CN115322783A - 一种铋离子和/或稀土离子共掺的偏硼酸钆荧光材料及合成方法 - Google Patents

一种铋离子和/或稀土离子共掺的偏硼酸钆荧光材料及合成方法 Download PDF

Info

Publication number
CN115322783A
CN115322783A CN202210887806.1A CN202210887806A CN115322783A CN 115322783 A CN115322783 A CN 115322783A CN 202210887806 A CN202210887806 A CN 202210887806A CN 115322783 A CN115322783 A CN 115322783A
Authority
CN
China
Prior art keywords
oxide
xbi
raw materials
gadolinium
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210887806.1A
Other languages
English (en)
Other versions
CN115322783B (zh
Inventor
赵庆彪
彭伊宁
代艳南
杨帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN202210887806.1A priority Critical patent/CN115322783B/zh
Publication of CN115322783A publication Critical patent/CN115322783A/zh
Application granted granted Critical
Publication of CN115322783B publication Critical patent/CN115322783B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/778Borates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7712Borates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7797Borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种铋离子和/或稀土离子共掺的偏硼酸钆荧光材料及合成方法,是在偏硼酸钆(Gd(BO2)3)基底中通过铋离子与稀土离子(RE3+)共掺杂得到具有高量子产率的光色可调荧光粉的合成方法。本方法通过高温固相反应制备出化学通式为Gd1‑x‑y(BO2)3:xBi3+‑yRE3+(其中x的取值范围为0<x≤0.30,y的取值范围为0≤y≤0.10)的固体发光材料。在此类发光材料中通过调整铋离子和/或稀土离子的掺杂比例可以得到可应用于制备白光LED的具有高量子产率的白光荧光材料。

Description

一种铋离子和/或稀土离子共掺的偏硼酸钆荧光材料及合成 方法
技术领域
本发明涉及荧光材料合成领域,具体地说是一种铋离子和/或稀土离子共掺的偏硼酸钆(Gd(BO2)3)荧光材料及合成方法。
背景技术
与传统照明方式相比,LED具有体积小、能耗低、寿命长、无汞环保、抗震性好等诸多优点。如今LED已逐渐取代传统光源,占据大部分市场,并成为第四代照明光源。目前白光LED的组装方法主要有以下三种:(1)将红、绿、蓝三色荧光粉涂覆在紫外LED芯片上;(2)将红、绿荧光粉涂敷在蓝光LED芯片上;(3)将黄光荧光粉涂覆在蓝光LED芯片上。从白光LED的组装方式可以看出白光LED的性质受到半导体芯片、封装技术、荧光粉等诸多因素的影响。其中荧光粉的性能对LED的综合性能起到至关重要的作用。因此合成热稳定性高、高量子产率、高显色指数的荧光粉极具商业前景。通过此高温固相反应所得的样品通过调整离子掺杂比例可以得到高量子产率的白光荧光材料,有望应用于制备白光LED。
发明内容
本发明的目的在于提供一种铋离子和/或稀土离子共掺的偏硼酸钆(Gd(BO2)3)荧光材料及合成方法,合成具有高量子产率的白光荧光粉,通过调整激活剂的比例实现光色的调谐。其合成方法工艺简单,成本低,可大批量生产。
实现本发明目的的具体技术方案是:
一种铋离子和/或稀土离子共掺的Gd(BO2)3荧光材料的合成方法,所述的白光荧光粉的化学通式为:Gd1-x-y(BO2)3:xBi3+-yRE3+(RE3+为稀土离子),
本发明所用的合成方法为高温固相反应法,包括以下步骤:
步骤1:依据化学通式Gd1-x(BO2)3:xBi3+(原料为:硼酸(H3BO3)、氧化钆(Gd2O3)和氧化铋(Bi2O3))、Gd1-x-y(BO2)3:xBi3+-yDy3+(原料为:H3BO3、Gd2O3、Bi2O3和氧化镝(Dy2O3))、Gd1-x-y(BO2)3xBi3+-y(Dy3+-Eu3+)(原料为:H3BO3、Gd2O3、Bi2O3、Dy2O3和氧化铕(Eu2O3))、Gd1-x-y(BO2)3:xBi3+-y(Dy3+-Sm3+)(原料为:H3BO3、Gd2O3、Bi2O3、Dy2O3和氧化钐(Sm2O3))或Gd1-x-y(BO2)3:xBi3+-y(Tb3+-Sm3+)(原料为:H3BO3、Gd2O3、Bi2O3、七氧化四铽(Tb4O7)和Sm2O3)分别将对应原料按照化学计量比称取后放入研钵中充分研磨按照化学计量比称取后放入研钵中充分研磨,其中,x的取值范围为0<x≤0.30,y的取值范围为0≤y≤0.10;H3BO3需过量10%-20%,用以补偿反应过程中的挥发损失;
步骤2:将充分研磨的原料压制片后,放入高温炉中,在500-700℃范围内保温10-20小时后自然冷却至室温,得到第一次中间产物;
步骤3:将步骤2所得的第一次中间产物研磨均匀后再次压片,并放入高温炉中,1-2℃/分钟升温至700-900℃,保温10-15小时后自然冷却至室温,得到第二次中间产物;
步骤4:将步骤3所得的第二次中间产物充分研磨后再次压片放入高温炉中,1-2℃升温至800-900℃,保温10-15小时后自然冷却至室温,得到所述的Gd(BO2)3荧光材料。
一种上述合成方法制得的铋离子和/或稀土离子共掺的Gd(BO2)3荧光材料。
本发明的有益效果:本发明所采用的铋离子和/或稀土离子共掺的Gd(BO2)3荧光材料的合成方法工艺简单,成本低,可大批量生产。在Gd(BO2)3中通过Bi3+离子和/或稀土离子共同掺杂所得的荧光材料可以通过调节Bi3+与稀土离子的掺杂比例实现光色的有效调节,从而得到高量子产率的白光荧光材料,其中Gd0.65(BO2)3:0.25Bi3+-0.05Dy3+-0.05Sm3+的量子产率可达80%,而Gd0.695(BO2)3:0.25Bi3+-0.025Tb3+-0.03Sm3+的量子产率则高达96.49%。
附图说明
图1为本发明实施例1所得产物的激发光谱与发射光谱图;
图2为本发明实施例2所得产物的发射光谱图;
图3为本发明实施例3所得产物的发射光谱图;
图4为本发明实施例4所得产物的发射光谱图;
图5为本发明实施例5所得产物的发射光谱图。
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本发明做更全面细致的描述,但本发明的保护范围不仅限于以下具体实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1:合成Gd1-x(BO2)3:xBi3+荧光粉
按照化学计量比称取用来合成化学式为Gd1-x(BO2)3:xBi3+(其中x=0.20,0.25,0.30)荧光材料的原料。当x=0.20时称取0.0744gH3BO3、0.2900gGd2O3和0.0465gBi2O3;当x=0.25时,称取0.0744g H3BO3、0.2718gGd2O3和0.0582g Bi2O3;当x=0.30时称取0.0744gH3BO3、0.2537g Gd2O3和0.0698g Bi2O3。将所称取的原料放入玛瑙研钵中充分研磨,其中,H3BO3过量20%用以补偿反应过程中的挥发损失。之后将充分研磨的原料压制成直径为16毫米的圆片,放入高温炉中,以0.5℃/min的升温速度升温至650℃,保温15小时后自然冷却至室温,得到中间产物。之后将第一次所得的中间产物研磨均匀后再次压片,并放入高温炉中,以1℃/min的速度升温至750℃,保温15小时后自然冷却至室温,得到第二次中间产物。将第二次中间产物充分研磨后再次压制成直径为16毫米的圆片放入高温炉中,以1℃/min的速度升温至820℃,保温15小时后自然冷却至室温,得到最终产物Gd(BO2)3:xBi3+(其中x=0.20,0.25,0.30)。附图1为所得产物的激发光谱(左,λem=450nm)与发射光谱(右,λex=299nm)。从产物的激发谱和发射谱中可以看出Gd(BO2)3:xBi3+(其中x=0.20,0.25,0.30)可以被299nm的紫外光激发,产生较强的蓝光发射。当Bi3+离子的掺杂浓度提高到0.25时发生浓度猝灭。
实施例2:合成Gd1-0.25-y(BO2)3:0.25Bi3+-yDy3+荧光粉
按照化学计量比称取用来合成化学式为Gd1-0.25-y(BO2)3:0.25Bi3+-yDy3+(其中y=0.01,0.025,0.050,0.075)荧光材料的原料。当y=0.01时称取0.0744g H3BO3、0.2682gGd2O3、0.0582g Bi2O3和0.0037g Dy2O3;当y=0.025时,称取0.0744g H3BO3、0.2628g Gd2O3、0.0582g Bi2O3和0.0092g Dy2O3;当y=0.050时称取0.0744g H3BO3、0.2538g Gd2O3、0.0582gBi2O3和0.0185g Dy2O3;当y=0.075时称取0.0744g H3BO3、0.2447g Gd2O3、0.0582g Bi2O3和0.0278g Dy2O3。将所称取的原料放入玛瑙研钵中充分研磨,其中,H3BO3过量20%用以补偿反应过程中的挥发损失。之后将充分研磨的原料压制成直径为16毫米的圆片,放入高温炉中,以0.5℃/min的升温速度升温至650℃,保温15小时后自然冷却至室温,得到中间产物。之后将第一次所得的中间产物研磨均匀后再次压片,并放入高温炉中,以1℃/min的速度升温至750℃,保温15小时后自然冷却至室温,得到第二次中间产物。将第二次中间产物充分研磨后再次压制成直径为16毫米的圆片放入高温炉中,以1℃/min的速度升温至820℃,保温15小时后自然冷却至室温,得到最终产物Gd(BO2)3:0.25Bi3+-yDy3+(其中y=0.01,0.025,0.050,0.075)。附图2为Gd(BO2)3:0.25Bi3+-yDy3+(其中y=0.01,0.025,0.050,0.075)对应的发射光谱(λex=299nm)。从产物的发射谱中可以看出Gd(BO2)3:0.25Bi3+-yDy3+(其中y=0.01,0.025,0.050,0.075)可以被299nm的紫外光有效激发,并产生有效的青蓝光发射。
实施例3:合成Gd1-0.30-y(BO2)3:0.25Bi3+-0.05Dy3+-yEu3+荧光粉
按照化学计量比称取用来合成化学式为Gd1-0.30-y(BO2)3:0.25Bi3+-0.05Dy3+-yEu3+(其中y=0.01,0.02,0.03,0.04,0.05)荧光材料的原料。当y=0.01时称取0.0744g H3BO3、0.2501g Gd2O3、0.0582g Bi2O3、0.0185g Dy2O3和0.0035g Eu2O3;当y=0.02时,称取0.0744gH3BO3、0.2465g Gd2O3、0.0582g Bi2O3、0.0185g Dy2O3和0.0070g Eu2O3;当y=0.03时称取0.0744g H3BO3、0.2429g Gd2O3、0.0582g Bi2O3、0.0185g Dy2O3和0.0106g Eu2O3;当y=0.04时称取0.0744g H3BO3、0.2447g Gd2O3、0.0582g Bi2O3、0.0185g Dy2O3和0.0141g Eu2O3;当y=0.05时称取0.0744g H3BO3、0.2447g Gd2O3、0.0582g Bi2O3、0.0185g Dy2O3和0.0176gEu2O3。将所称取的原料放入玛瑙研钵中充分研磨,其中,H3BO3过量20%用以补偿反应过程中的挥发损失。之后将充分研磨的原料压制成直径为16毫米的圆片,放入高温炉中,以0.5℃/min的升温速度升温至650℃,保温15小时后自然冷却至室温,得到中间产物。之后将第一次所得的中间产物研磨均匀后再次压片,并放入高温炉中,以1℃/min的速度升温至750℃,保温15小时后自然冷却至室温,得到第二次中间产物。将第二次中间产物充分研磨后再次压制成直径为16毫米的圆片放入高温炉中,以1℃/min的速度升温至820℃,保温15小时后自然冷却至室温,得到最终产物Gd1-0.30-y(BO2)3:0.25Bi3+-0.05Dy3+-yEu3+(其中y=0.01,0.02,0.03,0.04,0.05)。附图3为Gd1-0.30-y(BO2)3:0.25Bi3+-0.05Dy3+-yEu3+(其中y=0.01,0.02,0.03,0.04,0.05)的发射光谱(λex=345nm)。从产物的发射谱中可以看出Gd1-0.30-y(BO2)3:0.25Bi3+-0.05Dy3+-yEu3+(其中y=0.01,0.02,0.03,0.04,0.05)可以被345nm的紫外光激发,产生较强的可见光发射。通过调整Eu3+的掺杂比例可以实现光色的调节,当y=0.05时,CIE 1931色坐标为(0.34,0.32),接近标准白光。
实施例4:合成Gd(BO2)3:0.25Bi3+-0.05Dy3+-ySm3+荧光粉
按照化学计量比称取用来合成化学式为Gd1-0.30-y(BO2)3:0.25Bi3+-0.05Dy3+-ySm3+(其中y=0.01,0.02,0.03,0.04,0.05)荧光材料的原料。当y=0.01时称取0.0744g H3BO3、0.2501g Gd2O3、0.0582g Bi2O3、0.0185g Dy2O3和0.0035g Sm2O3;当y=0.02时,称取0.0744gH3BO3、0.2465g Gd2O3、0.0582g Bi2O3、0.0185g Dy2O3和0.0070g Sm2O3;当y=0.03时称取0.0744g H3BO3、0.2429g Gd2O3、0.0582g Bi2O3、0.0185g Dy2O3和0.0104g Sm2O3;当y=0.04时称取0.0744g H3BO3、0.2447g Gd2O3、0.0582g Bi2O3、0.0185g Dy2O3和0.0139g Sm2O3;当y=0.05时称取0.0744g H3BO3、0.2447g Gd2O3、0.0582g Bi2O3、0.0185g Dy2O3和0.0174gSm2O3。将所称取的原料放入玛瑙研钵中充分研磨,其中,硼酸过量20%用以补偿反应过程中的挥发损失。之后将充分研磨的原料压制成直径为16毫米的圆片,放入高温炉中,以0.5℃/min的升温速度升温至650℃,保温15小时后自然冷却至室温,得到中间产物。之后将第一次所得的中间产物研磨均匀后再次压片,并放入高温炉中,以1℃/min的速度升温至750℃,保温15小时后自然冷却至室温,得到第二次中间产物。将第二次中间产物充分研磨后再次压制成直径为16毫米的圆片放入高温炉中,以1℃/min的速度升温至820℃,保温15小时后自然冷却至室温,得到最终产物Gd1-0.30-y(BO2)3:0.25Bi3+-0.05Dy3+-ySm3+(其中y=0.01,0.02,0.03,0.04,0.05)。附图4为Gd1-0.30-y(BO2)3:0.25Bi3+-0.05Dy3+-ySm3+(其中y=0.01,0.02,0.03,0.04,0.05)对应的发射谱图(λex=345nm)。从产物的发射谱中可以看出Gd1-0.30-y(BO2)3:0.25Bi3+-0.05Dy3+-ySm3+可以被345nm的紫外光激发,产生较强的可见光发射。通过调整Sm3+的掺杂比例可以有效实现光色的调节,除此之外,Gd0.65(BO2)3:0.25Bi3+-0.05Dy3+-0.05Sm3+的量子产率可达80%。
实施例5:合成Gd1-0.275-y(BO2)3:0.25Bi3+-0.025Tb3+-ySm3+(其中y=0.01,0.03,0.05,0.07)荧光粉
按照化学计量比称取用来合成化学式为Gd1-0.275-y(BO2)3:0.25Bi3+-0.025Tb3+-ySm3+(其中y=0.01,0.03,0.05,0.07)荧光材料的原料。当y=0.01时称取0.0744g H3BO3、0.2592g Gd2O3、0.0582g Bi2O3、0.0093gTb4O7和0.0035g Sm2O3;当y=0.03时,称取0.0744gH3BO3、0.2519g Gd2O3、0.0582g Bi2O3、0.0093g Tb4O7和0.0104g Sm2O3;当y=0.05时称取0.0744g H3BO3、0.2447g Gd2O3、0.0582g Bi2O3、0.0093g Tb4O7和0.0174g Sm2O3;当y=0.07时称取0.0744g H3BO3、0.2374g Gd2O3、0.0582g Bi2O3、0.0093g Tb4O7和0.0244g Sm2O3。将所称取的原料放入玛瑙研钵中充分研磨,其中,硼酸过量20%用以补偿反应过程中的挥发损失。之后将充分研磨的原料压制成直径为16毫米的圆片,放入高温炉中,以0.5℃/min的升温速度升温至650℃,保温15小时后自然冷却至室温,得到中间产物。之后将第一次所得的中间产物研磨均匀后再次压片,并放入高温炉中,以1℃/min的速度升温至750℃,保温15小时后自然冷却至室温,得到第二次中间产物。将第二次中间产物充分研磨后再次压制成直径为16毫米的圆片放入高温炉中,以1℃/min的速度升温至820℃,保温15小时后自然冷却至室温,得到最终产物Gd1-0.275-y(BO2)3:0.25Bi3+-0.025Tb3+-ySm3+(其中y=0.01,0.03,0.05,0.07)。附图5为Gd1-0.275-y(BO2)3:0.25Bi3+-0.025Tb3+-ySm3+(其中y=0.01,0.03,0.05,0.07)对应的发射光谱(λex=345nm)。从产物的发射谱中可以看出Gd1-0.275-y(BO2)3:0.25Bi3 +-0.025Tb3+-ySm3+(其中y=0.01,0.03,0.05,0.07)可以被299nm的紫外光激发,产生较强的可见光发射。通过调整Sm3+离子掺杂量同样可以实现光色的调节,对应Gd0.695(BO2)3:0.25Bi3+-0.025Tb3+-0.03Sm3+的量子产率可达96.49%。

Claims (2)

1.一种铋离子和/或稀土离子共掺的偏硼酸钆荧光材料的合成方法,其特征在于,包括以下步骤:
步骤1:依据化学通式Gd1-x(BO2)3:xBi3+、Gd1-x-y(BO2)3:xBi3+-yDy3+、Gd1-x-y(BO2)3xBi3+-y(Dy3+-Eu3+)、Gd1-x-y(BO2)3:xBi3+-y(Dy3+-Sm3+)或Gd1-x-y(BO2)3:xBi3+-y(Tb3+-Sm3+),分别将对应原料按照化学计量比称取后,放入研钵中充分研磨,其中,x的取值范围为0<x≤0.30,y的取值范围为0≤y≤0.10;硼酸H3BO3需过量10%-20%,用以补偿反应过程中的挥发损失;所述化学通式为Gd1-x(BO2)3:xBi3+,对应原料:硼酸H3BO3、氧化钆Gd2O3和氧化铋Bi2O3;所述化学通式为Gd1-x-y(BO2)3:xBi3+-yDy3+,对应原料:硼酸H3BO3、氧化钆Gd2O3、氧化铋Bi2O3和氧化镝Dy2O3
所述化学通式为Gd1-x-y(BO2)3xBi3+-y(Dy3+-Eu3+),对应原料:硼酸H3BO3、氧化钆Gd2O3、氧化铋Bi2O3、氧化镝Dy2O3和氧化铕Eu2O3
所述化学通式为Gd1-x-y(BO2)3:xBi3+-y(Dy3+-Sm3+),对应原料:硼酸H3BO3、氧化钆Gd2O3、氧化铋Bi2O3、氧化镝Dy2O3和氧化钐Sm2O3
所述化学通式为Gd1-x-y(BO2)3:xBi3+-y(Tb3+-Sm3+),对应原料:硼酸H3BO3、氧化钆Gd2O3、氧化铋Bi2O3、七氧化四铽Tb4O7和氧化钐Sm2O3
步骤2:将充分研磨的原料压制片后,放入高温炉中,在500-700℃范围内保温10-20小时后自然冷却至室温,得到第一次中间产物;
步骤3:将步骤2所得的第一次中间产物研磨均匀后再次压片,并放入高温炉中,1-2℃/分钟升温至700-900℃,保温10-15小时后自然冷却至室温,得到第二次中间产物;
步骤4:将步骤3所得的第二次中间产物充分研磨后再次压片放入高温炉中,1-2℃升温至800-900℃,保温10-15小时后自然冷却至室温,得到所述的偏硼酸钆Gd(BO2)3荧光材料。
2.一种权利要求1所述合成方法制得的铋离子和/或稀土离子共掺的偏硼酸钆Gd(BO2)3荧光材料。
CN202210887806.1A 2022-07-26 2022-07-26 一种铋离子和/或稀土离子共掺的偏硼酸钆荧光材料及合成方法 Active CN115322783B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210887806.1A CN115322783B (zh) 2022-07-26 2022-07-26 一种铋离子和/或稀土离子共掺的偏硼酸钆荧光材料及合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210887806.1A CN115322783B (zh) 2022-07-26 2022-07-26 一种铋离子和/或稀土离子共掺的偏硼酸钆荧光材料及合成方法

Publications (2)

Publication Number Publication Date
CN115322783A true CN115322783A (zh) 2022-11-11
CN115322783B CN115322783B (zh) 2024-03-22

Family

ID=83920712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210887806.1A Active CN115322783B (zh) 2022-07-26 2022-07-26 一种铋离子和/或稀土离子共掺的偏硼酸钆荧光材料及合成方法

Country Status (1)

Country Link
CN (1) CN115322783B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1536637A (en) * 1976-07-13 1978-12-20 Philips Nv Luminescent materials
JP2003201475A (ja) * 2002-01-08 2003-07-18 Hitachi Ltd 蛍光体及びそれを用いた表示装置
WO2009053876A2 (en) * 2007-10-23 2009-04-30 Philips Intellectual Property & Standards Gmbh Nir emitters excitable in the visible spectral range and their application in biochemical and medical imaging
US20120199791A1 (en) * 2009-10-12 2012-08-09 Mingjie Zhou Bismuth ion sensitized rare earth germanate luminescence materials and preparation methods thereof
CN106978174A (zh) * 2017-03-28 2017-07-25 广东工业大学 一种掺杂的钨硼酸镧荧光粉及其制备方法与应用
CN110540840A (zh) * 2019-08-28 2019-12-06 南宁师范大学 单基质白光荧光粉及其制备方法
CN111635756A (zh) * 2020-06-08 2020-09-08 华东师范大学 一种非稀土高量子产率荧光材料及合成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1536637A (en) * 1976-07-13 1978-12-20 Philips Nv Luminescent materials
JP2003201475A (ja) * 2002-01-08 2003-07-18 Hitachi Ltd 蛍光体及びそれを用いた表示装置
WO2009053876A2 (en) * 2007-10-23 2009-04-30 Philips Intellectual Property & Standards Gmbh Nir emitters excitable in the visible spectral range and their application in biochemical and medical imaging
US20120199791A1 (en) * 2009-10-12 2012-08-09 Mingjie Zhou Bismuth ion sensitized rare earth germanate luminescence materials and preparation methods thereof
CN106978174A (zh) * 2017-03-28 2017-07-25 广东工业大学 一种掺杂的钨硼酸镧荧光粉及其制备方法与应用
CN110540840A (zh) * 2019-08-28 2019-12-06 南宁师范大学 单基质白光荧光粉及其制备方法
CN111635756A (zh) * 2020-06-08 2020-09-08 华东师范大学 一种非稀土高量子产率荧光材料及合成方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
HAO ZHIRAN 等: "ENERGY TRANSFER PHENOMENAIN LUMINESCENTM ATERIALS BASED ON GdB3O6", 《MATERIALS CHEMISTRY ARID PHYSICS.》, vol. 12, pages 257 - 274 *
NARAYANA PERUMAL RAJESH ET AL.,: "Investigations on energy transfer and tunable luminescence spectra for single, co-doped and tri-doped RE3+ (RE3+=Dy3+ , Sm3+ and Eu3+)activated Sr1.99Bi0.01CeO4 phosphors", 《OPTICAL MATERIALS》, vol. 85, pages 464 - 473 *
SHUAI YANG ET AL.,: "Three-step fine-tuning by doping Bi3+ , Tb3+ and Eu3+/Sm3+ in Gd2MoB2O9 host for accurate white emission", 《JOURNAL OF SOLID STATE CHEMISTRY》, vol. 289, pages 1 - 10 *
XIAORUI SUN ET AL.,: "Ambient-Pressure Stabilization of b-GdB3O6 by Doping with Bi3+ and Color-Tunable Emissions by Co-Doping with Tb3+and Eu3+:The First Photoluminescence Study of a High-Pressure Polymorph", 《CHEM. ASIAN J.》, vol. 12, pages 1353 - 1363 *
XIAORUI SUN ET AL.,: "β‑RE1−xBixB3O6 (RE = Sm, Eu, Gd, Tb, Dy, Ho, Er, Y): Bi3+ Substitution Induced Formation of Metastable Rare Earth Borates at Ambient Pressure", 《INORG. CHEM.》, vol. 55, pages 9276 *
XUE YU ET AL.,: "Development of a single-phased Ca3SnSi2O9:Bi3+,Dy3+,Eu3+ phosphor with tri-colors for white light-emitting diodes", 《JOURNAL OF LUMINESCENCE》, vol. 145, pages 114 - 118, XP028770472, DOI: 10.1016/j.jlumin.2013.07.009 *
孙晓瑞: "稀土多硼酸盐荧光材料的合成及性质研究", 《中国优秀硕士学位论文全文数据库工程科技I辑》, no. 07, pages 016 - 369 *

Also Published As

Publication number Publication date
CN115322783B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
JP5331981B2 (ja) 複数の発光ピークを有するケイ酸塩ベースの発光材料、当該発光材料を調製するための方法、及び当該発光材料を用いた発光デバイス
CN112094647B (zh) 一种窄带发射氮氧化物红色荧光粉及其制备方法
CN115368893B (zh) 一种钠钆镓锗石榴石基青光荧光粉及其制备方法
CN109021973B (zh) 一种双钙钛矿型钼酸盐红色荧光粉及其制备方法
CN111187622B (zh) 白光led用单一基质磷酸盐荧光粉及其制备方法
CN104403668A (zh) 一种硅酸盐绿色荧光粉及其制备方法
KR100306996B1 (ko) 신규 램프용 규산염계 형광체
CN114590831A (zh) LaSi2N3O晶体及荧光粉和制备方法
CN110591711B (zh) 一种用于白光led的镓酸盐红色荧光粉及其制备方法
CN112625683A (zh) 一种锗酸盐型红色荧光粉及制备方法
CN112694889A (zh) 一种Fe3+掺杂镓酸盐近红外长余辉发光材料及其制备方法与应用
CN115322783B (zh) 一种铋离子和/或稀土离子共掺的偏硼酸钆荧光材料及合成方法
CN108822842B (zh) 一种红色锶镁磷酸盐荧光材料及其制备方法和应用
CN110272740B (zh) 一种零掺杂稀土硼酸盐红色荧光粉、制备及其在led领域的应用
CN116396756B (zh) 一种宽谱青色发射氟氧化物荧光粉及制备方法
CN107794042B (zh) 一种掺杂稀土元素Sm的磷钨酸盐发光材料及其制备方法
CN117143599B (zh) 一种钠铟石榴石基反常热猝灭红色荧光粉及其制备方法
CN110951489B (zh) 一种铕激活的硅酸盐蓝光荧光粉及其制备方法
CN111040762A (zh) 单一基质色度可调的发光材料及其制备方法与应用
CN116751588B (zh) 一种近红外发光材料、其制备方法及含该材料的led光源
CN116004227B (zh) 一种紫外激发的蓝光发射荧光粉及其制备方法与应用
CN116396753B (zh) 一种单掺杂氮氧化物冷白光荧光粉
CN115717069B (zh) 一种绿色锗酸盐超长余辉发光材料及其制备方法
CN115491202B (zh) 用于白光led的镝铕共掺杂碲磷酸盐荧光粉及其微波固相合成方法
CN116694326B (zh) 一种稀土掺杂硼酸盐单相白光荧光粉及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant