CN115322532A - 一种膜袋用复合填充pbat生物降解材料及其制备方法 - Google Patents

一种膜袋用复合填充pbat生物降解材料及其制备方法 Download PDF

Info

Publication number
CN115322532A
CN115322532A CN202211011697.3A CN202211011697A CN115322532A CN 115322532 A CN115322532 A CN 115322532A CN 202211011697 A CN202211011697 A CN 202211011697A CN 115322532 A CN115322532 A CN 115322532A
Authority
CN
China
Prior art keywords
starch
pbat
biodegradable material
screw
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211011697.3A
Other languages
English (en)
Other versions
CN115322532B (zh
Inventor
陈光剑
杨朝建
张磊
黄瑞杰
李双武
赵玲
陈永波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cgn Juner New Materials Co ltd
Zhongguang Nuclear Juner Zhejiang New Materials Co ltd
Original Assignee
Cgn Juner New Materials Co ltd
Zhongguang Nuclear Juner Zhejiang New Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cgn Juner New Materials Co ltd, Zhongguang Nuclear Juner Zhejiang New Materials Co ltd filed Critical Cgn Juner New Materials Co ltd
Priority to CN202211011697.3A priority Critical patent/CN115322532B/zh
Publication of CN115322532A publication Critical patent/CN115322532A/zh
Application granted granted Critical
Publication of CN115322532B publication Critical patent/CN115322532B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

本发明公开了一种淀粉与矿物复合填充PBAT生物降解材料,按重量百分比计,PBAT:45~80%;常规淀粉5~25%;热塑性淀粉2~15%;矿物填料5~20%;增塑剂1~10%;相容剂1~5%;增容剂0.1~0.6%;润滑剂0.1~0.6%。矿物填料采用侧位料口加入,通过调整螺杆组合、设计不同的排气口及抽真空口,配合螺杆转速、加工温度,进行挤出造粒而制得。本发明解决了淀粉在矿物填料影响下的分散问题、塑化问题和排气问题,制得了淀粉与矿物复合填充PBAT生物降解材料。该材料制成的膜袋不仅具有优异力学性能和良好的挤出成型加工性,而且挺度高、颜色白、性价比好等优点。

Description

一种膜袋用复合填充PBAT生物降解材料及其制备方法
技术领域
本发明涉及生物降解材料领域,尤其涉及一种淀粉与矿物复合填充的生物降解材料及其制备方法。
背景技术
塑料改变了人们的生活,给我们带来便利的同时,也给环境带来了较大的污染。全球每年仅有约10%的废弃塑料被回收,超过60%塑料被填埋、焚烧、甚至流入海洋,绝大部分废弃塑料在自然环境中很难分解,对环境产生了巨大的危害,如白色污染、视觉污染、土壤及水体污染、海洋微塑料污染、焚烧产生的大气污染等危害。
生物降解塑料是指储存期内满足基本使用要求,使用后能在自然界或特定堆肥化条件下,能被微生物分解为CO2、CH4、H2O及矿化无机盐等对自然环境无害的一类塑料,是当前解决塑料污染的一种最有效途径。脂肪-芳香族共聚酯具有较好的力学性能和生物降解性能,其中聚己二酸/对苯二甲酸丁二酯(PBAT)是脂肪-芳香族共聚酯族中备受关注的类别,其加工性能与LDPE相当,是当前研究的热点之一。在我国已经具有竞争性的原材料产业布局。
在众多生物全降解填充料中,淀粉具有来源广、可再生、易改性等优点,利用淀粉填充PBAT制备薄膜,能在较大程度上降低PBAT薄膜的成本。但淀粉填充PBAT可生物降解材料的分解速度很快,薄膜机械性能在短短几周内存在较大衰减,较大程度上限定了膜袋的贮存与应用。另外,与高含量碳酸钙填充PBAT相比,完全采用高含量淀粉填充PBAT的膜袋在材料成本上并不占优势。
采用无机矿物与淀粉复合填充PBAT材料制备膜袋,可以在一定程度上改善薄膜的性能衰减、延缓分解速度,并提高了膜袋的刚性和挺度。同时,在膜袋的材料成本上比单一矿物填充PBAT材料更具有优势。
专利CN 113308094 A公布了一种采用无机矿物与淀粉复合填充PBAT材料,制备的薄膜具有较高的拉伸强度,该专利采用先制备淀粉填充PBAT材料,再制备矿物填充PBAT材料,将两种材料混合一起吹膜的方法。专利CN 113429754 A、CN 113583405 A提供了一种复合填充的降解材料,将预处理的无机矿物与有机混合物进行混配后再通过双螺杆挤出机造粒,CN 113429754 A未公布生产相关的制备工艺和方法,CN 113583405 A在实施例中对生产工艺、材料配比仅进行笼统描述。
发明内容
针对本领域存在的不足之处,本发明提供了一种膜袋用淀粉与矿物复合填充PBAT生物降解材料,其制备的膜袋具有良好的拉伸强度、挺度和白度,性价比高。
一种复合填充PBAT生物降解材料,按重量份计,原料组成包括:
PBAT 45~80份
常规淀粉 5~25 份
热塑性淀粉 2~15 份
增塑剂 1~10 份
相容剂 1~5 份
增容剂 0.1~0.6 份
矿物填料 5~20 份
润滑剂 0.1~0.6份
作为优选,所述PBAT的熔融指数要求为3~6g/10min(190℃,2.16kg),该黏度下的PBAT具有较好的熔体强度,能在双螺杆挤出机内承受较大的熔体压力,有助于淀粉的塑化熔融。
所述的常规淀粉为常规玉米淀粉、小麦淀粉、木薯淀粉、土豆淀粉的至少一种,水份含量在10~15%;
所示的热塑性淀粉,其淀粉含量应≥75%,水份≤5%;作为优选,上海富钛新材料科技有限公司的热塑性淀粉FT-001、武汉华丽生物股份有限公司的热塑性淀粉CM-300C、寿光金远东变性淀粉有限公司GFE 350;
所述的增塑剂为增塑剂为环氧大豆油、聚乙二醇、甘油、山梨醇中的至少一种。所示的增塑剂均为食品级。由于淀粉中含有大量羟基,淀粉分子间的氢键作用大,使得淀粉的熔融温度要高于分解温度,为使淀粉具有热塑性,需要加入低聚物类增塑剂对淀粉进行改性,从而降低淀粉分子间的作用力,使淀粉塑化。
所述的相容剂为有机酸、甲基丙烯酸缩水甘油酯(GMA)、乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯(EGMA)中的至少一种;
作为优选,所述有机酸为苹果酸、酒石酸、柠檬酸、肉桂酸中的至少一种,其中优选为苹果酸,有机酸能够催化淀粉水解降低淀粉分子量,有利于淀粉在树脂中分散,能够与淀粉发生酯化反应,增加淀粉与树脂的相容性;所述的甲基丙烯酸缩水甘油酯、乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯能提高PBAT与淀粉的界面相容性;
所述的增容剂为扩链剂、交联剂的一种或一种以上混合物。作为优选,所述扩链剂为Joncryl ADR 4468和/或Joncryl ADR 4370;作为优选,所述交联剂优选为三烯丙基异氰脲酸酯、双叔丁基过氧化二异丙基苯、二苯甲烷二异氰酸酯的一种。生物可降解材料,由于其酯基稳定性较差,易在双螺杆剪切下降解生成较多羧基和羟基,为了能对聚酯端进行高效率地封端,防止进一步降解,需要加入添加扩链剂或交联剂,而在淀粉上也有大量的羟基与扩链剂/交联剂发生反应,起到了淀粉与PBAT树脂的反应增容效果。因此,扩链剂、交联剂不仅提高了树脂熔体强度、机械性能,并增加了降解树脂与淀粉的相容性。
所述的矿物填料为碳酸钙、蒙脱土、硅灰石、滑石粉、硅藻土、硫酸镁、硫酸镁中的一种或一种以上;作为优选,所述无机填充料细度为2000-10000目;
作为优选,所述的润滑剂为聚乙烯蜡、油酸酰胺、芥酸酰胺、乙撑双硬脂酰胺(EBS)的一种或一种以上混合物。
本发明还提供了所述的膜袋用淀粉与矿物复合填充PBAT生物降解材料的制备方法,包含以下步骤:
(1)将一种或一种以上的增塑剂进行混合;
(2)在常温下,将相应重量的淀粉、有机酸、润滑剂置入高速混合机搅拌1~2min,使淀粉与有机酸均匀混合,再将混合好的增塑剂内进行高速混合10~20分钟,使淀粉处于松散状态,该过程中无需对淀粉进行加热处理;
(3)再将相应重量的热塑性淀粉、相容剂、增容剂置入高速混合机与上述处理好的淀粉进行再混合2~3分钟,得到的混合物转移至失重式计量称;PBAT材料转移至另一台失重式计量称;
(4)将混合物由计量称精确计量喂入双螺杆挤出机,矿物填料由侧喂料口强制喂入双螺杆挤出机内,混合物、矿物填料在双螺杆挤出机内经专用组合螺杆压缩、熔融塑化、剪切分散、挤出、风冷、切粒,制得淀粉与矿物复合填充PBAT粒料。
所述的挤出机为平行同向双螺杆挤出机,其螺杆长径比为40:1、52:1、56:1,优选为52:1;螺杆直径为φ35、φ65、φ75,优选为φ75;
所述的双螺杆挤出机上有专用的淀粉塑化螺纹块组合,提供淀粉熔融塑化所需的高压、高剪切、强分散,以及侧喂料方式进入的矿物填料的分散、分布,在熔融段至少有1~2片90°错位角剪切块,在塑化段至少有1片齿形盘及至少有1片90°错位角反向剪切块;
所述的双螺杆挤出机上设有1~2个排气口,1~2个抽真空口,有助于水蒸气、有机挥发物等排出,有助于气味散发;
所述的双螺杆挤出机上设有1个侧喂料口,其位置应在排气口后面,抽真空口前面,作为优选,侧喂料口应设置在第6~9节螺筒位置上;
所述的双螺杆挤出机的设定温度在100~145℃;
所述的双螺杆挤出机的螺杆转速在350~480 rpm
所述的高速混合机为变频高速混合机,计量称为失重式计量称。
本发明与现有技术相比,主要优点包括:
1.与现有的技术相比,本发明在淀粉与增塑剂的预处理工艺中无需采用加热手段,采用螺纹块组合设计、螺杆转速及温度,在挤出机内建立高压、高温、高剪切,使淀粉颗粒破碎、细化、熔融。简化了生产工序,降低了生产能耗,提高了生产效率。
2. 与现有技术采用矿物填料和淀粉均混同时喂料相比,本发明中将矿物填料采用侧喂料方式喂入挤出机中,淀粉从主喂料口进入挤出机不受矿物填料影响,从而得到更好的塑化效果,使膜袋性能得到进一步提升;另外,矿物填料与淀粉从主喂料同时下料,矿物填料在挤出机中的停留时间长,且矿物填料具有储温、保温的作用,会加快淀粉焦化、PBAT树脂降解黄变,本发明采用侧喂料方式,避免并减少了矿物填料在挤出机内的停留时间,使淀粉与矿物复合填充PBAT生物降解材料具有较好表观及力学强度。
3.与淀粉填充PBAT生物降解材料相比,淀粉与矿物复合填充PBAT生物降解材料具有更好的性价比和更好的货架周期。
具体实施方式
实施例1
按下列重量百分比称取各组分 :
Figure DEST_PATH_IMAGE001
制备工艺如下 :
将甘油和山梨醇按上表比例混合均匀后放置如液体计量泵中;
在常温下,将相应重量的淀粉、苹果酸、润滑剂置入高速混合机搅拌2min,使淀粉与有机酸均匀混合,再将混合好的甘油/山梨醇内进行高速混合15分钟,使淀粉处于松散状态;
将相应重量的热塑性淀粉CM-300C、GMA、增容剂置入高速混合机与上述处理好的淀粉进行再混合2分钟,得到的混合物转移至失重式计量称;PBAT材料转移至另一台失重式计量称;
通过计量称精准将各物料组分由主喂料口喂入双螺杆挤出机内;
滑石粉由侧喂料口强制喂入双螺杆挤出机内;
挤出机长径比为52:1,螺杆直径为φ75,主机上设计2个排气口,1个抽真空口;侧喂料口设置在第7节螺筒位置上;挤出机加工温度为100~145℃,螺杆转速在450 rpm;淀粉混合物、PBAT在双螺杆挤出机内经专用组合螺杆压缩、熔融塑化、剪切分散后,与侧喂料中进入的滑石粉混合,经螺杆剪切分布、分散后,通过口模挤出、风冷、切粒,制得淀粉与矿物复合填充PBAT粒料。将所获得的粒料通过吹膜机制得薄膜,薄膜性能结果见表1。
实施例2
按下列重量百分比称取各组分 :
Figure DEST_PATH_IMAGE002
制备工艺如下 :
将甘油和环氧大豆油按上表比例混合均匀后放置如液体计量泵中;
在常温下,将相应重量的淀粉、柠檬酸、润滑剂置入高速混合机搅拌2min,使淀粉与有机酸均匀混合,再将混合好的甘油/环氧大豆油内进行高速混合15分钟,使淀粉处于松散状态;
将相应重量的热塑性淀粉FT-001、EGMA、增容剂置入高速混合机与上述处理好的淀粉进行再混合2分钟,得到的混合物转移至失重式计量称;PBAT材料转移至另一台失重式计量称;
通过计量称精准将各物料组分由主喂料口喂入双螺杆挤出机内;
碳酸钙由侧喂料口强制喂入双螺杆挤出机内;
挤出机长径比为52:1,螺杆直径为φ75,主机上设计2个排气口,1个抽真空口;侧喂料口设置在第7节螺筒位置上;挤出机加工温度为100~145℃,螺杆转速在400 rpm;淀粉混合物、PBAT在双螺杆挤出机内经专用组合螺杆压缩、熔融塑化、剪切分散后,与侧喂料中进入的碳酸钙混合,经螺杆剪切分布、分散后,通过口模挤出、风冷、切粒,制得淀粉与矿物复合填充PBAT粒料。将所获得的粒料通过吹膜机制得薄膜,薄膜性能结果见表1。
实施例3
按下列重量百分比称取各组分 :
Figure DEST_PATH_IMAGE003
制备工艺如下 :
将甘油和聚乙二醇按上表比例混合均匀后放置如液体计量泵中;
在常温下,将相应重量的淀粉、酒石酸、润滑剂置入高速混合机搅拌2min,使淀粉与有机酸均匀混合,再将混合好的甘油/环氧大豆油内进行高速混合15分钟,使淀粉处于松散状态;
将相应重量的热塑性淀粉GFE 350、EGMA、增容剂置入高速混合机与上述处理好的淀粉进行再混合2分钟,得到的混合物转移至失重式计量称;PBAT材料转移至另一台失重式计量称;
通过计量称精准将各物料组分由主喂料口喂入双螺杆挤出机内;
滑石粉由侧喂料口强制喂入双螺杆挤出机内;
挤出机长径比为52:1,螺杆直径为φ75,主机上设计2个排气口,1个抽真空口;侧喂料口设置在第7节螺筒位置上;挤出机加工温度为100~145℃,螺杆转速在380 rpm;淀粉混合物、PBAT在双螺杆挤出机内经专用组合螺杆压缩、熔融塑化、剪切分散后,与侧喂料中进入的滑石粉混合,经螺杆剪切分布、分散后,通过口模挤出、风冷、切粒,制得淀粉与矿物复合填充PBAT粒料。将所获得的粒料通过吹膜机制得薄膜,薄膜性能结果见表1。
实施例4
按下列重量百分比称取各组分 :
Figure DEST_PATH_IMAGE004
制备工艺如下 :
将甘油和山梨醇按上表比例混合均匀后放置如液体计量泵中;
在常温下,将相应重量的淀粉、柠檬酸、润滑剂置入高速混合机搅拌2min,使淀粉与有机酸均匀混合,再将混合好的甘油/环氧大豆油内进行高速混合15分钟,使淀粉处于松散状态;
将相应重量的热塑性淀粉FT-001、GMA、增容剂置入高速混合机与上述处理好的淀粉进行再混合2分钟,得到的混合物转移至失重式计量称;PBAT材料转移至另一台失重式计量称;
通过计量称精准将各物料组分由主喂料口喂入双螺杆挤出机内;
硅藻土由侧喂料口强制喂入双螺杆挤出机内;
挤出机长径比为52:1,螺杆直径为φ75,主机上设计2个排气口,1个抽真空口;侧喂料口设置在第7节螺筒位置上;挤出机加工温度为100~145℃,螺杆转速在380 Rpm;淀粉混合物、PBAT在双螺杆挤出机内经专用组合螺杆压缩、熔融塑化、剪切分散后,与侧喂料中进入的碳酸钙混合,经螺杆剪切分布、分散后,通过口模挤出、风冷、切粒,制得淀粉与矿物复合填充PBAT粒料。将所获得的粒料通过吹膜机制得薄膜,薄膜性能结果见表1。
表1 实施例 1~4 薄膜物理性能测试结果
Figure DEST_PATH_IMAGE006
表1测试方法为国标。

Claims (10)

1.一种复合填充PBAT生物降解材料,按重量份计,原料组成包括:
PBAT 45~80份
常规淀粉 5~25 份
热塑性淀粉 2~15 份
增塑剂 1~10 份
相容剂 1~5 份
增容剂 0.1~0.6 份
矿物填料 5~20 份
润滑剂 0.1~0.6份。
2.根据权利要求1所述的一种复合填充PBAT生物降解材料, 其特征在于,所述PBAT的熔融指数要求为3~6g/10min(190℃,2.16kg)。
3.根据权利要求1所述的一种复合填充PBAT生物降解材料, 其特征在于,所述的常规淀粉为常规玉米淀粉、小麦淀粉、木薯淀粉、土豆淀粉的至少一种,水份含量在10~15%。
4.根据权利要求1所述的一种复合填充PBAT生物降解材料, 其特征在于,所示的热塑性淀粉,其淀粉含量应≥75%,水份≤5%。
5.根据权利要求1所述的一种复合填充PBAT生物降解材料, 其特征在于,所述的增塑剂为环氧大豆油、聚乙二醇、甘油、山梨醇中的至少一种。
6.根据权利要求1所述的一种复合填充PBAT生物降解材料, 其特征在于,所述的相容剂为有机酸、甲基丙烯酸缩水甘油酯(GMA)、乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯(EGMA)中的至少一种。
7.根据权利要求1所述的一种复合填充PBAT生物降解材料, 其特征在于,所述的增容剂为扩链剂、交联剂的一种或一种以上混合物。
8.根据权利要求1所述的一种复合填充PBAT生物降解材料, 其特征在于,所述的矿物填料为碳酸钙、蒙脱土、硅灰石、滑石粉、硅藻土、硫酸镁、硫酸镁中的一种或一种以上。
9.根据权利要求1所述的一种复合填充PBAT生物降解材料, 其特征在于,所述的润滑剂为聚乙烯蜡、油酸酰胺、芥酸酰胺、乙撑双硬脂酰胺(EBS)的一种或一种以上混合物。
10.根据权利要求1~9所述的一种复合填充PBAT生物降解材料制备方法, 包括以下步骤:(1)将一种或一种以上的增塑剂进行混合;
(2)在常温下,将相应重量的淀粉、有机酸、润滑剂置入高速混合机搅拌1~2min,使淀粉与有机酸均匀混合,再将混合好的增塑剂内进行高速混合10~20分钟,使淀粉处于松散状态,该过程中无需对淀粉进行加热处理;
(3)再将相应重量的热塑性淀粉、相容剂、增容剂置入高速混合机与上述处理好的淀粉进行再混合2~3分钟,得到的混合物转移至失重式计量称;PBAT材料转移至另一台失重式计量称;
(4)将混合物由计量称精确计量喂入双螺杆挤出机,矿物填料由侧喂料口强制喂入双螺杆挤出机内,混合物、矿物填料在双螺杆挤出机内经专用组合螺杆压缩、熔融塑化、剪切分散、挤出、风冷、切粒,制得淀粉与矿物复合填充PBAT粒料;
所述的挤出机为平行同向双螺杆挤出机,其螺杆长径比为40:1、52:1、56:1,优选为52:1;螺杆直径为φ35、φ65、φ75,优选为φ75;
所述的双螺杆挤出机上有专用的淀粉塑化螺纹块组合,提供淀粉熔融塑化所需的高压、高剪切、强分散,以及侧喂料方式进入的矿物填料的分散、分布,在熔融段至少有1~2片90°错位角剪切块,在塑化段至少有1片齿形盘及至少有1片90°错位角反向剪切块;
所述的双螺杆挤出机上设有1~2个排气口,1~2个抽真空口,有助于水蒸气、有机挥发物等排出,有助于气味散发;
所述的双螺杆挤出机上设有1个侧喂料口,其位置应在排气口后面,抽真空口前面,作为优选,侧喂料口应设置在第6~9节螺筒位置上;
所述的双螺杆挤出机的设定温度在100~145℃;
所述的双螺杆挤出机的螺杆转速在350~480 rpm
所述的高速混合机为变频高速混合机,计量称为失重式计量称。
CN202211011697.3A 2022-08-23 2022-08-23 一种膜袋用复合填充pbat生物降解材料及其制备方法 Active CN115322532B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211011697.3A CN115322532B (zh) 2022-08-23 2022-08-23 一种膜袋用复合填充pbat生物降解材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211011697.3A CN115322532B (zh) 2022-08-23 2022-08-23 一种膜袋用复合填充pbat生物降解材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115322532A true CN115322532A (zh) 2022-11-11
CN115322532B CN115322532B (zh) 2024-03-01

Family

ID=83926244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211011697.3A Active CN115322532B (zh) 2022-08-23 2022-08-23 一种膜袋用复合填充pbat生物降解材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115322532B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492267A (zh) * 2011-12-02 2012-06-13 金发科技股份有限公司 一种淀粉类完全生物降解材料及其制备方法
CN108250694A (zh) * 2016-12-28 2018-07-06 珠海万通特种工程塑料有限公司 一种聚酯模塑组合物及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492267A (zh) * 2011-12-02 2012-06-13 金发科技股份有限公司 一种淀粉类完全生物降解材料及其制备方法
CN108250694A (zh) * 2016-12-28 2018-07-06 珠海万通特种工程塑料有限公司 一种聚酯模塑组合物及其制备方法

Also Published As

Publication number Publication date
CN115322532B (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN103992517B (zh) 一种可连续化生产全降解淀粉基塑料合金及其制备方法
CN112048162B (zh) 一种吸塑薄壁制品用全生物降解改性塑料及其制备方法
CN110358264B (zh) 一种生物基环保包装袋及其制备方法
CN108929527B (zh) 一种兼具高延展性和高阻隔性能的pbat/改性淀粉全生物降解薄膜及其制备方法和应用
CN103044716B (zh) 生物降解材料及其制备方法
CN113881109B (zh) 多级改性的热塑性淀粉母粒及其在制备淀粉基生物降解薄膜中的应用
CN113956623B (zh) 一种适于膜袋的全生物降解塑料复合改性材料及其制备方法
WO2007134492A1 (fr) Résine de plastique entièrement biodégradable, film à base de cette résine et procédé d'élaboration correspondant
CN115418083A (zh) 一种膜袋用低成本pbat生物降解材料及其制备方法
CN101967288A (zh) 一种木粉填充聚丙烯复合材料及制备方法
CN112552655B (zh) 适用于制备薄膜的改性纤维素填充pbat/pla组合物及其制备和应用
CN112552654B (zh) 适用于制备薄膜的pbat/pha/木粉组合物及其制备和应用
CN113337088B (zh) 注塑用复合降解塑料材料的制备方法
CN107841102A (zh) 一种生物可降解增韧耐热型聚乳酸改性树脂及其制备方法
CN112063139A (zh) 一种食品接触注塑制品用聚乳酸改性材料及其制备方法
CN112405931B (zh) 一种纳米蒙脱土增强淀粉基生物降解吹膜材料的制备方法及其产品和应用
CN105462064A (zh) 一种聚丙烯/聚乙烯/木纤维复合材料及其制备方法
CN101298512B (zh) Pva-pcl-淀粉共混材料及其制备方法
CN115322532B (zh) 一种膜袋用复合填充pbat生物降解材料及其制备方法
CN111073229A (zh) 一种含改性造纸废弃物的可生物降解母粒及其制备方法
CN115466491A (zh) 一种高模量的可降解pbat/pla复合物及其制备方法
CN115260662A (zh) 一种高韧性生物基塑料/聚丙烯复合材料及其制备方法
CN100532451C (zh) 一种高冲击性增强pet组合物及其制备方法
CN110317392B (zh) 一种可降解复合增强聚丙烯组合物及其制备方法
CN111808332A (zh) 一种可堆肥快速降解的淀粉基塑料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant