体供给部4C包括SiH4气体的供给源43和供给通路431,例如在气体供给通路431中,从上游侧起设置有流量调整部432、贮存罐433以及阀V3。而且,氢气供给部4D包括H2气体的供给源44和供给通路441,例如在气体供给通路441中,从上游侧起设置有流量调整部442和阀V4。
这些TiCl4气体、NH3气体、SiH4气体分别临时贮存在贮存罐413、423、433中,在这些贮存罐413、423、433内被升压至规定的压力,之后被供给至处理容器10内。从贮存罐413、423、433向处理容器10的各种气体的供给和停止通过阀V1~V3的开闭来进行。
并且,气体供给系统4具备向处理容器10供给非活性气体的非活性气体供给部,作为非活性气体,例如使用氮(N2)气体。该例中的非活性气体供给部包括N2气体的供给源45、46、47和供给通路451、461、471。在本例中,从供给源45供给的N2气体是TiCl4气体用的吹扫气体,供给源45经由气体供给通路451连接于气体供给通路411中的阀V1的下游侧位置处。另外,从供给源46供给的N2气体是NH3气体用的吹扫气体,供给源46经由气体供给通路461连接于气体供给通路421中的阀V2的下游侧位置处。并且,从供给源47供给的N2气体是SiH4气体用的吹扫气体,供给源47经由气体供给通路471连接于气体供给通路431中的阀V3的下游侧位置处。另外,从供给源48供给的N2气体是与H2气体一起被供给到处理容器10的吹扫气体,供给源48经由气体供给通路481连接于气体供给通路421中的阀V4的下游侧位置处。此外,在图1中,标记452、462、472、482分别是流量调整部,标记V5~V8分别是阀。
如后所述,从气体供给通路451、461、471供给的N2气体是在TiN膜的成膜处理的期间持续供给的吹扫气体。另一方面,从气体供给通路441供给的H2气体以及从气体供给通路481供给的N2气体是在规定的步骤中供给的吹扫气体。因此,为了区分这些吹扫气体,将供给后者的H2气体和N2气体的动作称为快速吹扫,还将这些吹扫气体称为快速吹扫气体。
成膜装置1具备控制部100,该控制部100例如由计算机构成,具有包括程序、存储器、CPU的数据处理部。程序被编入命令(各步骤),以从控制部100向成膜装置1的各部发送控制信号来进行后述的形成TiN膜的工序。程序保存在计算机存储介质中,例如保存在软盘、压缩光盘、硬盘、MO(光磁盘)等存储部中并被安装于控制部100。具体地说,该程序控制成膜装置1中的原料气体、反应气体、非活性气体的供给、处理容器10内的压力调节等动作。
<成膜方法>
接着,参照图2的气体供给顺序来说明本公开的TiN膜的成膜方法的一例。在该例中,使用上述的成膜装置1,利用ALD法来在晶圆W的一面侧形成TiN膜。图2的气体供给顺序示出向处理容器10供给在成膜中使用的TiCl4气体、SiH4气体、NH3气体、H2气体以及各N2气体的供给定时。在图2中,TiCl4的下一行的N2是从供给源45供给的N2气体,SiH4的下一行的N2是从供给源47供给的N2气体,NH3的下一行的N2是从供给源46供给的N2气体,H2的下一行的N2是从供给源48供给的N2气体。
首先,实施调节APC阀18的开度的APC设置工序。在该工序中,例如将晶圆W搬入处理容器10并载置于载置台2,开始利用加热器21将晶圆W进行加热,并且从供给源45、46、47分别以预先设定的流量向处理容器10内供给N2气体。然后,通过真空排气部17来实施处理容器10内的真空排气,调节APC阀18的开度,以使处理容器10内的压力例如成为4.0kPa(30Torr)。继APC设置工序之后,实施形成TiN膜的工序即成膜工序,在该成膜工序中也将APC阀18的开度维持为在APC设置工序中被调节后的开度。在APC设置工序的期间,将载置于载置台2的晶圆W例如加热至为400℃~750℃的范围内的温度的600℃。
接着,基于图2的气体供给顺序来实施形成TiN膜的工序即成膜工序。成膜工序由后述的步骤S1~S6构成。首先,打开阀V1来向处理容器10内供给作为原料气体的TiCl4气体,并且从供给源45、46、47分别以预先设定的流量向处理容器10内供给N2气体。在成膜工序中,如下述那样进行使处理容器10内的压力上升的调节。在进行该压力调节时,能够例示将N2气体的流量设定为比APC设置工序中的该流量多的方法。另外,也可以与N2气体一起供给少量的氢(H2)气体。特别地,通过供给N2气体,处理容器10内的压力例如上升至8.6kPa(64.8Torr)~9.0kPa(67.4Torr),在成膜工序中维持该压力。在通过这样设定了处理容器10内的压力的状态下,将TiCl4气体吸附于晶圆W的整面(步骤S1)。
接着,在阀V1打开着的状态下,打开阀V3,在向处理容器10内供给TiCl4气体的期间且开始供给该TiCl4气体的之后的定时,供给作为添加气体的SiH4气体(步骤S2)。如后述的实验结果所示,SiH4气体有助于抑制TiN膜的电阻率的上升并提高TiN膜的成膜速度。关于通过添加SiH4气体所得到这些效果的估计的机理,在后文中与实验结果一起描述。
接着,将处于打开的状态的两个阀中的阀3关闭,来停止供给SiH4气体(步骤S3)。接着,在经过了规定的时间之后,关闭另一个阀V1来停止供给TiCl4气体。另一方面,继续从供给源45、46、47供给N2气体,并且打开阀V4、V8来进行快速吹扫用的N2气体、H2气体的供给。通过这样,进行使N2气体的供给流量增加的快速吹扫,来去除处理容器10内残留的TiCl4气体。另外,在快速吹扫时,通过与N2气体一同供给H2气体,来使残留的氯(Cl)与氢进行反应,从而作为氯化氢(HCl)被去除(步骤S4)。如后所述,通过添加H2气体来去除Cl也有助于降低TiN膜的电阻率。
接着,在继续从供给源45、46、47供给N2气体的状态下,关闭阀V4来停止供给H2气体,另一方面,打开阀V2来向处理容器10内供给作为反应气体的NH3气体。如上所述,由于处理容器10内的压力已被设定为成膜工序的压力,因此在该压力下,被吸附于晶圆W的TiCl4与NH3进行反应来形成TiN膜(步骤S5)。
接下来,关闭阀V2来停止供给NH3气体,另一方面,继续从供给源45、46、47供给N2气体,并且打开阀V8,使N2气体的供给流量增大来进行快速吹扫,来去除处理容器10内残留的NH3气体。并且,在快速吹扫时,也打开阀V4来进行H2气体的供给(步骤S6)。通过这样,在成膜工序中,一边向处理容器10内供给作为非活性气体的N2气体,一边交替地供给原料气体和反应气体,并且当在原料气体与反应气体之间进行切换的快速吹扫的定时供给H2气体。将这些步骤S1~S6重复实施所设定的次数,来形成期望厚度的TiN膜。
在此,利用本公开的方法形成的TiN膜5例如形成作为DRAM的字线的布线层,例如如图3所示那样被嵌入在晶圆W的一面侧形成的绝缘膜51的槽状的凹部52。TiN膜5分别堆积在凹部52的底部的内表面和侧壁的内表面,通过重复上述的步骤S1~S6,来进行TiN膜5的向凹部52的嵌入。绝缘膜51例如由氧化硅(SiO2)膜构成,凹部52形成为其深度D为80nm~200nm、开口宽度W为10nm~20nm左右、且上述深度D与开口宽度W之比D/W为5~20左右的大小。一般来说,相较于形成导通孔的凹部,字线的凹部52的深宽比小,因此相较于在凹部52嵌入钨,通过嵌入TiN,电阻值变低。这样,利用TiN来在该凹部52嵌入布线层,由此所形成的TiN存在变厚的倾向。
在DRAM的制造工序中,在形成向凹部52嵌入的TiN膜5之后,为了杂质的扩散等目的,实施了退火处理。另一方面,有时会在所形成的TiN膜5形成小的空隙即微孔。并且,由于在成膜后实施退火处理等加热,有时也可能在TiN膜内追加形成更多的微孔53。当像这样在被用作布线层的TiN膜中产生大量的微孔53时,电流的流动变差,成为TiN布线层的电阻率上升的主要原因,可能会对设备动作造成恶劣影响。
在此,推测通过晶圆W的加热而形成的微孔53是由于以下原因而产生的:TiN膜5中的晶粒(crystalgrain:结晶粒)由于退火处理而生长,伴随于此,在相邻的晶粒彼此之间生成微小的间隙。另外,如后所述,掌握了在使用TiCl4等含Cl的原料气体来形成TiN膜的情况下,存在由于退火处理而产生大量的微孔53的倾向。因此,估计降低TiN膜中的Cl杂质浓度对于抑制微孔53的产生是有效的。
根据这样的背景,本公开的发明者们尝试了通过使上述的步骤S4、S6的利用N2气体和H2气体进行吹扫的时间(快速吹扫的时间)延长,来从处理容器10中排出不需要的TiCl4气体、成膜反应的反应副产物等含Cl的成分。其结果,认为通过将吹扫时间延长5倍左右能够形成Cl含有量低的TiN膜,并且能够有效地抑制在退火处理时产生微孔53。然而,在上述的在凹部52中嵌入TiN膜5的处理中,TiN膜5的膜厚为15nm~20nm,膜厚大,循环的重复次数多。因此,若延长吹扫时间,则成膜处理的总处理时间延长,无法避免生产率的大幅降低。
因此,发明者们为了利用延长吹扫时间以外的方法来形成电阻率低的TiN膜5,重新评估了TiN膜的成膜处理中的处理条件。
以往以来,在利用ALD法来进行TiN膜的成膜的情况下,如上述的专利文献1中记载的那样,通常在处理容器10内的压力为1.33kPa(10Torr)以下的条件下进行成膜。ALD法使吸附于晶圆W的一面侧的TiCl4与NH3进行反应来形成TiN膜,因此要求以尽可能短的时间吹扫原料气体,以使得不进行基于使TiCl4与NH3在气相中进行反应的CVD法的成膜反应。这是因为当使处理容器10内的压力上升时,吹扫花费时间,因此认为在低压条件下实施吹扫是常识。
与此相对地,发明者们在使处理容器10内的压力在大的范围内变化来实施TiN膜的成膜处理后发现,使TiN膜的电阻率降低的最优的压力范围是存在于比以往的压力条件靠高压侧的范围。下面,对压力条件的最优化的经过进行记载。
首先,基于图4来说明TiN膜的成膜处理中的处理容器10内的压力。在图4中,纵轴表示处理容器10内的压力,横轴表示经过时间。另外,在该图中,用实线表示本公开的成膜处理的压力,用虚线表示以往实施的1.33kPa(10Torr)以下的压力条件。
对图4所示的例子中的本公开的成膜处理进行说明。如上所述,该成膜处理由APC设置工序和成膜工序组成,在时刻t1,从供给源45、46、47以7.5slm(升/分,标准状态(1标准大气压,0℃))供给N2气体,开始APC设置工序。然后,在处理容器10内的压力稳定的状态(4.0kPa(30Torr))下,固定APC阀18的开度,在时刻t2结束APC设置工序。
接着,在时刻t2开始上述的成膜工序。如上所述,在该成膜工序中,例如通过使N2气体的流量多于APC设置工序中的该流量,来使处理容器10内的压力上升至8.6kPa(64.8Torr)~9.0kPa(67.4Torr)。在重复上述的步骤S1~S6来实施的成膜工序中,在步骤S1的TiCl4气体的供给时,压力降低至0.3kPa~0.4kPa左右,在步骤S2~S6中压力再次上升至0.3kPa~0.4kPa左右。像这样在供给TiCl4气体时压力间歇性地略微降低的理由是,仅在供给TiCl4气体时降低N2气体的流量。
另一方面,在以往的压力条件的成膜处理中,除了所设定的压力不同以外,也如上述那样实施成膜处理。因而,在时刻t1,以2.5slm供给N2气体,开始APC设置工序。然后,在处理容器10内的压力稳定的状态(0.67kPa(5Torr))下,固定APC阀18的开度,在时刻t2开始上述的成膜工序。在该成膜工序中,在处理容器10内的压力上升至0.96kPa(7.2Torr)~1.09kPa(8.2Torr)的状态下,实施TiN膜的形成。
接下来,对图5进行说明。该图是示出处理容器10内的压力与TiN膜的电阻率的关系的特性图(第一特性图),示出改变APC设置工序的压力来实施上述的成膜处理并测定所形成的TiN膜的电阻率所得到的结果。在图5中,纵轴表示TiN膜的电阻率,横轴表示处理容器10内的“APC设置工序”中的压力。另外,在图5中,用○标记出吹扫气体的流量为2.5slm的数据,用△标记出吹扫气体的流量为5.0slm的数据,用◇标记出吹扫气体的流量为7.5slm的数据,用□标记出吹扫气体的流量为10.0slm的数据。
另外,将各气体的供给流量的设定例记载为,TiCl4气体为34sccm,NH3气体为600sccm,SiH4气体为250sccm,从供给通路451、461、471持续地供给的N2气体例如是将上述的吹扫气体的各流量三等分所得到的值。另外,步骤S4、S6中的快速吹扫用的N2气体为18000sccm,同样地,快速吹扫用的H2气体为7000sccm。步骤S1~S3、S5的实施时间被设定为0.05秒,步骤S4、S6的吹扫的实施时间被设定为约1秒,步骤S1~S6的一个循环被设定为2.5秒。
在TiN膜的成膜工序中,如上述那样重复步骤S1~S6来形成膜厚15nm的TiN膜。实施一系列的步骤S1~S6所需要的时间设为2.5秒。另外,基于利用椭偏仪得到的TiN膜的膜厚测定结果和利用4探针法得到的薄层电阻值,来确定所形成的TiN膜的电阻率。
在图5中省略了成膜工序中的处理容器10内的压力的记载,但列举其对应关系的例子为
在吹扫气体流量为2.5slm、APC设置工序的压力为5.3kPa的条件下,成膜工序的压力为8.8kPa,
在吹扫气体流量为5.0slm、APC设置工序的压力为5.3kPa的条件下,成膜工序的压力为10.4kPa,
在吹扫气体流量为7.5slm、APC设置工序的压力为5.3kPa的条件下,成膜工序的压力为11.8kPa。
这样,成膜工序的压力虽然根据TiCl4气体、NH3气体、吹扫气体(N2气体)的流量而不同,但在任意情况下都是APC设置工序的压力的大致2倍左右的压力。因而,如果将图4的横轴所表示的APC设置工序的压力条件的指示值扩大为2倍,则能够掌握与成膜工序的压力的对应关系。即,可以说成膜工序中的TiN膜的电阻率相对于压力的变化的变化倾向与电阻率相对于图4所示的APC设置工序的压力变化的变化的倾向大致相似。在后述的图6~图8的情况下也是同样的。
根据该图5的结果可以认为,TiN膜的电阻率根据APC设置工序的压力、也就是说成膜工序的压力而变化。当着眼于吹扫气体流量为2.5slm的成膜条件时,随着APC设置工序的压力从0.67kPa(5Torr)起上升,电阻率降低。而且,可知虽然上述压力最低变为2.7kPa(20Torr),但在该最低压力以上的压力的情况下,随着压力的上升,电阻率也上升。
另外,在吹扫气体流量为5slm、7.5slm、10slm的成膜条件下也确认到TiN膜的电阻率根据APC设置工序的压力而变化,在这些条件下,在上述压力为4.0kPa(30Torr)的条件下,电阻率降至最低,为51.6μΩ·cm。并且,在上述压力相同的情况下,存在吹扫气体流量越多则电阻率越小的倾向。但是,可知还存在相对于吹扫气体流量的增加量的、电阻率的降低幅度逐渐减小而饱和的倾向。
如以上所记载的那样,为了实现TiN膜的电阻率的降低,认为针对成膜工序的压力存在最优的条件。在图4所示的以往的压力条件下,由于APC设置工序的压力为6.65kPa(5Torr),因此所形成的TiN膜的电阻率约为59μΩ·cm,但在本公开中,目标在于形成具有比该值更低的例如57μΩ·cm以下的电阻率的TiN膜。
而且,如上所述,发明者们对处理容器10内的压力条件进行了各种改变来形成了TiN膜。其结果,根据图5所示的数据,掌握了如果成膜工序的压力在2.7kPa(20Torr)~12.6kPa(95Torr)的范围内,则所形成的TiN膜的电阻率为57μΩ·cm以下的情况多。但是,如图5所示,TiN膜的电阻率也根据吹扫气体的流量而变化。因此,在本公开中,将在上述压力为使形成的TiN膜的电阻率成为57μΩ·cm以下的处于2.7kPa(20Torr)~12.6kPa(95Torr)的范围内的条件下实施TiN膜的形成作为必要条件。通过进行使用图5说明的预备实验等,能够预先掌握这样的条件。
如以上所说明的那样,根据上述的实施方式,能够抑制吹扫时间的延长,并且降低利用ALD法形成的TiN膜的电阻率。另外,如下面说明的那样,通过提高成膜工序时的压力,能够得到TiN膜的成膜速度上升这样的附加效果。
图6是示出处理容器10内的压力与TiN膜的成膜速度的关系的特性图(第二特性图),示出改变APC设置工序中的压力来实施与图5的TiN膜同样的成膜处理并测定所形成的TiN膜的成膜速度所得到的结果。在图6中,纵轴表示TiN膜的成膜速度,横轴表示APC设置工序的处理容器10内的压力。另外,在图6中,用○标记出吹扫气体的流量为2.5slm的数据,用△标记出吹扫气体的流量为5.0slm的数据,用◇标记出吹扫气体的流量为7.5slm的数据,用□标记出吹扫气体的流量为10.0slm的数据。
根据该图6的结果,可认为APC设置工序的压力、也就是说成膜工序的压力越高,则TiN膜的成膜速度越快。但是,也可认为相对于吹扫气体流量的增加量的、成膜速度的减少幅度逐渐减小而饱和。另外,可知在吹扫气体流量为5slm、7.5slm、10slm的成膜条件下,与上述压力相应的成膜速度大致相同。
基于以上说明的图5(第一特性图)和图6(第二特性图)中的吹扫气体2.5slm的条件的数据,可进行以下描述。在APC设置工序的压力为1.3kPa~3.6kPa、也就是说成膜工序的压力大致为2.7kPa~7.2kPa的范围的情况下,TiN膜的电阻率变为57μΩ·cm以下。另一方面,在该范围外的压力的情况下,发现电阻率急剧增大的倾向。另外,无论压力范围如何,成膜速度都随着压力的上升而增大。
根据这些情况,在成膜工序的压力为2.7kPa~7.2kPa的范围内的压力的情况下,更易于利用ALD来形成TiN膜,在一次的循环中形成的TiN膜的成膜量增多。而且,推测形成了作为杂质的Cl的含有率少的更致密的TiN膜。
另一方面,若APC设置工序的压力变得高于3.6kPa,则随着压力的上升,电阻率增大。推测这可能是因为,当压力超过3.6kPa时,利用ALD的TiN膜的形成、以及利用使TiCl4与NH3在气相中进行反应的CVD所形成的TiN膜的比例增大。
关于这样利用成膜工序时的压力来改善TiN膜的电阻率的机理尚不明确,但如下面说明的图7所示,在实验中确认到TiN膜的Cl含有率降低。因此,推测在压力高且存在H2气体的环境中,Cl易于从TiN膜的表面脱离。
图7是示出处理容器10内的压力与TiN膜的Cl含有率的关系的特性图(第三特性图),示出改变APC设置工序中的压力来实施与图5同样的成膜处理并测定所形成的TiN膜的Cl含有率所得到的结果。
TiN膜的Cl含有率(at%)表示利用SIMS(二次离子质谱法:Secondary Ion MassSpectrometry)来测定TiN膜中的Cl原子的比例所得到的结果。在该图中,纵轴表示Cl含有率,横轴表示处理容器10内的APC设置工序的处理容器10内的压力。另外,用○标记出吹扫气体的流量为2.5slm的数据,用◇标记出吹扫气体的流量为7.5slm的数据。
根据吹扫气体2.5slm的数据可知,在APC设置工序中的压力为0.67kPa(5Torr)~4.0kPa(30Torr)的范围的情况下,随着压力上升,所形成的TiN膜的Cl含有率逐渐降低。因而,通过使APC设置工序、也就是说成膜工序的压力上升,在形成TiN膜时进入TiN膜的Cl减少。其结果,可推测出抑制微孔的产生从而电阻率的降低。
实际上,在调查处理容器10内的压力与TiN膜的孔率的关系后,得到了图8(第四特性图)所示的结果。该图示出改变APC设置工序中的压力来实施与图5同样的成膜处理并测定所形成的TiN膜的退火处理后的孔率所得到的结果。退火处理条件为750℃、2小时、N2气体气氛。对与沟道形状平行地加工出的样品进行TEM(Transmission ElectronMicroscope:透射电子显微镜)观察,通过进行从整体的面积中计算出孔部分看起来为白色的面积的比例的图像处理,来求出孔率。在该图中,纵轴表示孔率,横轴表示处理容器10内的APC设置工序的处理容器10内的压力。另外用○标记出吹扫气体的流量为2.5slm的数据,用◇标记出吹扫气体的流量为7.5slm的数据。
根据吹扫气体2.5slm的数据可知,在APC设置工序的压力为1.3kPa(10Torr)~4.0kPa(30Torr)的范围时,随着压力上升,所形成的TiN膜的孔率降低。这样,发现TiN膜的Cl含有率与孔率之间具有相关性,通过使APC设置工序、也就是说成膜工序的压力上升,在形成TiN膜时进入TiN膜的Cl减少,其结果,可知抑制了孔的产生。
并且,在图9和图10中示出为了确认添加SiH4气体所产生的影响而改变步骤S2中的SiH4气体的供给流量并确认了对TiN膜的电阻率和成膜速度的影响的例子。从供给通路451、461、471持续地供给的吹扫气体(N2气体)的流量合计为7.5slm,处理容器10内的压力被设定为5.3kPa(40Torr)。
在图9、图10中,SiH4气体的供给流量为450sccm处的标记表示在与图5、图6的压力为5.3kPa(40Torr)处的菱形(◇)标记同样的处理条件下进行成膜的情况。而且,在将SiH4气体的供给流量减少为250sccm、0sccm的情况下,发现电阻率有略微上升的倾向(图9)。另外,发现成膜速度有随着SiH4气体的供给流量的降低而降低的倾向(图10)。
能够像这样通过供给SiH4气体作为添加气体来降低TiN膜的电阻率并提高成膜速度的机理尚不明确。关于这点估计为,当在步骤S1~S3中供给TiCl4气体时,TiCl4被吸附于在之前的循环中形成的Ti-NH2层,在膜的表面形成Ti-N-Ti-ClX。认为该Ti-N-Ti-ClX可能限制了在下个循环中供给的TiCl4的吸附位点的形成。此时,当针对TiCl4气体添加作为与Ti-N-Ti-ClX中包含的Cl进行反应的硅化合物的SiH4气体时,在膜表面形成Ti-N-Ti-HX,Cl成为SiHYCl(4-Y)的化合物而被从膜中提取出。认为Ti-N-Ti-HX相较于Ti-N-Ti-ClX而言阻碍吸附位点的形成的作用小,因此能够抑制对新的TiCl4的吸附产生的阻碍。例如推测为,利用上述的反应机理可能抑制了Cl在TiN膜中的残留并在膜的表面形成大量的吸附位点,从而TiN膜的成膜速度提高。
但是,若SiH4的Si进入TiN膜中,则形成作为绝缘材料的SiN,也成为使TiN膜的电阻率增的主要原因。因此,如图2中记载的那样,将开始供给SiH4气体的定时设定在开始供给TiCl4气体之后(步骤S1、S2)。由此,能够使TiCl4在充分地吸附于膜的表面之后与SiH4进行反应,能够抑制Si进入TiN膜中。
另外,将停止SiH4气体的定时也设在停止供给TiCl4气体之前,由此也能够得到降低处理容器10内的SiH4的残留量来抑制Si进入TiN膜中的效果。
但是,在开始供给TiCl4气体之后开始供给SiH4气体,另外,在停止供给TiCl4气体之前停止供给SiH4气体并不是必须的条件。例如,只要TiN膜的电阻率为上述的57μΩ·cm以下,也可以同时停止TiCl4气体和SiH4气体,也可以将供给开始的定时设定为同时。
另外,在图9所示的例子中,TiN膜的电阻率为60μΩ·cm前后,是比作为目标值的57μΩ·cm大的值。但是,如上所述,TiN膜的电阻率也根据吹扫气体的流量等其它处理条件而变化。而且,在图9中记载的结果中,即使改变所添加的SiH4气体的流量,也没有发现电阻率产生图10所示的成膜速度那么大的变化。因而,只要是能够形成电阻率为57μΩ·cm以下的TiN膜的条件即可,也可以在可得到需要的成膜速度的范围内将SiH4气体的供给流量设定为比450sccm低的流量(包括SiH4气体的供给流量为0sccm的情况)。另外,与此相反,为了实现更高的成膜速度,也可以在不增大Si进入TiN膜所产生的影响的范围内将SiH4气体的供给流量增大至大于450sccm。
如以上所说明的那样,根据本公开,通过实现成膜工序中的压力条件的最优化,能够形成电阻率低的TiN膜。另外,还能够增大TiN膜的成膜速度。因而,能够抑制吹扫原料气体、反应气体的步骤S4、S6的时间延长。并且,通过使成膜速度增大,相较于以往,能够减少达到目标膜厚为止的成膜工序的循环(步骤S1~S6)的重复次数。因此,能够有助于缩短成膜处理的总处理时间,能够实现生产率的提高。这样,通过使成膜工序中的压力条件最优化,能够实现TiN膜的电阻率的降低、成膜速度的提高,因此能够使用现有的设备设来大幅改善生产率。
在以上,作为原料气体的钛化合物,除了四氯化钛(TiCl4)之外,还能够使用三氯化钛(TiCl3)气体、二氯化钛(TiCl2)气体、四溴化钛(TiBr4)气体、碘化钛(TiI4)气体。
另外,作为反应气体的氮化合物,除了氨之外,还能够使用肼(N2H4)、一甲基肼(CH3NH-NH2)或者氮自由基。
并且,在添加气体中,作为与钛化合物中包含的氯进行反应的硅化合物,除了硅烷(SiH4)之外,也可以使用乙硅烷(Si2H6)。但是,在电阻率的增大成为问题的情况下,优选避开例如SiH2Cl2等这样的含Cl的硅化合物。另外,作为非活性气体,除了氮气之外,也可以使用氩(Ar)气、氦(He)气。
在上述的实施方式中,以使APC设置工序的设定压力低于成膜工序的设定压力的方式设定APC阀18的开度。但是,不限于该例,也可以以使APC设置工序中的非活性气体的供给量与成膜工序时的该供给量为相同程度来将处理容器10内的压力调节为成膜工序时的压力、即2.7kPa~12.6kPa的范围内的压力的方式设定APC阀18的开度。
另外,成膜工序时的压力调节并非仅通过控制原料气体、反应气体、非活性气体的流量来实施,也可以与对APC阀18的开度的调节组合起来实施。例如,在上述的例子中,在形成TiN膜的工序中进行了非活性气体的供给,但在供给原料气体、反应气体时停止供给非活性气体,另一方面,也可以变更APC阀18的开度来如上所述那样调节处理容器10内的压力。另外,实施同时供给N2气体和H2气体的快速吹扫不是必须的条件。在可得到电阻率为57μΩ·cm以下的TiN膜的范围内,例如也可以仅利用N2气体进行快速吹扫。另外,也可以不进行快速吹扫,仅进行仅利用始终供给的N2气体的吹扫。
并且,进行TiN膜的成膜的装置不限于图1所示的结构。例如,也可以使用对多张晶圆W同时进行成膜的批式的成膜装置。在该情况下也是,在利用ALD法来进行TiN膜的成膜时,能够在使TiN膜的电阻率成为57μΩ·cm以下的处于2.7kPa~12.6kPa的范围内的压力条件下实施成膜工序。
<其它应用>
此外,应认为本次公开的实施方式在所有方面均为例示,而非限制性的。上述的实施方式在不脱离所附权利要求书及其主旨的范围内,也可以以各种方式进行省略、置换、变更或者组合。
附图标记说明
W:半导体晶圆;1:成膜装置;10:处理容器;4A:原料气体供给部;4B:反应气体供给部;4C:添加气体供给部;4D:氢气供给部。

Claims (17)

1.一种氮化钛膜的成膜方法,其特征在于,
包括以下工序:交替地重复实施对收容在处理容器内的基板供给原料气体的操作和对所述基板供给反应气体的操作来形成所述氮化钛膜,其中,所述原料气体含有含氯和钛的钛化合物,所述反应气体含有含氮且与所述钛化合物进行反应来形成氮化钛的氮化合物,
在将所述处理容器内的压力设定成使所述氮化钛膜的电阻率成为57μΩ·cm以下的处于2.7kPa~12.6kPa的范围内的条件下,实施形成所述氮化钛膜的工序。
2.根据权利要求1所述的氮化钛膜的成膜方法,其特征在于,
所述钛化合物是四氯化钛。
3.根据权利要求1或2所述的氮化钛膜的成膜方法,其特征在于,
所述氮化合物是氨。
4.根据权利要求1~3中的任一项所述的氮化钛膜的成膜方法,其特征在于,
在形成所述氮化钛膜的工序中,在向所述基板供给所述原料气体的期间供给添加气体,所述添加气体含有与所述钛化合物中包含的氯进行反应的硅化合物。
5.根据权利要求4所述的氮化钛膜的成膜方法,其特征在于,
开始供给所述添加气体的定时在开始供给所述原料气体之后。
6.根据权利要求4或5所述的氮化钛膜的成膜方法,其特征在于,
所述硅化合物是硅烷。
7.根据权利要求1~6中的任一项所述的氮化钛膜的成膜方法,其特征在于,
在将所述基板加热至400℃~750℃的范围内的温度的条件下实施形成所述氮化钛膜的工序。
8.根据权利要求1~7中的任一项所述的氮化钛膜的成膜方法,其特征在于,
一边向所述处理容器内供给非活性气体,一边实施形成所述氮化钛膜的工序。
9.根据权利要求8所述的氮化钛膜的成膜方法,其特征在于,
在所述原料气体的供给与所述反应气体的供给之间的切换定时,与所述非活性气体一并供给氢气。
10.一种氮化钛膜的成膜装置,在基板上进行氮化钛膜的成膜,所述氮化钛膜的成膜装置具有:
处理容器,其构成为收容所述基板;
原料气体供给部,其向所述处理容器供给原料气体,所述原料气体含有含氯和钛的钛化合物;
反应气体供给部,其向所述处理容器供给反应气体,所述反应气体含有含氮且与所述钛化合物进行反应来形成氮化钛的氮化合物;以及
控制部,
其中,所述控制部构成为进行以下控制:交替地重复实施从所述原料气体供给部向所述处理容器内供给原料气体的操作和从所述反应气体供给部向所述处理容器内供给反应气体的操作,并且,在将所述处理容器内的压力设定成使所述氮化钛膜的电阻率成为57μΩ·cm以下的处于2.7kPa~12.6kPa的范围内的条件下,实施形成所述氮化钛膜的步骤。
11.根据权利要求10所述的氮化钛膜的成膜装置,其特征在于,
所述钛化合物是四氯化钛。
12.根据权利要求10或11所述的氮化钛膜的成膜装置,其特征在于,
所述氮化合物是氨。
13.根据权利要求10~12中的任一项所述的氮化钛膜的成膜装置,其特征在于,
还具备添加气体供给部,所述添加气体供给部向所述处理容器供给添加气体,所述添加气体含有与所述钛化合物中包含的氯进行反应的硅化合物,
所述控制部构成为进行以下控制:在形成所述氮化钛膜的步骤中,在从所述原料气体供给部供给所述原料气体的期间,从所述添加气体供给部供给所述添加气体。
14.根据权利要求13所述的氮化钛膜的成膜装置,其特征在于,
所述控制部对所述原料气体供给部和所述添加气体供给部进行控制,以使开始供给所述添加气体的定时在开始供给所述原料气体之后。
15.根据权利要求13或14所述的氮化钛膜的成膜装置,其特征在于,
所述硅化合物是硅烷。
16.根据权利要求10~15中的任一项所述的氮化钛膜的成膜装置,其特征在于,
还具备非活性气体供给部,所述非活性气体供给部向所述处理容器供给非活性气体,
所述控制部构成为进行以下控制:一边从所述非活性气体供给部向所述处理容器内供给非活性气体一边实施形成所述氮化钛膜的步骤。
17.根据权利要求16所述的氮化钛膜的成膜装置,其特征在于,
还具备氢气供给部,所述氢气供给部向所述处理容器供给氢气,
所述控制部进行以下控制:在所述原料气体的供给与所述反应气体的供给之间的切换定时,与所述非活性气体的供给一并实施来自所述氢气供给部的氢气的供给。
CN202210472341.3A 2021-05-10 2022-04-29 氮化钛膜的成膜方法和氮化钛膜的成膜装置 Pending CN115323351A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-079724 2021-05-10
JP2021079724 2021-05-10
JP2022-024043 2022-02-18
JP2022024043A JP2022173989A (ja) 2021-05-10 2022-02-18 窒化チタン膜の成膜方法、及び窒化チタン膜を成膜する装置

Publications (1)

Publication Number Publication Date
CN115323351A true CN115323351A (zh) 2022-11-11

Family

ID=83901256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210472341.3A Pending CN115323351A (zh) 2021-05-10 2022-04-29 氮化钛膜的成膜方法和氮化钛膜的成膜装置

Country Status (3)

Country Link
US (1) US20220356565A1 (zh)
KR (1) KR20220152934A (zh)
CN (1) CN115323351A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023023351A (ja) * 2021-08-05 2023-02-16 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4977106A (en) * 1990-05-01 1990-12-11 Texas Instruments Incorporated Tin chemical vapor deposition using TiCl4 and SiH4
US20120219710A1 (en) * 2011-02-28 2012-08-30 Tokyo Electron Limited Method of forming titanium nitride film, apparatus for forming titanium nitride film, and program
JP2013040398A (ja) * 2011-07-20 2013-02-28 Tokyo Electron Ltd 成膜装置及び成膜方法
CN107978541A (zh) * 2016-10-21 2018-05-01 东京毅力科创株式会社 成膜装置和成膜方法
CN108531888A (zh) * 2017-03-02 2018-09-14 东京毅力科创株式会社 气体供给装置、气体供给方法和成膜方法
JP2018188724A (ja) * 2017-05-01 2018-11-29 東京エレクトロン株式会社 成膜方法および成膜装置
CN110578130A (zh) * 2018-06-08 2019-12-17 东京毅力科创株式会社 成膜方法及成膜装置
CN111118473A (zh) * 2018-11-01 2020-05-08 北京北方华创微电子装备有限公司 反应腔室、原子层沉积方法及半导体加工设备
US20210047727A1 (en) * 2019-08-15 2021-02-18 Tokyo Electron Limited Film forming method and film forming apparatus
CN112466875A (zh) * 2020-11-25 2021-03-09 长江存储科技有限责任公司 三维存储器及氮化钛粘合层的形成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3138892B2 (ja) 1992-12-17 2001-02-26 東京エレクトロン株式会社 薄膜形成方法及びその装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4977106A (en) * 1990-05-01 1990-12-11 Texas Instruments Incorporated Tin chemical vapor deposition using TiCl4 and SiH4
US20120219710A1 (en) * 2011-02-28 2012-08-30 Tokyo Electron Limited Method of forming titanium nitride film, apparatus for forming titanium nitride film, and program
JP2013040398A (ja) * 2011-07-20 2013-02-28 Tokyo Electron Ltd 成膜装置及び成膜方法
CN107978541A (zh) * 2016-10-21 2018-05-01 东京毅力科创株式会社 成膜装置和成膜方法
CN108531888A (zh) * 2017-03-02 2018-09-14 东京毅力科创株式会社 气体供给装置、气体供给方法和成膜方法
JP2018188724A (ja) * 2017-05-01 2018-11-29 東京エレクトロン株式会社 成膜方法および成膜装置
CN110578130A (zh) * 2018-06-08 2019-12-17 东京毅力科创株式会社 成膜方法及成膜装置
CN111118473A (zh) * 2018-11-01 2020-05-08 北京北方华创微电子装备有限公司 反应腔室、原子层沉积方法及半导体加工设备
US20210047727A1 (en) * 2019-08-15 2021-02-18 Tokyo Electron Limited Film forming method and film forming apparatus
CN112466875A (zh) * 2020-11-25 2021-03-09 长江存储科技有限责任公司 三维存储器及氮化钛粘合层的形成方法

Also Published As

Publication number Publication date
KR20220152934A (ko) 2022-11-17
US20220356565A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
TWI739263B (zh) 半導體裝置之製造方法、基板處理裝置及程式
US9096928B2 (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP5019430B2 (ja) 間欠的なプリカーサガスフロープロセスを使用して金属層を形成する方法。
KR102368311B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치, 및 프로그램
KR101434116B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치 및 컴퓨터 판독가능한 기록 매체
JP5651451B2 (ja) 半導体装置の製造方法、基板処理方法及び基板処理装置
US20090142491A1 (en) Method of Film Deposition and Film Deposition System
CN110998806A (zh) 基板处理装置、半导体装置的制造方法及程序
CN115323351A (zh) 氮化钛膜的成膜方法和氮化钛膜的成膜装置
CN113518836A (zh) 半导体装置的制造方法、程序和基板处理装置
CN114250447A (zh) 半导体装置的制造方法、基板处理装置和记录介质
KR20190100381A (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체
CN113206001A (zh) 半导体装置的制造方法、记录介质和基板处理装置
JP2022173989A (ja) 窒化チタン膜の成膜方法、及び窒化チタン膜を成膜する装置
US20230212738A1 (en) Method and device for forming tungsten film, and device for forming intermediate film before forming tungsten film
JP7186909B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
TWI840694B (zh) 基板處理方法、半導體裝置的製造方法、基板處理裝置及程式
US20230307229A1 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
EP4117023A1 (en) Method of processing substrate, substrate processing apparatus, and recording medium
WO2024062662A1 (ja) 基板処理方法、半導体装置の製造方法、プログラム、および基板処理装置
US20230402281A1 (en) Processing method, method of manufacturing semiconductor device, processing apparatus, and recording medium
TW202314025A (zh) 基板處理方法、半導體裝置的製造方法、基板處理裝置、及程式
KR20230044316A (ko) 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
KR20230136556A (ko) 기판 처리 방법, 반도체 장치의 제조 방법, 프로그램 및 기판 처리 장치
JP2023023351A (ja) 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination