CN115323349B - 一种等离子体辅助多步骤连续制备渗层/非晶碳膜复合涂层的方法及其应用 - Google Patents

一种等离子体辅助多步骤连续制备渗层/非晶碳膜复合涂层的方法及其应用 Download PDF

Info

Publication number
CN115323349B
CN115323349B CN202211029925.XA CN202211029925A CN115323349B CN 115323349 B CN115323349 B CN 115323349B CN 202211029925 A CN202211029925 A CN 202211029925A CN 115323349 B CN115323349 B CN 115323349B
Authority
CN
China
Prior art keywords
plasma
argon
carbon film
temperature
amorphous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211029925.XA
Other languages
English (en)
Other versions
CN115323349A (zh
Inventor
杨阳
李�杰
张世宏
郑军
谢金铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN202211029925.XA priority Critical patent/CN115323349B/zh
Publication of CN115323349A publication Critical patent/CN115323349A/zh
Application granted granted Critical
Publication of CN115323349B publication Critical patent/CN115323349B/zh
Priority to US18/238,426 priority patent/US20240071726A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及复合涂层制备技术领域,具体涉及一种等离子体辅助多步骤连续制备渗层/非晶碳膜复合涂层的方法及其应用,本发明利用梯度降温氩离子等离子体活化技术,衔接高温等离子体渗碳/氮和低温等离子体镀碳膜技术,利用多次高能氩离子轰击活化材料表面,去除渗层表面团簇状多孔疏松结构,使表面更加致密平整,促进后续非晶碳膜形核生长,形成一种高温氮/碳离子等离子体扩渗+梯度降温氩离子等离子体活化+低温碳离子等离子体镀膜多步骤连续制备渗层/非晶碳膜复合涂层的集成技术,并将其应用在轴承、齿轮等传动件、转动件领域。

Description

一种等离子体辅助多步骤连续制备渗层/非晶碳膜复合涂层 的方法及其应用
技术领域
本发明涉及复合涂层制备技术领域,具体涉及一种等离子体辅助多步骤连续制备渗层/非晶碳膜复合涂层的方法及其应用。
背景技术
类金刚石(DLC)薄膜是一种具有低摩擦系数、高耐磨性和化学惰性的硬质涂层。这种非晶碳膜作为固体润滑膜非常有吸引力,但是,由于涂层内的高内应力以及和基材之间的热膨胀系数差异大等原因导致其在使用过程中容易从基材脱落,严重制约了其实际应用。等离子体渗碳/氮和等离子体镀碳膜技术可以通过技术集成,实现一种多步骤制备渗层+薄膜复合层的技术,改善工件的摩擦学性能。然而,等离子体渗碳/氮和等离子体镀碳膜技术在技术集成中由于等离子体渗碳/氮后表面粗糙度大、活性低导致随后沉积的碳膜质量差、生长效率低的问题。
鉴于上述缺陷,本发明创作者经过长时间的研究和实践终于获得了本发明。
发明内容
本发明的目的在于解决等离子体渗碳/氮和等离子体镀碳膜技术在技术集成中由于等离子体渗碳/氮后表面粗糙度大、活性低导致随后沉积的碳膜质量差、生长效率低的问题,提供了一种等离子体辅助多步骤连续制备渗层/非晶碳膜复合涂层的方法及其应用。
为了实现上述目的,本发明公开了一种等离子体辅助多步骤连续制备渗层/非晶碳膜复合涂层的方法,包括以下步骤:
S1,基体预处理:将基体钢材料表面用砂纸打磨抛光至镜面,在酒精和丙酮溶液中清洗干净备用;
S2,高温碳/氮离子等离子体扩渗:将步骤S1得到的样品放入等离子体化学热处理炉中进行扩渗处理,通入氢气或氩气升温,待温度升至设定值通入扩渗源气体,控制气压和源气体流量,进行扩渗保温;
S3,梯度降温氩离子等离子体活化:待步骤S2中的扩渗保温结束后,停止通入扩渗源气体,通入氩气,控制氩气流量和气压,逐渐减少氩气流量,降低气压,降低电压,在炉温降低的同时,实现氩离子轰击;
S4,低温碳离子等离子体镀膜:待温度降低至200℃以下时,开启电压,通入碳源气体和氢气,控制气压和碳源气体、氢气流量,进行非晶碳膜的沉积,沉积后试样随炉冷却至室温,取出试样。
所述步骤S2中的高温碳/氮离子等离子体扩渗为等离子体渗氮、渗碳、碳氮共渗、氮碳共渗中的任意一种。
所述步骤S2中扩渗处理的温度为400~600℃。
所述步骤S3中梯度降温氩离子等离子体活化包以下阶段多步骤氩离子等离子体活化,具体如下:
S31,通入氩气流量为15~25sccm,气压为100~140Pa,电压750~800V,活化时间为30~60min;
S32,通入氩气流量为10~20sccm,气压为80~120Pa,电压700~750V,活化时间为30~60min;
S33,通入氩气流量为5~15sccm,气压为50~100Pa,电压650~700V,活化时间为30~60min;
S34,氩离子等离子体活化条件:通入氩气流量小于10sccm,气压为30~80Pa,电压600V以下,待温度降低至200℃时进行步骤S4低温碳离子等离子体镀膜。
所述步骤S4中碳源气体为甲烷、乙烷、丙烷、苯类、二甲基二氯硅烷,二甲基氯硅烷,三甲基氯硅烷、一氧化碳、甲醇、丙酮和酒精中的任意一种。
所述步骤S4中沉积温度小于200℃,沉积电压为750-850V,沉积气压小于100Pa。
本发明还公开了上述等离子体辅助多步骤连续制备渗层/非晶碳膜复合涂层的方法制得的渗层/非晶碳膜复合涂层以及这种渗层/非晶碳膜复合涂层在传动件、转动件领域中的应用。
与现有技术比较本发明的有益效果在于:本发明利用梯度降温氩离子等离子体活化技术,衔接高温等离子体渗碳/氮和低温等离子体镀碳膜技术,利用多次高能氩离子轰击活化材料表面,去除渗层表面团簇状多孔疏松结构,使表面更加致密平整,促进后续非晶碳膜形核生长,该方法可以提高碳膜的结合力,改善工件的摩擦磨损性能,形成一种高温氮/碳离子等离子体扩渗+梯度降温氩离子等离子体活化+低温碳离子等离子体镀膜多步骤连续制备渗层/非晶碳膜复合涂层的集成技术,并将其应用在轴承、齿轮等传动件、转动件领域。
附图说明
图1为实施例和对比例1、2中非晶碳膜的拉曼测试结果;
图2为实施例和对比例1的复合层的表面形貌测试结果;
图3为实施例和对比例1的复合层的洛氏压痕测试结果;
图4为实施例和对比例1的复合层的划痕测试结果;
图5为实施例和对比例2的复合层的划痕测试结果;
图6为实施例和对比例1、2的复合层的摩擦系数测试结果;
图7为实施例和对比例1、2的复合层的磨损率测试结果。
具体实施方式
以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。
实施例
本实施例为等离子体渗氮+梯度降温氩离子等离子体活化+低温碳离子等离子体镀膜,记为ND-Ar(Gra),具体制备方法如下:
将轴承钢表面用砂纸打磨抛光至镜面状态,清洗后放入等离子体渗氮炉中进行渗氮处理,分别通入氮气和氢气作为反应气体,给定电压,设定渗氮温度与气压分别为500℃和200Pa,保温一段时间。
保温时间结束后,不关闭电压,关闭扩渗源气体阀门,通入20sccm氩气对材料渗氮层表面进行轰击活化,给定电压780V,气压设定为120Pa,溅射时间为30min;
进一步随炉降温,通入15sccm氩气对材料渗氮层表面进行轰击活化,给定电压750V,气压设定为100Pa,溅射时间为30min;
进一步随炉降温,通入10sccm氩气对材料渗氮层表面进行轰击活化,给定电压700V,气压设定为80Pa,溅射时间为30min;
进一步随炉降温,通入5sccm氩气对材料渗氮层表面进行轰击活化,给定电压600V,气压设定为60Pa,待温度降至200℃以下时,电压升高到800V,进行非晶碳膜制备,分别通入丙烷和氢气作为反应气体,给定电压,沉积温度设定为160℃,沉积时间为5h。沉积时间结束后样品随炉降温至室温,取出样品进行相关表征测试。
对比例1
本对比例为等离子体渗氮+低温碳离子等离子体镀膜,等离子体渗氮后随炉降温至200℃以下进行非晶碳膜沉积,不包含氩离子轰击,记为ND,具体制备方法如下:
将轴承钢表面用砂纸打磨抛光至镜面状态,清洗后放入等离子体渗氮炉中进行渗氮处理,分别通入氮气和氢气作为反应气体,给定电压,设定渗氮温度与气压分别为500℃和200pa,保温一段时间。保温时间结束后,关闭电压,通入少量氮气作为保护气体防止样品氧化。
待温度降至200℃以下时,开启电压进行非晶碳膜制备,分别通入丙烷和氢气作为反应气体,给定电压,沉积温度设定为160℃,沉积时间为5h。沉积时间结束后样品随炉降温至室温,取出样品进行相关表征测试。
对比例2
本对比例为等离子体渗氮+非梯度降温氩离子等离子体活化+低温碳离子等离子体镀膜,记为ND-Ar,具体制备方法如下:
将轴承钢表面用砂纸打磨抛光至镜面状态,清洗后放入等离子体渗氮炉中进行渗氮处理,分别通入氮气和氢气作为反应气体,给定电压,设定渗氮温度与气压分别为500℃和200Pa,保温一段时间。
保温时间结束后,不关闭电压,关闭扩渗源气体阀门,通入20sccm氩气对材料渗氮层表面进行轰击活化,给定电压780V,气压设定为120Pa,溅射时间为30min;溅射时间结束后,关闭电压,通入少量氮气作为保护气体防止样品氧化。
待温度降至200℃以下时,开启电压进行非晶碳膜制备,分别通入丙烷和氢气作为反应气体,给定电压,沉积温度设定为160℃,沉积时间为5h。沉积时间结束后样品随炉降温至室温,取出样品进行相关表征测试。
对上述对比例1、2和实施例中制备的ND、ND-Ar和ND-Ar(Gra)复合层进行性能表征如下:利用拉曼光谱仪对碳膜进行测试,分析碳原子键合成分,如图1所示,图1为实施例和对比例1、2中非晶碳膜的拉曼图谱,结果显示具有明显的D峰和G峰,是典型非晶碳膜特征;
利用探针式轮廓应力仪对复合层表面粗糙度进行检测,样品表面选区大小为500μm×500μm,扫描速度为10μm/s的3D拟合计算出粗糙度Sa值,如图2所示,图2为实施例和对比例1的复合层的表面形貌和粗糙度,(a)为ND对比例复合层,(b)为ND-Ar(Gra)实施例复合层,无Ar+轰击活化的ND表面形貌团簇状大的凸起较多,粗糙度也相应较高,达到Sa=876nm,经梯度降温Ar+轰击活化处理的ND-Ar(Gra)表面大的凸起明显减少,粗糙度降低至Sa=249nm,说明梯度降温Ar+轰击活化可以消除渗氮后表面较大的团簇状组织,使表面更加平整致密,有利于非晶碳膜的形核生长;
利用洛氏压痕法并通过压痕形貌判定碳膜与基体之间的结合力,压力为1500N,如图3所示,图3为实施例和对比例1的复合层的洛氏压痕金相,(a)为ND对比例复合层,(b)为ND-Ar(Gra)实施例复合层,根据VDI3198标准,两种复合涂层等级都为HF1级,都表现出非常好的结合力,其中ND涂层压痕边缘的裂纹较宽且不平整相对ND-Ar(Gra)涂层而言,表明梯度降温Ar+轰击活化处理可以一定程度上提高碳膜与基体的结合力;
利用划痕测试法并通过划痕形貌及声信号判定碳膜与基体之间的结合力,加载力为1~100N,加载速率为100N/min,如图4、5所示,图4为实施例和对比例1的复合层的划痕结合力测试结果,(a)为ND对比例1复合层,结合强度为79.19N,(b)为ND-Ar(Gra)实施例复合层,结合强度为94.43N,可以看出实施例的结合力是高于对比例1的,同样说明Ar+轰击活化处理可以提高碳膜与基体的结合力;图5为实施例与对比例2的复合层的划痕结合力测试结果,(a)为ND-Ar对比例2复合层,结合强度为82.31N,(b)为ND-Ar(Gra)实施例复合层,结合强度为94.43N,可以看出实施例的结合力是高于对比例2的,说明梯度降温Ar+轰击活化处理与非梯度降温Ar+轰击活化处理相比,梯度降温对于提高复合层结合力效果更明显。
利用球盘摩擦磨损测试设备对复合层的磨损性能进行测试,摩擦副为氧化铝球(直径Φ=6mm),载荷为1N,磨损半径为2mm,转数为240r/min,测试时间为2000s,测试温度为室温,通过分析摩擦系数曲线的变化可以判定两种制备方法下非晶碳膜的生长情况,如图6所示,图6为实施例和对比例1、2的复合层的摩擦系数曲线,从图中可以看出,ND对比例1复合层的摩擦系数升高幅度明显大于ND-Ar(Gra)实施例复合层,这主要是由于ND-Ar(Gra)复合层碳膜厚度较厚导致的,从而确定本发明梯度降温Ar+轰击活化对于改善含氢非晶碳膜沉积的效果;ND-Ar对比例2复合层的摩擦系数升高幅度要大于ND-Ar(Gra)实施例复合层,说明梯度降温Ar+轰击活化对于改善非晶碳膜沉积效果更好相较于非梯度降温Ar+轰击活化,利用探针式轮廓应力仪对磨痕进行拟合计算出磨损率,如图7所示,图7为实施例和对比例1、2的复合层的磨损率计算结果,从图中可以看出,ND磨损率比ND-Ar(Gra)磨损率高很多,表明ND-Ar(Gra)复合层碳膜厚度更厚,综合摩擦系数结果可知,结果都表明Ar+轰击活化可以改善非晶碳膜的生长和沉积效率;ND-Ar磨损率也要高于ND-Ar(Gra)磨损率,综合摩擦系数结果可知,梯度降温Ar+轰击活化比非梯度降温Ar+轰击活化在改善非晶碳膜沉积方面效果更佳。
以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。

Claims (5)

1.一种等离子体辅助多步骤连续制备渗层/非晶碳膜复合涂层的方法,其特征在于,包括以下步骤:
S1,基体预处理:将基体钢材料表面用砂纸打磨抛光至镜面,在酒精和丙酮溶液中清洗干净备用;
S2,高温碳/氮离子等离子体扩渗:将步骤S1得到的样品放入等离子体化学热处理炉中进行扩渗处理,通入氢气或氩气升温,升温结束后通入扩渗源气体,控制气压和源气体流量,进行扩渗保温;
S3,梯度降温氩离子等离子体活化:待步骤S2中的扩渗保温结束后,停止通入扩渗源气体,通入氩气,控制氩气流量和气压,逐渐减少氩气流量,降低气压,降低电压,在炉温降低的同时,实现氩离子轰击;
S4,低温碳离子等离子体镀膜:待温度降低至200℃以下时,开启电压,通入碳源气体和氢气,控制气压和碳源气体、氢气流量,进行非晶碳膜的沉积,沉积后试样随炉冷却至室温,取出试样;
所述步骤S2中的高温碳/氮离子等离子体扩渗为等离子体渗氮、渗碳、碳氮共渗、氮碳共渗中的任意一种;
所述步骤S3中梯度降温氩离子等离子体活化包括以下阶段多步骤氩离子等离子体活化,具体如下:
S31,通入氩气流量为15~25sccm,气压为100~140Pa,电压750~800V,活化时间为30~60min;
S32,通入氩气流量为10~20sccm,气压为80~120Pa,电压700~750V,活化时间为30~60min;
S33,通入氩气流量为5~15sccm,气压为50~100Pa,电压650~700V,活化时间为30~60min;
S34,氩离子等离子体活化条件:通入氩气流量小于10sccm,气压为30~80Pa,电压600V以下,待温度降低至200℃时进行步骤S4低温碳离子等离子体镀膜;
所述步骤S2中扩渗处理的温度为400~600℃。
2.如权利要求1所述的一种等离子体辅助多步骤连续制备渗层/非晶碳膜复合涂层的方法,其特征在于,所述步骤S4中碳源气体为甲烷、乙烷、丙烷、苯类、二甲基二氯硅烷,二甲基氯硅烷,三甲基氯硅烷、一氧化碳、甲醇、丙酮和酒精中的任意一种。
3.如权利要求1所述的一种等离子体辅助多步骤连续制备渗层/非晶碳膜复合涂层的方法,其特征在于,所述步骤S4中沉积温度小于200℃,沉积电压为750-850V,沉积气压小于100Pa。
4.一种采用如权利要求1~3任一项所述的等离子体辅助多步骤连续制备渗层/非晶碳膜复合涂层的方法制得的渗层/非晶碳膜复合涂层。
5.一种如权利要求4所述的渗层/非晶碳膜复合涂层在传动件、转动件领域中的应用。
CN202211029925.XA 2022-08-25 2022-08-25 一种等离子体辅助多步骤连续制备渗层/非晶碳膜复合涂层的方法及其应用 Active CN115323349B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211029925.XA CN115323349B (zh) 2022-08-25 2022-08-25 一种等离子体辅助多步骤连续制备渗层/非晶碳膜复合涂层的方法及其应用
US18/238,426 US20240071726A1 (en) 2022-08-25 2023-08-25 Method for plasma-assisted and multi-step continuous preparation of diffusion layer/amorphous carbon film composite coating and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211029925.XA CN115323349B (zh) 2022-08-25 2022-08-25 一种等离子体辅助多步骤连续制备渗层/非晶碳膜复合涂层的方法及其应用

Publications (2)

Publication Number Publication Date
CN115323349A CN115323349A (zh) 2022-11-11
CN115323349B true CN115323349B (zh) 2023-07-25

Family

ID=83928762

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211029925.XA Active CN115323349B (zh) 2022-08-25 2022-08-25 一种等离子体辅助多步骤连续制备渗层/非晶碳膜复合涂层的方法及其应用

Country Status (2)

Country Link
US (1) US20240071726A1 (zh)
CN (1) CN115323349B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105039900A (zh) * 2015-06-04 2015-11-11 上海大学 Sdc99钢的离子氮碳共渗化合物层相调控方法
CN113265641A (zh) * 2021-03-25 2021-08-17 安徽工业大学 一种基于低温辉光等离子体的疏水减摩自润滑碳膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105039900A (zh) * 2015-06-04 2015-11-11 上海大学 Sdc99钢的离子氮碳共渗化合物层相调控方法
CN113265641A (zh) * 2021-03-25 2021-08-17 安徽工业大学 一种基于低温辉光等离子体的疏水减摩自润滑碳膜及其制备方法

Also Published As

Publication number Publication date
CN115323349A (zh) 2022-11-11
US20240071726A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
US5198285A (en) Hard and lubricant thin film of iron base metallic material coated with amorphous carbon-hydrogen-silicon
JP4251738B2 (ja) 硬質被膜及び被覆部材
Erdemir et al. Synthesis of superlow-friction carbon films from highly hydrogenated methane plasmas
KR101338059B1 (ko) 금형 모재의 코팅재
Podgornik et al. Tribological properties of plasma nitrided and hard coated AISI 4140 steel
US7833626B2 (en) Amorphous carbon film, process for forming the same, and high wear-resistant sliding member with amorphous carbon film provided
Liu et al. Clarification of high wear resistance mechanism of ta-CNx coating under poly alpha-olefin (PAO) lubrication
EP1783349A1 (en) Piston ring, piston, cylinder and piston pin having amorphous and hard carbon film
US20060246290A1 (en) Amorphous carbon film, process for producing the same and amorphous carbon film-coated material
JP2004360065A (ja) ナノコンポジット・コーティングの形成方法
CN114836715A (zh) 一种金属表面Cr/CrN/CrCN/Cr-DLC多层复合自润滑薄膜及其制备方法
JP2971928B2 (ja) 潤滑性を有する硬質非晶質炭素―水素―珪素薄膜、表面に該薄膜を有する鉄系金属材料、およびその製造方法
Spies et al. Adhesion and wear resistance of nitrided and TiN coated low alloy steels
JP5145051B2 (ja) 硬質皮膜被覆部材及びその製造方法
CN115323349B (zh) 一种等离子体辅助多步骤连续制备渗层/非晶碳膜复合涂层的方法及其应用
CN110343993A (zh) 一种硬质合金表面处理方法及应用
CN108330432B (zh) 一种钢材表面无氢复合改性层的制备方法
Sharifahmadian et al. Comprehensive tribological study of optimized N-DLC/DLC coatings fabricated by active screen DC-pulsed PACVD technique
Jao et al. Formation and characterization of DLC: Cr: Cu multi-layers coating using cathodic arc evaporation
CN111979543B (zh) 一种基于摩擦诱导催化形成自润滑非晶碳膜的涂层材料及其制备方法
Peng et al. Investigating the effect of bias voltage on the microstructural thermal stability and tribological performance of N-doped hydrogenated diamond-like carbon coatings
JP2001316819A (ja) 非晶質硬質炭素膜及びその製造方法
Peng et al. Effect of cryogenic pretreatments on the microstructure and mechanical performance of diamond-like carbon coatings for high-speed alloys
CN116949389A (zh) 一种基于渗氮层基体表面相组成调控高效沉积制备非晶碳膜的方法及其应用
CN112708859A (zh) 一种具有减摩抗磨的CrAlVN涂层的刀具及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant